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Abstract The main goal of this paper is to study inference in an heteroskedastic
calibration model. We embrace a multivariate structural model with known diago-
nal covariance error matrices, which is a common setup when different measurement
methods are compared. Maximum likelihood estimates are computed numerically via
the EM algorithm. Consistent estimation of the asymptotic variance of the maximum
likelihood estimators and a graphical device for model checking are also discussed.
Test statistics are proposed for testing hypotheses of interest with the asymptotic chi-
square distribution which guarantees correct asymptotic significance levels. Results of
simulations comprising point estimation, interval estimation, and hypothesis testing
are reported. An application to a real data set is given. Up to best of our knowledge, top-
ics such as model checking and hypotheses testing have received only scarce attention
in the literature on calibration models.
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480 M. de Castro, M. Galea

1 Introduction

Measurement error models (MEM), also known as errors-in-variables models, are
useful for describing different phenomena in many disciplines. MEM establish func-
tional relationships among variables observed subject to random measurement errors.
Comprehensive accounts of MEM can be found, for example, in the books by Fuller
(1987), Cheng and Van Ness (1999), Carroll et al. (2006), and Buonaccorsi (2010).
This work is mainly concentrated on a multiple regression model with measurement
error, that is, when the predictors are contaminated with measurement errors. This
model corresponds to an extension of the classical multiple linear regression model.
Recently, heteroskedastic measurement error models have received attention in the
literature. Kulathinal et al. (2002) and Cheng and Riu (2006), for example, present a
univariate structural heteroskedastic model, but they concentrated solely on estima-
tion. Our endeavor aims to investigate estimation as well as hypotheses testing in a
multiple model.

In this paper we extend the homoskedastic calibration model introduced by Vilca-
Labra et al. (2011) to a class of heteroskedastic normal calibration models, meaning
that the true covariate is distributed according to a normal distribution and the mea-
surement error variances change across observations. Additionally, we suppose that
the measurement errors are uncorrelated and their variances are known and greater
than 0. This constitutes a common setup in many application areas such as Analytical
Chemistry and Epidemiology, as can be seen in Cheng and Riu (2006).

It is nowadays widely recognized that assessing the adequacy of the postulated
model plays a prominent role in a statistical analysis. By reviewing the measurement
error models literature, we realize that inference and influence assessment are the
subjects of many published works, whereas goodness of fit has received only scarce
attention. In order to shorten this gap, we describe a graphical tool for model checking
based on the simulated envelope presented by Atkinson (1985).

General results for structural heteroskedastic models are presented by Patriota et
al. (2009), Patriota et al. (2011), and Melo et al. (2013), among others. Instead, in our
work, as in Vilca-Labra et al. (2011), we take the calibration model on its own grounds
and explore specific inferential problems. In particular, we deal with interval estimation
and power of statistical tests. The hypotheses testing procedures have applications in
the methods comparison problem through a calibration model.

An outline of the paper is as follows. Section 2 covers model formulation and
parameter estimation. In Sect. 3 we propose statistics to test hypotheses of interest.
Results of a simulation study and an application to a real data set are reported in Sect.
4 and 5, respectively. In Sect. 6 we conclude bringing some general remarks.

2 Model and parameter estimation

Let n be the sample size; Xi , the observed value of the covariate in unit i ; Yi j , the j-th
observed response in unit i and xi , the unobserved (true) covariate value for unit i .
Relating these variables, as in Shyr and Gleser (1986), we postulate the model
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Inference in a structural heteroskedastic calibration model 481

Xi = xi + ui and Yi j = α j + β j xi + ei j , (1)

j = 1, . . . , r and i = 1, . . . , n. As a motivation, this model is applicable to the
comparison of measurement methods problem (Ripley and Thompson 1987; Riu and
Rius 1996; Galea-Rojas et al. 2003; de Castro et al. 2004). In this case, r is the number
of ‘new’ methods to be compared to a reference one, whereas α j and β j correspond
to the additive and multiplicative biases of method j with respect to the reference
method.

