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Abstract. Modern applications deal with complex data, where retrieval
by similarity plays an important role in most of them. Complex data
whose primary comparison mechanisms are similarity predicates are usu-
ally immersed in metric spaces. Metric Access Methods (MAMs) exploit
the metric space properties to divide the metric space into regions and
conquer efficiency on the processing of similarity queries, like range and
k-nearest neighbor queries.

Existing MAM use homogeneous data structures to improve query
execution, pursuing the same techniques employed by traditional meth-
ods developed to retrieve scalar and multidimensional data. In this paper,
we combine hashing and hierarchical ball partitioning approaches to
achieve a hybrid index that is tuned to improve similarity queries target-
ing complex data sets, with search algorithms that reduce total execution
time by aggressively reducing the number of distance calculations. We
applied our technique in the Slim-tree and performed experiments over
real data sets showing that the proposed technique is able to reduce the
execution time of both range and k-nearest queries to at least half of the
Slim-tree. Moreover, this technique is general to be applied over many
existing MAM.

1 Introduction

The existing Data Base Management Systems (DBMS) were originally developed
to store and retrieve data represented in numeric and short character strings
domains. They are not able to efficiently manage the complex data handled by
current applications, such as multimedia data, georeferenced data, time series,
genetic sequences, scientific simulations, etc. The main reason precluding those
data to be appropriately managed by current DBMSs is because their internal
structures require the data domains to comply with the ordering relationship
(OR) properties, that is, they require that every data element from a domain
can be compared by the <,≤, > and ≥ operators. To manage complex data even
the equality comparison operators = and �= are almost useless, because identity
seldom occurs (or is not worth pursuing) when retrieving complex data. To query
complex data, comparing by similarity is the most important operation [6].
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Similarity search is the most frequent abstraction to compare complex data,
based on the concept of proximity to represent similarity embodied in the mathe-
matical concept of metric spaces [8]. The development of the Metric Access Meth-
ods (MAMs), also known as distance-based index structures, provides adequate
techniques to retrieve complex data, once they are based solely on the distances
(similarities) between pairs of elements in a data set. Evaluating (dis)similarity
using a distance function is desirable when the data can be represented in metric
spaces. Formally, a metric space is a pair 〈S, d〉, where S is the data domain and
d : S × S → R

+ is the distance function, or metric, that holds the following
properties for any s1, s2, s3 ∈ S:

– Identity (d(s1, s2) = 0 → s1 = s2);
– Symmetry (d(s1, s2) = d(s2, s1));
– Non-negativity (0 < d(s1, s2) < ∞ , s1 �= s2) and
– Triangular inequality (d(s1, s2) ≤ d(s1, s3) + d(s3, s2)).

Given a set S in a complex domain S, a similarity query returns a result
set TR = {si ∈ S} that meet a given similarity criterion, expressed through a
reference element sq ∈ S. For example, for image databases one may ask for
images that are similar to a given one, according to a specific criterion. There
are two main types of similarity queries: the range and the k-nearest neighbor
queries.

There are two broad classes of access methods that exploit the properties of
metric spaces: those based on the hierarchical division of the space based on ball-
shaped regions centered at one element, and those based on pivots sets, which
can be implemented as a hierarchy or as hash tables. Dynamic MAMs have had
special attention by academy and industry as they do not degrade with updates.

In this paper we propose the Bucket-Slim-Tree (BST), a MAM based both
on hash and on ball partitioning, aiming at reducing the number of distance
evaluations required to answer a similarity query. BST employs the dynamic
MAM Slim-tree as a kind of hash function mapping to buckets delimited by
a fixed radius. Such organization allows reducing the overlap among regions
improving the search performance in a great extent. Experiments over real data
sets reported in the paper show that BST demands less than half of the distance
calculations and of the execution to perform similarity queries when compared
to the original Slim-tree, in the best results.

The rest of the paper has the following outline. Section 2 discusses the back-
ground and existing works related to this one. Section 3 presents the proposed
data structure, the Bucket-Slim-Tree. Section 4 shows experiments performed
to demonstrate the improvement of the proposed structure. Finally, Section 5
concludes for this work.

2 Background

Metric access methods use only the distances between elements to prune fur-
ther comparisons in subsets of the elements during search. Pruning techniques
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require the algorithms to store distances to take advantage of the metric proper-
ties and/or of statistics from the distance distribution over the data space. The
usual pruning techniques use lower bounds of distances derived from the trian-
gular inequality property. Another approach is to store the minimum and the
maximum distances within a group of elements to help discarding entire regions
during search algorithm execution.

