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SUMMARY

The paper formulates the static control problem of Markov jump linear systems, assuming that the controller
does not have access to the jump variable. We derive the expression of the gradient for the cost motivated by the
evaluation of 10 gradient-based optimization techniques. The numerical efficiency of these techniques is verified
by using the data obtained from practical experiments. The corresponding solution is used to design a scheme
to control the velocity of a real-time DC motor device subject to abrupt power failures. Copyright © 2014 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Markov jump linear systems (MJLS) comprise a class of stochastic systems with a strong appeal to
represent systems subject to abrupt variations in its structure. In the last two decades, it has been a
subject of intensive investigation in both the theoretical and applications front; see, for instance, the
monograph [1] and the papers [2–14] for an account.

In the MJLS literature, specifically in the control design, most of the results assume that the
controller has complete and instantaneous access to the Markov state, but this assumption can fail in
many real-time applications because the task of monitoring the Markovian mode requires a built-in
sensor or a similar measurement instrument that might be expensive and difficult or even impossi-
ble to implement. In this case, a reasonable strategy is to use controllers whose implementation is
irrespective of the Markov state. The design of optimal control for systems that do not have access to
the Markovian mode is the central theme of this paper.

The control of MJLS with unobservable modes is studied in [6, 7, 12]. Our result improves upon
the ones from [7, 12] in that their solutions are suboptimal (guaranteed cost) for the H2-norm while
we seek here the optimal value. Our context is similar to the one in [6] except that the authors of [6]
considered time-varying gains while we are seeking for a unique static gain. The necessary optimal
condition presented here characterizes completely whether the optimization algorithm reaches a local
minimum or a saddle point. Our investigation is also motivated by a practical application for a DC
motor device (Section 4).

�Correspondence to: Alessandro N. Vargas, UTFPR, Av. Alberto Carazzai 1640, 86300-000 Cornelio Procópio-PR, Brazil
�E-mail:avargas@utfpr.edu.br
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240 VARGAS ET AL.

The MJLS considered in this paper is as follows. Let .�;F ; P / be a fixed filtered probability space
and consider the system

xkC1 D A�kxk C B�kuk ; 8k > 0; x0 2 Rr ; �0 � �0; (1)

where xk and uk , k � 0 are processes taking values respectively in Rr and Rs . The process ¹�kº rep-
resents a discrete-time homogeneous Markov chain and takes values in the finite set S WD ¹1; : : : ; �º.
The state of the system is formed by the pair .xk ; �k/, and uk is the control. The matrices A�k and
B�k , k � 0, are given with compatible dimensions.

To measure the performance of the system (1), we consider a standard N -th horizon quadratic
cost [6]

JN .x0; �0/ WD Ex0;�0

"
NX
kD0

x0kQ�kxk C u
0
kR�kuk

#
; (2)

where Ex0;�0 Œ�� � EŒ�jx0; �0� represents the expected value operator and Q�k and R�k are positive
semidefinite matrices.

Although the design of optimal controllers with no mode observation in (2) can be dealt with the
theory of dynamic programming with imperfect state information, for the problem we are dealing
with, the dynamic programming strategy would lead to a nonlinear and high-dimensional solution for
the optimization problem (see the state information in [15, 16]), which turns the solution prohibitive
to be implemented in practice. Seeking for simplicity and aiming at practical control applications,
we assume that the control law is in the linear static state-feedback format with no mode observation
as follows:

uk D Gxk ; k � 0: (3)

Notice that the controller uk has complete access to the variable xk , but it does not have any
information about the value of �k .

The optimization control problem we deal with is that of finding some matrix G that minimizes (2)
subject to (1) and (3). Formally, if we let JN .G/ be the cost (2) for a given G, then we recast the
optimization control problem as follows:

G� D arg min
G

JN .G/: (4)

To the best of the authors’ knowledge, there is no method to compute the optimal solution for
the control problem in (4). A drawback for finding the optimal solution of (4) is the fact that the
nonlinear functional JN .G/ may be non-convex (Section 4). A tentative method to overcome this
difficulty, aiming at the optimal solution, is to employ optimization techniques borrowed from the
literature, although these techniques are able to guarantee stationary points only (i.e., local minimum or
saddle points).