Letting ei = (ei1, . . . , eir )
� and r i = (ui , e�

i )�, we assume that

r i and x j are independent, j = 1, . . . , n,

r i
indep.∼ Nr+1(0,�i ),

and xi
iid∼ N(μ, φ), i = 1, . . . , n,

(2)

where �i = D(κi ,λi ) stands for a diagonal matrix with κi , λi1, . . . , λir in the diag-
onal. Variances κi and λi are supposedly known and greater than 0, i = 1, . . . , n.

The model defined by equations (1) can be written as Zi = (Xi , Y�
i )� = a +

xi b + (ui , e�
i )�, where Y i = (Yi1, . . . , Yir )

�, a = (0,α�)�, and b = (1,β�)�.
Then, under the assumptions in (2), it follows that

Zi
indep.∼ Nr+1(a + bμ, V i ), (3)

where V i = φbb� + �i , i = 1, . . . , n. From (3), it is true that

qi = (Zi − a − μb)�V−1
i (Zi − a − μb)

iid∼ χ2
r+1, i = 1, . . . , n. (4)

This distributional result enables us to assess the adequacy of the model, as we will
explore in Sect. 5.

Let θ = (α�,β�, μ, φ)� be the (2r + 2)× 1 parameter vector. The log-likelihood
function corresponding to the model defined by (3) can be written as

l(θ) =
n∑

i=1

li (θ), li (θ) = const. − 1

2
log |V i | − 1

2
qi , (5)

where qi in (4) can be written as qi = qi1 − ci q2
i2, with

qi1 = (Zi − a − μb)��−1
i (Zi − a − μb)

= κ−1
i (Xi − μ)2 + (Y i − α − μβ)� D−1(λi )(Y i − α − μβ),

ci = φ(1 + φb��−1
i b)−1 and qi2 = κ−1

i (Xi − μ) + β� D−1(λi )(Y i − α − μβ),
for i = 1, . . . , n. The determinant and the inverse of V i are |V i | = |�i |c−1

i φ and
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482 M. de Castro, M. Galea

V−1
i = �−1

i − ci�
−1
i bb��−1

i , i = 1, . . . , n. The maximization of the log-likelihood
function (5) is quite involved. So, maximum likelihood estimates are more easily
computed with the EM algorithm (Dempster et al. 1977). Let W i = (xi , Z�

i )� be
the vectors of complete data. The complete data log-likelihood function is denoted by
lc(θ). Under the assumptions in (2), it follows that

W i
indep.∼ Nr+2(μw,�wi ), (6)

where μw = aw + μbw and �wi = φbwb�
w + �ci , with aw = (0, a�)�, bw =

(1, b�)�, and �ci = D(0, κi ,λi ), i = 1, . . . , n. Taking into account that

|�wi | = φ|�i | and �−1
wi =

[
c−1

i −b��−1
i

−�−1
i b �−1

i

]
,

the complete data log-likelihood function is given by

lc(θ) =
n∑

i=1

lci (θ), (7)

where

lci (θ) = const. − 1

2
log |�wi | − 1

2
qwi ,

with

qwi = (W i −μw)��−1
wi (W i −μw)=c−1

i (xi − μ)2−2(Zi −a−bμ)��−1
i b(xi − μ)

+(Zi −a−μb)��−1
i (Zi −a − μb),

i = 1, . . . , n. With the current estimate of θ , in the E step the expectation E[lc(θ)

|Z1, . . . , Zn] is computed. Owing to the distribution in (6), the E step requires

x̂i = E[xi |Zi ; θ ] = ci {φ−1μ + b��−1
i (Zi − a)} and (8)

x̂2
i = E[x2

i |Zi ; θ ] = ci + x̂i
2, (9)

i = 1, . . . , n. In the M step the function in (7) with xi and x2
i replaced by (8) and (9),

respectively, is maximized. After computing ∂lc(θ)/∂θ and solving ∂lc(θ)/∂θ = 0
we arrive at

β j =
∑n

i=1 λ−1
i j (Yi j − Y ∗ j )xi

∑n
i=1 λ−1

i j x2
i − x2∗ j

∑n
i=1 λ−1

i j

and α j = Y ∗ j − x∗ jβ j , (10)
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Inference in a structural heteroskedastic calibration model 483

with

Y ∗ j =
∑n

i=1 λ−1
i j Yi j

∑n
i=1 λ−1

i j

, x∗ j =
∑n

i=1 λ−1
i j xi

∑n
i=1 λ−1

i j

, j = 1, . . . , r,

μ = x, and φ = n−1
n∑

i=1

x2
i − x2. (11)