Many indexing structures were developed exploiting those concepts, such as
the Geometric Near Access Tree (GNAT) of Brin [3], leading to the class called
Voronoi-based MAMs. The EGNAT [10] is a dynamic variation of GNAT, which
provides a mechanism to store elements on disk by creating buckets on the
leaf nodes and also enables deletion. Another approach, the ball decomposition
scheme, partitions the dataset based on distances from a distinguished element
called a Vantage Point (VP), thus creating the so-called VP-tree [14]. The VP-
tree construction process is based on finding the median element of a sorted
sample list of the elements, which leads to a recursive tree creation. Other disk-
based MAM have been proposed based on the VP-tree, such as the MVP-tree
[2], where multiple vantage points are used.

The BP-tree (Ball-and-Plane tree) [1] is constructed by recursively dividing
the data set into compact, low-overlap clusters. It is static and was designed to
deal with high dimensional data, where a data distribution analysis is used to
search in clusters.

Several dynamic, disk-based MAMs were proposed in the literature[13][4]. A
disk-based MAM requires the structure to hold many elements per node, in order
to decrease the number of disk accesses. They employ a bottom up strategy to
construct the trees, assuring the creation of balanced trees. The M-tree [4] was
the first of such trees proposed, followed by the Slim-tree [13], which includes the
Slim-down algorithm to reduce node overlaps. The OMNI concept [11] increases
the pruning power of search operations using a few elements strategically posi-
tioned as pivots, the foci set. These methods store distances among the elements
and the pivots, so the triangular inequality property can be used to prune nodes
and reduce the number of sub-tree accesses.

Most of the indexing structures presented above are based on ball partitioning
or pivot-based structures. Hashing, the “key to address” mapping, is the basis
for D-Index [5] and SH [7]. The LAESA algorithm [9] is a pivot table that uses a
matrix of distances between all pairs of pivots selected from the dataset. When
processing queries, it sequentially process the entire distance matrix (or parts
of it in multiple passes), pruning by using the triangle inequality property. But,
the internal cost of LAESA can be so high that it can be equivalent to perform
a sequential search when indexing high dimension datasets at low cost metrics
[12].

Both ball and hash based methods have particular advantages that can be
combined to achieve better metric structures. The way Ball-based MAM par-
titions the metric space leads to a better organization of the data structure,
so every resulting partition of the metric space groups similar elements. How-
ever, the best dynamic approaches produce regions that overlap, imposing to
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the search algorithm to visit many regions. The pivot partitioning methods are
affected by the pivots selection policy and how they are combined to prune
regions. Hash-based methods usually partition the data into subsets that are
addressed later to answer the queries.

Our proposal is innovative as it exploits the best properties from ball-based
and from pivot-based methods. Specifically, our method Bucket-Slim-Tree (BST)
uses the Slim-tree as a hash function to search within a bucket file to improve
performance. BST merges the usage of buckets of elements with the Slim-tree,
enabling to explore properties from both structures that results in an overall
reduced consumption of computational resources.

3 The Bucket-Slim-Tree

The Bucket-Slim-Tree (BST) is composed of a Slim-tree and a set of buckets
pointed by the Slim-tree leaf nodes. The Slim-tree acts as a hash function that
during query answering determines which bucket should be visited next. The
basic structure of a BST is shown in Figure 1. Each element in a leaf node has
a pointer to its respective bucket. Although each Slim-tree node have a limited
capacity, each bucket is (theoretically) limitless.

... ...

...

• • ... • • ... • • ... • ...

•••
• ••• • •••

• •• •••
• •••

Root

Index nodes

Leaf nodes

Buckets

Fig. 1. Structure of a Bucket-Slim-Tree.

The elements indexed in the index and leaf nodes are considered search keys,
and act like pivots in a hash structure. Inserting new elements or answering
queries require to traverse the tree structure using the search keys to determine
which leaf nodes will have their buckets accessed for inspection. The query result
will be composed of keys from the Slim-tree and also of elements stored in the
corresponding buckets that match the search criteria.