The main contribution of this paper is twofold. First, we derive the expression of the gradient of
the optimization problem in (4). Second, we recall some optimization techniques from the literature
to compare their efficiency on achieving the solution of (4) for a particular control problem. In fact, a
real-time controller implements the result of (4) to control the velocity of a DC motor device when it
is subject to abrupt failures driven by a Markov chain.

The paper is organized as follows. In Section 2, we introduce the notation, problem formulation,
and the main results. In Section 4, we deal with a practical application of the derived results for a DC
motor device. Finally, Section 5 presents concluding remarks.

2. DEFINITIONS, BASIC CONCEPTS, AND RESULTS

Let Rr denote the usual r-th dimensional Euclidean space, and let Mr;s (Mr ) represent the linear
space formed by all r � s (r � r) real matrices. Let Sr represent the normed linear subspace of Mr

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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MARKOV JUMP LINEAR SYSTEMS 241

of symmetric matrices such as ¹U 2Mr W U D U 0º, where U 0 denotes the transpose of U . Consider
also Sr0 (SrC) its closed (open) convex cone of positive semidefinite (definite) matrices ¹U 2 Sr W
U � 0 .> 0/º. Let S WD ¹1; : : : ; �º be a finite set, and let Mr;s denote the linear space formed by a
number � of matrices such that Mr;s D ¹U D .U1; : : : ; U� / W Ui 2Mr;s; i 2 S º; also Mr �Mr;r .
Moreover, we set Sr D ¹U D .U1; : : : ; U� / W Ui 2 Sr ; i 2 S º, and we write Sr0 (SrC) when
Ui 2 Sr0 (2 SrC) for all i 2 S .

We employ the ordering U > V (U � V ) for elements of Sr , meaning that Ui � Vi is positive
definite (semi-definite) for all i 2 S , and similarly for other mathematical relations. In addition, with
U 2 Sr and V 2 Sr , the product UV represents the set .U1V; : : : ; U�V /. Define the inner product on
the space Mr;s as

hU; V i D

�X
iD1

tr¹U 0i Viº; 8V;U 2Mr;s ; (5)

and the Frobenius norm kU k22 D hU;U i.
If f WMs;r 7! R is a differentiable function on the domain Ms;r , we denote its partial derivative

by @f .G/=@G whenever G 2Ms;r . Let tr¹�º denote the trace operator. We now recall some derivative
rules for the trace operator. Considering U; V;Z, and G as matrices with compatible dimensions, we
have [17, Sec. 10.3.2]

@ tr¹UGV º

@G
D U 0V 0;

@ tr¹UG0V º

@G
D V U;

@ tr¹UGVG0Zº

@G
D U 0Z0GV 0 CZUGV: (6)

2.1. Parameters and operators

Associated with the systems (1) and (2), we define A 2 Mr , B 2 Mr;s , H 2 Mr;q , Q 2 Sr0,
R 2 SsC, and F 2 Sr0. The transition probability matrix is denoted by P D Œpij �, for all i; j 2 S .
The state of the Markov chain at a certain time k is determined according to an associated probabil-
ity distribution �.k/ on S , namely �i .k/ WD Pr.�k D i/. Considering the column vector �.k/ D
Œ�0.k/; : : : ; �� .k/�

0, the state distribution of the chain, �.k/, is defined as �.k/ D .P 0/k�.0/. In addi-
tion, we define the operators D D ¹Di ; i 2 S º W Sn0 7! Sn0 and E D ¹Ei ; i 2 S º W Sn0 7! Sn0,
respectively, as

Di .U / WD
�X
jD1

pj iUj ; Ei .U / WD
�X
jD1

pijUj ; 8i 2 S ; 8U 2 Sn0: (7)

Let us define the conditional second moment matrix of the system state xk , k � 0, as

Xi .k/ D EŒxkx
0
k11¹�kDiº�; 8i 2 S ; 8k � 0; (8)

where 11¹�º stands for the Dirac measure. Using this definition, we can write the identity [1, p. 31]

Ex0;�0 Œx
0
k.Q�k CG

0R�kG/xk�

D

�X
iD1

tr
®
.Qi CG

0RiG/Ex0;�0 Œxkx
0
k11¹�kDiº�

¯
D hQCG0RG;X.k/i; 8k � 0:

Thus, the N -th horizon cost function JN .x0; �0/ as in (2) can be written equivalently as

JN .G/ D

NX
kD0

hQCG0RG;X.k/i: (9)

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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242 VARGAS ET AL.