Maximum likelihood estimates of θ are computed by cycling from (8) through (11)
until convergence. Our stopping rule is based on the relative differences between
estimates in two successive iterations, as in (24). Starting values for α and β can be
taken from the estimates in the functional model (de Castro et al. 2004) or from the
corrected score method (de Castro et al. 2006). de Castro et al. (2004) also provide
predictors for xi , i = 1, . . . , n, from which initial estimates of μ and φ can be obtained.

2.1 Score and information matrices

After some algebraic manipulations we get from (5) the elements of the score vector
U(θ); namely,

U(θ) = (
Uα(θ)�, Uβ(θ)�, Uμ(θ), Uφ(θ)

)� =
n∑

i=1

∂li (θ)

∂θ

=
n∑

i=1

U i (θ), U i (θ) = (U�
iα, U�

iβ, Uiμ, Uiφ)�,

where

U iγ = −1

2

∂ log |V i |
∂γ

− 1

2

∂qi

∂γ
, (12)

for γ = α,β, μ, φ, whose elements can be found in Appendix A.
After lengthy algebraic manipulations we get from (12) the elements of the observed

information matrix J(θ),

J(θ) = −
n∑

i=1

∂2li (θ)

∂θ∂θ� = −
n∑

i=1

Li (θ), (13)

whose presentation is postponed to Appendix B. The elements of the expected infor-
mation matrix F(θ) are

F(θ) =
n∑

i=1

E

[
−∂2li (θ)

∂θ∂θ�

]
=

n∑

i=1

Fi (θ) (14)
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and can be found in Appendix B. The results in Sect. 4 and 5 were obtained using the
expected information matrix.

Confidence regions for the parameters can be constructed from asymptotic results.
Fahrmeir (1988) handles the lack of i.i.d. observations in maximum likelihood infer-
ence. Under some regularity conditions, it can be shown that the approximate distrib-
ution of θ̂ is N2r+2

(
θ , F(θ)−1

)
. With respect to the regularity conditions, we assume

that the measurement error variances are bounded and n−1 ∑n
i=1 κi has a finite and

greater than 0 limit when n → ∞.

3 Hypotheses testing

As it is usual in the context of regression analysis, now we deal with the problem of
testing the general linear hypothesis

H0 : Rθ = d, (15)

where R is a rR × (2r + 2) matrix of rank rR and d is a rR-dimensional vector, R and
d known. Hypothesis (15) can be tested using the statistics

Likelihood ratio: L R = −2{l (̂θ0) − l (̂θ)},
Wald: W = (Rθ̂ − d)�{RF(̂θ)−1 R�}−1(Rθ̂ − d), and

Score: S = U (̂θ0)
� R�{RF(̂θ0)R�}−1 RU (̂θ0),

(16)

where θ̂0 denotes the maximum likelihood estimator (MLE) of θ restricted to H0 in
(15). Under some suitable regularity conditions (Fahrmeir 1988), when H0 is true we

have that L R, W , and S
d−→ χ2(rR), as n → ∞.

Of particular interest in many applications is the hypothesis

H0 : θ1 = θ10, (17)

where θ1 is a subset of θ = (θ�
1 , θ�

2 )�. As in the homoskedastic model by Vilca-
Labra et al. (2011), some examples of hypotheses involving the biases that might be
of interest are

H01 : α1 = · · · = αr = 0, β1 = · · · = βr = 1,

H02 : α1 = · · · = αr = 0, and H03 : β1 = · · · = βr = 1.
(18)

The score vector, the observed information matrix, and its inverse are partitioned
accordingly, resulting in U(θ) = (U1(θ)�, U2(θ)�)�,

F(θ) =
[

F11(θ) F12(θ)

F21(θ) F22(θ)

]
, and F(θ)−1 =

[
F11(θ) F12(θ)

F21(θ) F22(θ)