3.1 The Structure of the Buckets

A BST is constructed for a specific bucket radius η, given beforehand. A bucket
Bη(bci) represents a ball of radius η in the metric space, whose center is the
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(a) Slim-tree (b) BST

Fig. 2. Ball partitioning comparison between regular Slim-tree and BST.

element bci stored in a Slim-tree leaf node pointing to that bucket. Thus, a
bucket stores elements si such that ∀si ∈ Bη(bci) : d(si, bci) ≤ η. Each element
si that belongs to a bucket does not belong to other buckets.

For example, consider Figure 2. In Figure 2(a) it shows a set of points in
R

2 indexed in a regular Slim-tree with four levels. But, in Figure 2(b) it shows
the same set of points with buckets of a fixed radius η centered at elements
{a, b, c, h, i, j, n}, indexed on a BST. As it can be seen, there can be empty
buckets, such as Bη(h), and elements that are covered by more than one bucket
are stored in only one bucket, such as element r. Note that, comparing both
figures, using buckets reduces the overall covering radius of the index elements,
reducing the overlap in the structure.

The bucket radius plays an important role in the performance of the
Bucket-Slim-Tree. Setting too large η values will result in large buckets, thus
creating long subsets of elements to be analyzed during queries. This degen-
erates into sequential scans in the buckets and few key elements to filter the
buckets in the tree. Furthermore, the larger is the region covered by a bucket
the more the overlap between sibling buckets, which leads to potentially more
unnecessary accesses. On the other hand, choosing too small values for η will
produce many small or empty buckets, leading the search cost to occur mostly
in the Slim-tree and an added internal cost to manage the buckets. Choosing the
bucket radius η = 0 the result is the Slim-tree itself, thus the Bucket-Slim-Tree
can be seen as a generalization of the Slim-tree.

Next we will discuss how to build the Bucket-Slim-Tree, i.e., how to choose
the keys and how to create the buckets.

3.2 Building the Bucket-Slim-Tree

The Bucket-Slim-Tree is a dynamic MAM able to be constructed either using
bulk-loading or adding elements one at a time. The BST is designed to group
similar elements into buckets centered at the key elements stored in the Slim-tree.
As elements are added, some of them are stored in the Slim-tree leaf nodes, thus



70 I.R.V. Pola et al.

becoming keys to the buckets, and others are stored in the buckets. The way that
those keys are organized in the Slim-tree affects how many buckets are necessary
to answer each query. The more bucket regions overlap the more buckets need
to be visited in a query. Therefore, it is important to choose an index creation
policy that reduces such overlap, even if it results in a deeper tree.

Elements are added to a Bucket-Slim-Tree following Algorithm 1. When a
new element sn arrives, the basic insertion algorithm of the Slim-tree is executed
to find the appropriate leaf node Lm where it would be inserted. However it is not
inserted yet. Next, the buckets from the keys stored in node Lm are evaluated
looking for the keys bci ∈ Lm such that d(bci, sn) ≤ η. The new element sn

is stored in the qualifying bucket whose center is the closest to sn, along with
the distance from the bucket center. If no bucket qualifies, sn is stored in Lm

splitting the node if required, as in the regular Slim-tree insertion algorithm,
and sn becomes a new bucket center. However, the corresponding bucket is not
created now – it will be created only when another element is stored in it. Once
the structure is constructed, similarity queries can be performed considering η
as an additional pruning radius, as is explained following.

Algorithm 1. BST:ADD(sn)
Input: new element sn
var candidate : bucket center that covers sn
var leaf : leaf node of Slim-tree
Set chooseSubTree policy of Slim-tree to ’MINDIST’
Set leaf to the proper leaf node that covers sn
foreach element bci in leaf do

if d(bci, sn) ≤ η then
Add bci as a candidate

if there are candidates then
Choose the first center bci where d(bci, sn) is minimum
Insert sn in the bucket of bci and store d(bci, sn)

else
Add sn to leaf
Split leaf if necessary

End

3.3 Querying the Bucket-Slim-Tree

The BST structure allows performing both range (Rng) and k-nearest neighbor
(k-NN) similarity queries. The algorithms to answer those queries visit both
the nodes in the tree and the buckets. For both query types, radius η must be
taken into account to correctly prune subtrees at each index level. As radius η is
a fixed value defined beforehand of the BST construction, it is possible to avoid
the need to adjust each region formed in the Slim-tree during construction by
adding η to every query radius.