To evaluate precisely the cost JN .G/ as in (9), let us setX.k/ D ¹X1.k/; : : : ; X� .k/º 2 Sn0, k � 0,
and notice that it satisfies the recurrence [1, Prop. 3.1]

X.k C 1/ D D
�
.AC BG/X.k/.AC BG/0

�
; 8k � 0; (10)

with Xi .0/ D �i .0/x0x00 for each i 2 S .
Finally, to complete the definition of recurrences required in the next results, let us consider the sets

W.k/ 2 Sr0, k D 0; : : : ; N , generated as follows.

W.k C 1/ D .AC BG/0E .W.k//.AC BG/; k D 0; : : : ; N � 1; and W.0/ D QCG0RG: (11)

2.2. Main results

The proof of the next result is given in the Appendix.

Lemma 2.1
For each k D 0; : : : ; N , there holds

@ hQCG0RG;X.k/i

@G
D 2

0
@ �X
jD0

RjGXj .k/C

k�1X
`D0

�X
iD0

B 0iEi .W.k � 1 � `//.Ai C BiG/Xi .`/

1
A :

The next result is an immediate consequence of Lemma 2.1 and the expression for the cost in (9).

Theorem 2.1
Let ' WMs;r 7!Ms;r be the gradient of the cost JN .G/ as in (9). Then it satisfies

@ JN .G/

@G
D '.G/; (12)

where

'.G/ WD 2

NX
kD0

0
@ �X
jD0

RjGXj .k/C

k�1X
`D0

�X
iD0

B 0iEi
�
W.k � 1 � `/

�
.Ai C BiG/Xi .`/

1
A ; (13)

and X.k/ 2 Sr0 and W.k/ 2 Sr0 satisfy (10) and (11), respectively.

The next result is immediate from Theorem 2.1 and [18, Coro. p. 185].

Corollary 2.1 (Necessary optimal condition)
If NG 2Ms;r is a local minimum, then '. NG/ D 0.

3. METHODOLOGY

The aim of this section is to describe the methodology we use to evaluate the necessary optimal
condition of Corollary 2.1. For this purpose, let us consider the gradient of (9), evaluated at a point
G, as

'.G/ D
@ JN .G/

@G

ˇ̌̌
ˇ
GDG

: (14)

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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We focus our study on conjugate gradient and quasi-Newton methods [18–24], and all of these
algorithms are based on the following three steps.

Step 1. Choose � > 0 and some initial point G0. Set k D 0.
Step 2. Find an appropriate descent direction dk and compute the scalar ˛k such that

˛k WD arg min
˛>0

JN .Gk C ˛dk/:

Step 3. Set GkC1 D Gk C ˛kdk and k D k C 1. Return to step 2 if k'.Gk/k � �.

Notice that steps 1–3 produce a sequence of points G0;G1; : : : ;Gk ; : : :, and we hope that we can
choose a subsequence Gn0 ;Gn1 ; : : : ;Gnk ; : : : from it such that

'.Gnk /! 0 as k !1: (15)

An accumulation point G1 WD limk!1Gnk satisfies the necessary optimal condition for (9)
(Corollary 2.1), that is,

'.G1/ D 0:

As a consequence, G1 realizes a local minimum or a saddle point for (9). Notice that a local minimum
may coincide with the global one, and in this case, we have G1 D G�.