]
,

so that the Wald and score statistics become
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Inference in a structural heteroskedastic calibration model 485

Wald: W = (̂θ1 − θ10)
�{F11(̂θ) − F12(̂θ)F22(̂θ)−1 F21(̂θ)}(̂θ1 − θ10) and

(19)

Score: S = U1(̂θ0)
� F11(̂θ0)U1(̂θ0). (20)

When the null hypothesis is as H01 in (18), θ1 = (α�,β�)� and (μ, φ)� plays the
role of a nuisance parameter. In this case, rR = 2r . The maximum likelihood estimates
of μ and φ are computed cycling through (8), (9), and (11) with α = α0 and β = β0.

The score and the likelihood ratio statistics require the maximum likelihood esti-
mator of θ under H0. On the other side, it may be useful to have an alternative testing
procedure that does not demand the computation of θ̂0. Let θ̃2 be a consistent estimator
of θ2. The C(α) test statistic, given by

C(α) = U (̃θ)� F(̃θ)−1U (̃θ) − U2(̃θ)� F22(̃θ)−1U2(̃θ), (21)

where θ̃ = (θ�
10, θ̃

�
2 )�, is asymptotically equivalent to the score test, under H0

(Gourieroux and Monfort 1995; Bera and Bilias 2001). In our case, μ̃ = n−1 ∑n
i=1 Xi

and φ̃ = (n −1)−1 ∑n
i=1(Xi − X̄)2 −n−1 ∑n

i=1 κi are consistent estimators of μ and
φ, respectively. Therefore, the test of hypotheses concerning θ1 = (α�,β�)� can be
carried out using the C(α) test statistic.

Furthermore, with respect to the hypothesis H0 in (17), let h ∈ R
2r+2 and the local

alternative

H1 : θ = θ0 + F1/2(θ0)
−1h, (22)

where θ0 = (θ�
10, θ

�
2 )�. According to Fahrmeir (1988), L R, W , and S

d−→
χ2(rR, δ2), as n → ∞, under H1, where rR is the dimension of θ1 and δ2 =
(θ1 − θ0

1)
� F11(θ)(θ1 − θ0

1) is the non-centrality parameter.

4 A simulation study

In order to state some results in Sect. 2 and 3 we rest upon asymptotic theory. In view
of this, we planned Monte Carlo simulations to assess some properties of the proposed
methodologies.

4.1 Estimation

We begin dealing with point and interval estimation in two setups covering different
degrees of heteroskedasticity. First, x0i , i = 1, . . . , n, are independently drawn from a
uniform distribution on the interval (ξ0.25, ξ0.975), where ξq denotes the q-quantile of
the N(μ, φ) distribution. In Setup 1 we have xi ∼ N(20, 16), ki = (0.1x0i + 0.05)2,
λ1i = {0.15(α1 +β1x0i )+ 0.01}2, and λ2i = {0.25(α2 +β2x0i )+ 0.01}2, whereas in
Setup 2 the conditions are xi ∼ N(30, 20), ki = (0.05x0i + 0.05)2, λ1i = {0.2(α1 +
β1x0i ) + 0.01}2, and λ2i = {0.4(α2 + β2x0i ) + 0.01}2. The error variances are kept
fixed and the observations Zi are sampled from (3), i = 1, . . . , n. Sample sizes are
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486 M. de Castro, M. Galea

30, 60, and 100. Computations were performed by using specific purpose Ox code
(Doornik 2007).

Table 1 displays the true values of the regression coefficients and the results. For
the estimators of the slopes, within the scope of our study the biases are negligible,
even when the sample size is as small as n = 30. There is some bias in the estimates
of the intercepts when n = 30, but the bias decreases when the sample size increases,
as expected. Moreover, the root mean squared error of the estimates, the standard
deviation of the estimates, and the average of the asymptotic standard errors entries are
close together. The coverage probabilities of the 95% asymptotic confidence intervals
differ from the nominal value by at most 0.6%. Overall, these results suggest a good
performance of the point and interval estimators under the scenarios in our study.