An example of a range query Rng(sq, ξ) is shown in Figure 3, considering
a two-dimensional set of points using the Euclidean distance. The element ds1
shown in the figure is a representative in an index node, so it is also stored in
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a leaf node Lm. Elements bc1 to bc4 are elements stored in leaf node Lm of the
Slim-tree. Thus, node Lm has five elements stored: {ds1, bc1, bc2, bc3, bc4}, and
each one is the center of a bucket.

sq

ds1

bc1
s1

bc2s2

bc3

bc4

s3
s4

ξ

ηξ + η

Query region

Slim-tree node

Node repre-sentative
Bucket

s

Fig. 3. Querying a Bucket-Slim-Tree.

Each bucket is shown as a dashed
ball in Figure 3, which represents the
space region whose corresponding ele-
ments (e.g. s1, s2 . . .) will be stored.
Thus, to avoid pruning valid buckets
(like the one centered at bc1 in the sub-
tree centered at ds1) the query radius
ξ must be adjusted to ξ + η. In Figure
3, this corresponds to change the query
ball drawn in solid line centered at sq

to the one drawn in dotted line. In this
example, only the bucket centered at
element bc1 must be evaluated, adding
element s1 to the result. The same idea
applies to the k-nearest neighbor query,
which requires to enlarge the dynamic
radius by η.

The similarity query algorithms use
the triangular inequality to prune sub-
trees as in the original Slim-tree and also inside each bucket. In Figure 3 example,
instead of calculating every distance d(sq, bci), bci ∈ Lm, just evaluate the lower
bound of the required distance using the triangular inequality, avoiding a cal-
culation whenever d(sq, bci) ≥ |d(sq, ds1) − d(ds1, bci)|. Notice that the values
d(sq, dsi) are already stored in BST, and that d(sq, dsi) is evaluated only once
for each leaf node. Thus, assuming the pruning radius rp = η + ξ, whenever
|d(sq, dsi) − d(ds1, bci)| > rp + η then bucket bci can be safely pruned without
evaluating d(sq, bci).

The steps to evaluate a range queryRng(sq, ξ) is shown in Algorithm 2, where
sq is the query center and ξ is the query radius. To traverse the tree, the algorithm
evaluates the index nodes using both η and ξ to qualify the subtrees that must
be visited. To process the leaf nodes, only the radius η is used.

The procedure of a k-nearest neighbors query k-NN(sq, k) in the BST is
analogous to the range query, but now we update the result list maintaning k
elements and updating the active radius. the technique of a shrinking active
radius starts with a value larger than the dataset diameter (or infinity), and
reduces when the ongoing result list achieves k elements and updates.

4 Experiments

In this section we show experiments to evaluate the proposed index structure,
the Bucket-Slim-Tree. We compare it with the original Slim-Tree, using different
values for bucket radius (η). The experiments show that using the bucket-based
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Algorithm 2. RangeQuery(sq, ξ, root)
Input: Query center sq, Query radius ξ, Slim-tree root
if root is index node then

foreach dsi ∈ root do
//Evaluate if the triangular inequality allows pruning;
if |d(dsi, root) − d(root, sq)| > η + ξ + dsi.Radius then

Prune subtree of dsi;
foreach element dsi not pruned do

if d(dsi, sq) ≤ η + ξ + dsi.Radius then
RangeQuery(sq, ξ, dsi.Subtree);

if root is a leaf node then
foreach bci ∈ root do

if d(bci, sq) ≤ ξ then
add bci to result;

//Evaluate if the bucket can be pruned
if d(bci, sq) ≤ η + ξ then

foreach si ∈ B(bci) do
//Evaluate if the triangular inequality allows pruning;
if |d(si, root) − d(root, sq)| ≤ ξ then

if d(si, sq) ≤ ξ then
add si to result;

approach increases the query answering performance being up to twice faster
than slim-tree. They also show how the query performance is affected when
different bucket sizes are employed.

We used three datasets for the experiments. The Corel Dataset consists of
10 thousand color histograms in a 32 dimension space extracted from an image
set, using the L1 distance. The USCities Dataset consists of the latitude and
longitude coordinates of 25,376 cities in the USA, using the great-circle distance
modified to return distances in kilometers. The HCimages Dataset was obtained
from a collection of 500,000 DICOM images from the Ribeirão Preto Medical
School Clinics Hospital of the University of São Paulo (HCFMRP-USP). From
each image, we extracted a 256-bin grayscale normalized histogram. All the
experiments were performed in a machine with a Intel Core i7 920 processor
with 8 Gb RAM of memory.