We select in our analysis the following 10 optimization algorithms because of their wide use in
practice, good speed of convergence, and general acceptance in the literature:

� Steepest descent (SD), see [19, Sec. 8.5], [18, Sec. 8.6];
� Davidon–Fletcher–Powell (DFP), see [19, Sec. 8.6], [24, Sec. 5.1];
� Fletcher–Reeves (FR), see [19, Sec. 8.6], [18, p. 278];
� Zangwill (Z), see [19, Sec. 8.6];
� Broyden–Fletcher–Goldfarb–Shanno (BFGS), see [24, Sec. 5.4.1];
� Polak–Ribière (PR), see [18, p. 278], [24, Sec. 4.2.1];
� Hestenes–Stiefel (HS), see [24, Sec. 4.2.1];
� Perry (P), see [22], [23];
� Dai–Yuan (DY), see [25]; and
� Liu–Storey (LS), see [26].

Remark 3.1
The expression of the gradient function '.�/ as in (13) is the key to evaluate the conjugate gradient
and quasi-Newton methods (SD), (DFP), (FR), (Z), (BFGS), (PR), (HR), (P), (DY), and (LS). The
sequence of descent directions .d0;d1; : : : ;dk ; : : :/ in step 2 requires the computation of the gradient
'.Gk/ for every point Gk 2Ms;r , k � 0 (cf. [18–20, 24]).

4. OPTIMIZATION METHODS TO CONTROL A DC MOTOR DEVICE

The main goal of this section is to illustrate the efficiency of the 10 selected optimization algorithms,
(SD), (DFP), (FR), (Z), (BFGS), (PR), (HR), (P), (DY), and (LS), and to apply them in a scheme that
controls the velocity of a real-time DC motor device subject to abrupt failures. We evaluate the steps
1–3 for each algorithm, seeking for the optimal solution of the underlying Markovian controller to
implement in the DC motor device. As a matter of fact, all of the algorithms converge to the same point
G1, and this point is used in practice to control the speed of the DC motor device. The next section
presents the equipment used in the experiments.

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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4.1. DC motor device

The practical experiments are performed in the DC Motor Module 2208, made up by Datapool Eletron-
ica Ltda, Brazil, using a National Instruments USB-6008 data acquisition card to set a transmission
link with the computer (Figure 1(a) and 1(b)). The control strategy is implemented physically in a
computer, and the MATLAB software is responsible to read the data from the respective acquisition
card, process it, and return to the card an output signal. The experiments are conducted with a sam-
pling period of 15:93ms approximately, and slight variations from this value may occur along the time
stages. This laboratory testbed was used previously by some of the authors in a time-varying feedback
experiment; see [27].

The main idea of this project is to design three scalar values g1, g2, and g3, to implement the
state-feedback strategy into the computer (Figure 1(c)).

The angular velocity of the DC motor and the electrical current consumed by it are represented here
by vk and ik , k � 0, respectively. Recall that DC motors can be completely characterized by both
variables vk and ik [28–30]. To measure vk physically, we use the voltage range of 0 � 5V via the
manufacturer-provided tachogenerator; and to measure ik , we connect a shunt resistor in series with
the motor associated with a pre-amplifier signal stage to convert the corresponding current to voltage.
To reduce the noise produced in the pre-amplifier stage, we implement a first-order analog filter. Notice
that a discrete integrator is used to minimize the error between the reference signal rk and the velocity
signal vk , as suggested in [31, Sec. 10.7.3]. A built-in analog inner loop is used to improve stability.

Abrupt failures on the power transmitted to the shaft play an important role in the speed of motors,
and this fact motivates us to adjust the apparatus in order to impose power failures therein: we force
the DC motor device to run under three distinct operation modes, that is, the normal, low, and medium
power modes, and these switching modes are programmed to occur according to a homogeneous
Markov chain.

Abrupt failures on the power transmitted to the shaft play an important role in the speed of motors,
motivating us to adjust the apparatus in order to impose power failures therein, as follows. We changed
the functionality of a manufacturer-based potentiometer of the module that regulates the power level

Figure 1. Laboratory DC motor testbed used to perform the experiments of Section 4.