4.2 Hypothesis testing

Now we turn our attention to the empirical level and the power of the test statistics (16),
(19), (20), and (21) at two nominal significance levels. Favoring simplicity and moti-
vated by our example in Sect. 5, we choose r = 1 in (18). The null hypothesis to be
tested is

H01 : α1 = 0, β1 = 1. (23)

With respect to the method comparison problem motivated in Sect. 2, this hypothesis
is frequently tested when evaluating the unbiasedness of the ‘new’ method (see, for
example, Riu and Rius (1996); Cheng and Riu (2006)).

The simulations setting is as follows. Five values of intercept (α1 = -4.0, -2.0, 0.0,
2.0, and 4.0) and slope (β1 = 0.7, 0.85, 1.0, 1.15, and 1.3) create a range of conditions
in a neighborhood of H01 in (23). The parameters of the distribution of the true x in
(2) are μ = 160 and φ = 2560. Measurement error variance κi is set to be equal to
(0.15 xi0 + 0.05)2, with xi0 as in Sect. 4.1, and λ

1/2
i1 follows a gamma distribution

whit shape = 28 and rate = 1.4, i = 1, . . . , n. Sample sizes are 30, 50, and 100. For
each triplet (n, α1, β1), we generate the error variances as above; then, keeping these
values fixed, observations Zi are sampled from (3), i = 1, . . . , n. Rejection rates
of (23) are calculated from 5000 samples. Simulated scenarios resemble the data set
of our example in Sect. 5. Graphics were drawn in the R system (R Core Team 2013).

Figure 1 shows examples of simulated samples with n = 30 and different alterna-
tives (dashed lines) with respect to the null hypothesis in (23) to be tested (solid lines).
The crosses at each point represent the standard deviations of the measurement errors.

In the simulations, and in Sect. 5, the EM algorithm iterates until

max
j=1,...,2r+2

∣∣(θ̂ (m+1)
j − θ̂

(m)
j

)
/ θ̂

(m)
j

∣∣ < 10−5. (24)

Table 2 summarize the results. Rejection rates are close to the nominal significance
levels when α1 = 0.0 and β1 = 1.0, whichever the sample size, an evidence for
there being agreement between empirical and theoretical distributions under the null
hypothesis.
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Fig. 1 Simulated samples of size 30 ∓ measurement error standard deviations (μ = 160 and φ = 2560).
Solid lines: α1 = 0.0, β1 = 1.0; dashed lines: a α1 = −4.0, β1 = 0.7, b α1 = −4.0, β1 = 1.3, c α1 = 4.0,
β1 = 0.7, and d α1 = 4.0, β1 = 1.3

Table 2 Rejection rates of the
hypothesis H01 : α1 = 0,
β1 = 1 from 5000 replications

Significance
level

Test
statistic

n

30 50 100

0.01 LR 0.0094 0.0100 0.0080

Wald 0.0156 0.0120 0.0106

Score 0.0096 0.0090 0.0080

C(α) 0.0144 0.0134 0.0116

0.05 LR 0.0472 0.0438 0.0522

Wald 0.0532 0.0444 0.0548

Score 0.0468 0.0440 0.0538

C(α) 0.0550 0.0490 0.0530
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Fig. 2 Asymptotic power function (solid line) and rejection rates in the simulations with significance level
0.05: a n = 30, b n = 50, and c n = 100 (•: LR, �: Wald, ∗: score, and ◦ : C(α))

Figure 2 displays the rejection rates of (23) and the theoretical probabilities from the
non-central chi-square distribution. The choice of h in (22) ensures that the (α1, β1)

pairs match the range of values described before. We emphasize that in the scenarios
in Fig. 1b, c, the deviations from the null hypothesis are harder to detect than in Fig. 1a,
d. For the proposed test statistics, the concordance between empirical and theoretical
results is worth to point out. The pattern in Fig. 2 is also observed when the significance
level is 0.01.

5 Application

Now we give an illustrative example of the methodology developed. Cheng and Riu
(2006) present a data set related to the analysis of Ca2+ contents in water samples
by means of two methods. Atomic absorption spectroscopy (AAS) is the reference
method, whereas sequential injection analysis (SIA) is the new method. The data set
with n = 26 pairs of observations and the standard deviations of the measurement
errors is displayed in Fig. 2 in their paper. Cheng and Riu (2006) also provide details
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Fig. 3 QQ plot of the squared distances and simulated envelope

about the derivation of the variances of the measurement errors. The biases of the SIA
method are assessed by testing the hypothesis in (23).