The first experiment measured how the buckets are filled with elements accord-
ing its radius η. The plots in Figure 4 show the percentage of element distributed
among the slim-tree and the buckets, with bucket radius η varying from 0.10 to 0.15
for Corel (Figure 4(a)), from 10 Km to 60 Km for USCities (Figure 4(b)) and from
10 to 60 for HCimages (Figure 4(c)). The plots for Corel show that, as the bucket
radius increases, the percentile of elements stored in the buckets increases from36%
to 75%. Similar behavior occur in the plot for HCimages, but in this case the num-
ber of elements in the buckets increase slower. Exemplifying the case where a high
value for η produces dense buckets, the plot for USCities shows that as the radius
η we increases from 10 to 60 Km for the USCities dataset, the number of elements
stored in the buckets reaches almost 95%, meaning that almost all elements are
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(a) Corel Dataset (b) USCities Dataset.

(c) HCimages Dataset.

Fig. 4. Distribution of elements in the Bucket-Slim-Tree components varying the
bucket radius η.

stored in the buckets, probably degenerating the structure, where queries would
sequentially scan dense buckets.

The performance of a BST depends on the chosen value for η. This value
changes for different datasets and should be set close to the frequently used radius
on range queries in order to achieve good results. An initial value can be given
by a percentage of the value of the dataset maximum radius, or estimating the
mean distance from all elements in the dataset. All experiments were performed
using different values of η for both range and k-nearest neighbor queries. As
previously noted, the BST uses a modified Slim-tree with the mindist policy for
the ChooseSubTree algorithm. For comparison purposes, we also evaluated the
results if it is employed a Slim-tree with the usual minoccup policy. Every query
was performed 500 times with the same radius ξ or k but different centers, in
order to evaluate the average of the number of performed distance calculations
and the total time spent.

The plots in Figure 5 show the results of measuring the performance for both
types of queries using the Corel Dataset. They show that in the beginning, as the
value of η increases, the query performance increases. However, if η becomes too
high, the performance is decreased, as shown in Figure 5(c) when η > 0.12. This
is because buckets become larger and the sequential scans inside each bucket
spend more time.

The plots in Figures 6 show the performance measurements for both types of
queries using the USCities dataset, obtained using η set to 10, 20 and 40 Km.
As it can be noticed, all configurations lead to BST with a performance better
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than that of a slim-tree for all queries, where the value of 20 Km produced the
best one. It is important to notice that for η = 40km, the performance was worse
than for η = 20km. This is because for radius larger than η = 20km, the number
of elements in the buckets tends to increase too much, as shown in Figure 4(b).

The plots in Figures 7 show the performance results for queries using the
HCimages dataset, using η with the values 10, 20 and 30. As this dataset has a
high dimensionality, any variation of the radius will strongly change the covering
of elements, as expected of the curse of the high dimensionality. From the results
we can note that our technique still enhances the performance of queries when
choosing η next to the query values. This is because any decrease in the index
level covering radius greatly reduces the overlap on nodes.

5 Conclusion

In this paper we proposed the Bucket-Slim-tree (BST), a MAM based on hash
and ball partitioning that aims at reducing the number of distance calculations
required to answer similarity queries. The BST is composed of a slim-tree and a
set of buckets assigned to each element in the Slim-tree leaf nodes. The slim-tree
acts as a hash function which maps the stored elements to the buckets that will
be visited during search. The leaf nodes contain all key elements associated with
a bucket of radius η, and all of them must be compared to the query element
during query executions.

(a) Distance calculations measures. (b) Total time spent.

(c) Distance calculations measures. (d) Total time spent.

Fig. 5. Results using the Corel dataset indexed in a slim-tree and BSTs with η = 0.10,
0.12, 0.13 and 0.15. (a) Number of distance calculations for k-NN queries; (b) Time
spent for k-NN queries; (c) Number of distance calculations for Rq queries; (d) Time
spent for Rq queries;
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(a) Distance calculations measures. (b) Total time spent.

(c) Distance calculations measures. (d) Total time spent.

Fig. 6. Results using the USCities dataset. (a) and (b): Nearest Neighbor query eval-
uation; (c) and (d): Range query evaluation.
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Fig. 7. Results using the HCimages dataset. (a) and (b): Nearest Neighbor query eval-
uation; (c) and (d): Range query evaluation.
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Experiments performed over real data sets show that the proposed MAM was
able to reduce up to half the execution time of both range and k-nearest queries,
reducing also the number of distances calculations under different values of η.
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