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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driven by the device, in such a manner that now it can be adjusted by the computer. In our experiment,
the voltage signal of the potentiometer was chosen between three distinct voltage levels, producing
different power modes for the DC motor device, namely the normal (full), low, and medium power
modes. The switching between the voltage signal (therefore the modes) is performed by the computer,
which simulates a homogeneous Markov chain by generating at each time instant a random variable
�k with uniform distribution in the interval Œ0; 1� and recursively calculates

�kC1 D 1C 11�k�p�k;1
C 11�k�p�k;1Cp�k;2

;

with initial condition �0 D 1.
By setting the system state as xk � Œvk ik qk�

0 (where qk represents the integrative term written
as a discrete sum), we are able to model the DC motor device subject to failures as the following
discrete-time Markov jump linear system:

xkC1 D A�kxk C B�kuk C 	�k rk ; k � 0; (16)

where the parameters

Ai D

2
64 a

.i/
11 a

.i/
12 0

a
.i/
21 a

.i/
22 0

a
.i/
31 0 a

.i/
33

3
75 ; Bi D

2
4 b.i/1b.i/2

0

3
5 ; 	i D

2
4 0

0


 .i/

3
5 ; i D 1; 2; 3:

are given in Table I. At the k-th stage, the system operates in normal (full) power mode when �k D 1,
in low power mode when �k D 2, or in medium power mode when �k D 3.

The sequence ¹rkº on R denotes the tracking reference signal, and ¹ukº on R stands for the
controller, which is defined in the linear state-feedback format, with G WD Œg1 g2 g3�, as

uk D Gxk; 8k � 0: (17)

4.2. Numerical evaluations

In the numerical evaluations, we set N D 13, �0 D Œ1 0 0�0, x0 D Œ0:8 0:22 0:012�0,

P D

2
4 0:89999 0:1 0:00001

0:05 0:85 0:1

0:08 0:22 0:7

3
5 ; Qi D 10�3 �

2
4 7:169327 0 0

0 26:971929 0

0 0 0

3
5 ;

Table I. Parameters of the discrete-time MJLS representing a real
DC motor device as in Section 4.

Parameters i D 1 i D 2 i D 3

a
.i/

11
�0:479908 �1:60261 0:634617

a
.i/

12
5:1546 9:1632 0:917836

a
.i/

21
�3:81625 �0:5918697 �0:50569

a
.i/

22
14:4723 3:0317 2:48116

a
.i/

31
0:139933 0:0740594 0:386579

a
.i/

33
�0:925565 �0:43383 0:0982194

b
.i/

1
5:87058212 10:285129 0:7874647

b
.i/

2
15:50107 2:2282663 1:5302844


 .i/ 0:11762727 �0:1328741 0:1632125

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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and Ri D 0:3025, i D 1; 2; 3. The matrix P was chosen in such a manner that, from normal mode,
immediate visit of low power mode is much less probable than the medium one and that retrieving from
low power mode has high probability to involve the medium power mode. Note that the probabilities of
changing between modes are relatively high (in view of the sampling time of about 15 ms) to simulate
a non-reliable device.

The design objective of this project is twofold. First, we design a controller, seeking an optimal
solution for the regulator control problem stated in (4). For this purpose, we set rk � 0 in (16),
substitute (17) into (16), and use the expressions in (9) and (10) to evaluate the optimization algorithms
(SD), (DFP), (FR), (Z), (BFGS), (PR), (HS), and (P) according to the steps 1–3 with initial point
G0 D Œ0:24 � 0:9 � 0:018�. All of these algorithms converge successfully to the same point G1
given by

G1 D Œ0:242565 � 0:866996 0:035999�: (18)

One can check that '.G1/ ' 0, so that G1 is a candidate for a local minimum according to
Corollary 2.1.

To evaluate the efficiency of the optimization algorithms, we check the number of iterations required
by each of them to converge to the stationary point G1 within a tolerance of � D 10�5 (i.e.,
k'.G1/k < �). Despite the fact that the number of iterations required for the convergence vary dras-
tically from one method to another, a relevant conclusion we can take is that all of the algorithms
converge successfully to the same point of minimum (Table II). In addition, the (BFGS) algorithm
is the quickest one to reach a local minimum point, while (SD) and (PR) are the slowest ones. The
efficiency of the (BFGS) method is confirmed in [21].