First of all, we are concerned with goodness of fit and it should be stressed that
this issue is often neglected. For the assessment of the model adequacy, in order
to implement the graphical tool suggested by Atkinson (1985), first we simulate J
samples from (3) using the MLE θ̂ . For the j-th simulated sample we compute the
MLE of θ and q̂ j1, . . . , q̂ jn from (4), which are ordered as q̂ j (1) ≤ · · · ≤ q̂ j (n). The
pairs (F−1

χ2
2

(
(i −1/2)/n

)
, q̂(i)) are drawn in a graph, where F−1

χ2
2

(·) denotes the quantile

function of the χ2
2 distribution and q̂i is computed with the MLE θ̂ . The limits of the

envelope, given by minJ
j=1 q̂ j (i) and maxJ

j=1 q̂ j (i), and the line connecting the points

(F−1
χ2

2

(
(i − 1/2)/n

)
,
∑J

j=1 q̂ j (i)/J ), i = 1, . . . , n, are also drawn in the graph. This

plot forms the basis to guide us on assessing the adequacy of the model. The plot in
Fig. 3 does not seem to indicate serious departures from the postulated model.

The MLE of the parameters (and estimated standard errors) are α̂1 = 42.08 (12.98),
β̂1 = 0.7400 (0.07746), μ̂ = 159.8 (10.12), and φ̂ = 2560 (736.8). The bootstrap
standard errors based on 5000 samples are 15.77, 0.1117, 10.37, and 648.0, respec-
tively, so that the asymptotic standard errors differ from the bootstrap ones by at most
31%. From (16), (19), (20), and (21), L R = 10.98, W = 11.63, S = 11.76, and
C(α) = 11.71. Taking the χ2 distribution with two degrees of freedom as basis, H01
in (23) is rejected at a 1% level, since p = 0.0041, 0.0030, 0.0028, and 0.0029,
respectively. Hence, using the tests proposed in Sect. 3 applied to this data set, the SIA
method can not be declared unbiased with respect to the AAS method.

6 Concluding remarks

We have presented inferential tools for a model with a wealth of applications in Engi-
neering and in the Sciences. The comparison of measurement methods having different
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costs, accuracies, operation requirements, or speeds of response has been reported as a
key issue in many research areas. In particular, Barnett (1969), Theobald and Mallinson
(1978), Shyr and Gleser (1986), Fuller (1987), and Vilca-Labra et al. (2011) deal with
this problem using homoskedastic measurement error models.

We call attention to the fact that interval estimation and hypotheses testing are much
less explored in the literature than point estimation methods. It should be emphasized
that the C(α) statistic in Sect. 3 does not involve any iterative scheme and yields
satisfactory performance in our simulation study (see also de Castro et al. (2008)).
Moreover, a graphical device for checking the model is implemented.

Knowledge of the variances (κ,λ) and normality of the distribution of the true
values x in (2) are key assumptions. Replicated observations, if available, allow to
propose a model in which the variances of the measurement errors are estimated.
Also, more flexible distributions could be assumed for the true values, so that there is
room for extensions to the model in this work.
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Appendix A: Derivatives related to the score vector

The derivatives in (12) are given by

∂ log |V i |
∂α

= 0,
∂ log |V i |

∂β
= 2ci D−1(λi )β,

∂ log |V i |
∂μ

= 0,

∂ log |V i |
∂φ

= φ−1(1 − ciφ
−1), and

∂qi

∂γ
= ∂qi1

∂γ
− 2ci qi2

∂qi2

∂γ
− q2

i2
∂ci

∂γ
,

where

∂qi1

∂α
= −2D−1(λi )(Y i − α − μβ),

∂qi1

∂β
= μ

∂qi1

∂α
,

∂qi1

∂μ
= −2κ−1

i (Xi − μ) − 2β� D−1(λi )(Y i − α − μβ),
∂qi1

∂φ
= 0,

∂qi2

∂α
= −D−1(λi )β,

∂qi2

∂β
= D−1(λi )(Y i − α − 2μβ),

∂qi2

∂μ
= −b� D−1(λi )b,

∂qi2

∂φ
= 0,

∂ci

∂α
= 0,

∂ci

∂β
= −2c2

i D−1(λi )β,
∂ci

∂μ
= 0, and

∂ci

∂φ
= c2

i φ
−2,

i = 1, . . . , n.
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Appendix B: Observed and expected information matrices

The elements of Li (θ) in (13) have general expression

Liγ τ = −1

2

∂2 log |V i |
∂γ ∂τ� − 1

2

∂2qi

∂γ ∂τ� = −1

2
(diγ τ + qiγ τ ),

for γ , τ = α,β, μ, φ. Deriving once more the expressions in Sect. 2.1 leads to

diαα = diαβ = 0, diαμ = diαφ = diβμ = 0, diμμ = diμφ = 0,

diββ = 2ci {−2ci D−1(λi )ββ� + Ir }D−1(λi ),

diβφ = 2(1 + φb��−1
i b)−2 D−1(λi )β, diφφ = −φ−4(φ − ci )

2, and

qiγ τ = ∂2qi1

∂γ ∂τ� − 2ci

(
∂qi2

∂γ

∂qi2

∂τ� + qi2
∂2qi2

∂γ ∂τ�

)

− 2qi2

(
∂qi2

∂γ

∂ci

∂τ� + ∂ci

∂γ

∂qi2

∂τ�

)
− q2

i2
∂2ci

∂γ ∂τ� ,

where

∂2qi1

∂α∂α� = 2D−1(λi ),
∂2qi1

∂α∂β� = 2μD−1(λi ),
∂2qi1

∂α∂μ
= 2D−1(λi )β,

∂2qi1

∂α∂φ
= 0,

∂2qi1

∂β∂β� = 2μ2 D−1(λi ),
∂2qi1

∂β∂μ
= −2D−1(λi )(Y i − α − 2μβ),

∂2qi1

∂β∂φ
= 0,

∂2qi1

∂μ2 = 2b��−1
i b,

∂2qi1

∂μ∂φ
= ∂2qi1

∂φ2 = 0,
∂2qi2

∂α∂α� = 0,

∂2qi2

∂α∂β� = −D−1(λi ),
∂2qi2

∂α∂μ
= ∂2qi2

∂α∂φ
= 0,

∂2qi2

∂β∂β� = −2μD−1(λi )

∂2qi2

∂β∂μ
= −2D−1(λi )β,

∂2qi2

∂β∂φ
= 0,

∂2qi2

∂μ2 = ∂2qi2

∂μ∂φ
= ∂2qi2

∂φ2 = 0,

∂2ci

∂α∂α� = ∂2ci

∂α∂β� = 0,
∂2ci

∂α∂μ
= ∂2ci

∂α∂φ
= 0,

∂2ci

∂β∂β� = −2c2
i {D−1(λi ) − 4ci D−1(λi )ββ� D−1(λi )},
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∂2ci

∂β∂μ
= 0,

∂2ci

∂β∂φ
= −4c3

i φ
−2 D−1(λi )β,

∂2ci

∂μ2 = 0,
∂2ci

∂μ∂φ
= 0,

and
∂2ci

∂φ2 = 2c2
i φ

−3(ciφ
−1 − 1), i = 1, . . . , n.

After computing expectations of Li (θ) in (13), we conclude that the elements of
Fi (θ) in (14) are

Fiαα = D−1(λi ) − ci D−1(λi )ββ� D−1(λi ), Fiαβ = μFiαα,

Fiαμ = ciφ
−1 D−1(λi )β, Fiαφ = 0,

Fiββ = ci (2ci − φ − μ2)D−1(λi )ββ� D−1(λi ) + (φ + μ2 − ci )D−1(λi ),

Fiβμ = μciφ
−1 D−1(λi )β, Fiβφ = φ−2ci (φ − ci )D−1(λi )β,

Fiμμ = φ−1(1 − ciφ
−1), Fiμφ = 0, and Fiφφ = 1

2
φ−2(ciφ

−1 − 1)2, i = 1, . . . , n.
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