Another important conclusion we draw from the numerical evaluations is that the cost JN .G/, for
this example, is non-convex (Figure 2). This prevents us to conclude that a stationary point obtained
from the optimization algorithms is a global minimum one. Thus, for the static control problem of
MJLS with unobservable modes as in (4), we are limited to assure local minimum or saddle points only.

In this project in particular, the numerical evaluations we perform indicate that G1 represents a
local minimum for the cost JN .G/ (the point G1 is represented in Figure 2).

In addition, G1 is a stabilizing gain in the mean square sense [1, Th. 3.9, p. 36]. This stabilizing
property is confirmed in practice by experimental data, as described in the next section.

The second main objective of this project is to implement in practice the state-feedback controller
uk D G1xk , but now considering non-null values for rk . This is illustrated in the next section.

Table II. Results obtained from an evaluation of 10 selected optimization
algorithms according to the control problem of a DC motor device subject

to failures, as described in Section 4.

Method No. of iterations k'.Gk/k JN .Gk/

(SD) 49; 192 9:977636 � 10�5 7:50173125 � 10�2

(DFP) 16 9:598819 � 10�5 7:50173126 � 10�2

(FR) 13; 120 9:978498 � 10�5 7:50173116 � 10�2

(Z) 26 4:689837 � 10�5 7:50173114 � 10�2

(BFGS) 9 5:100781 � 10�5 7:50173110 � 10�2

(PR) 49; 181 9:982912 � 10�5 7:50173125 � 10�2

(HS) 5099 9:842895 � 10�5 7:50173122 � 10�2

(P) 385 8:265199 � 10�5 7:50173117 � 10�2

(DY) 61 6:052468 � 10�5 7:50173111 � 10�2

(LS) 1892 3:990148 � 10�5 7:50173111 � 10�2

The results indicate that the BFGS algorithm is the quickest in the conver-
gence to a local minimum.

Copyright © 2014 John Wiley & Sons, Ltd Int. J. Numer. Model. 2015; 28:239–253
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Figure 2. Three-dimensional contour plot of the cost JN .G/ withG D Œg1 g2 g3�. The contour levels of the cost
JN .G/, represented by white lines, show that the cost JN .G/ is non-convex, and the black sphere in the center

of the figure represents a point for a local minimum of JN .G/.

Figure 3. Trajectory of the velocity of the DC motor device for some realization of the Markov chain ¹�kº.
When failures occur, the velocity of the DC motor device suffers an impressive disturbance, but the system rapidly

returns to a stable behavior to follow the sawtooth reference signal (in light blue).

4.3. Experimental results

In this practical control project, we set the models (16) and (17) with G D G1 and r.k/ obeying a
sawtooth wave signal. The idea of designing a controller for the regulation problem (i.e., r.k/ � 0)
and then applying it to track a reference signal (i.e., r.k/ 6� 0) is purposeful in practice to improve
attenuation of disturbances while keeping fast transient response; see [32, 33], and [30] for further
details regarding deterministic systems.

It is worthy to point out that the failures in the DC motor device impose relevant disturbances on
the velocity (Figure 3), but G1 engenders a stable tracking behavior for the velocity and confirms the
property of attenuation and fast transient response for the controller (17) with G D G1.

As mentioned earlier, abrupt power failures on the DC motor device are responsible for the sudden
changes in the velocity of the rotor. This may expose the system to unexpected symptoms [28]. In
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Figure 4. Representation of the velocity of the DC motor, obtained from practical experiments, for 800 distinct
realizations of the underlying Markovian failure process. The mean of the velocity vk is represented by the black
straight line, bounded from above and below by its standard deviation (in red). The mean of the velocity vk follows

appropriately the sawtooth signal reference rk .

order to verify how the DC motor reacts to abrupt power failures, we perform 800 distinct experiments
with the power failures driven by the underlying Markov chain. We observe that the mean value of the
velocity follows the sawtooth signal reference with success even in this scenario of failures (Figure 4).
The standard deviation of the velocity from its mean is not of great amount, and indeed it is bounded,
thus indicating that the stochastic system is stable (cf. [1, Ch. 3], [34]).

Our last conclusion in this project is that, even in the real scenario of failures, the designed controller
with G1 proposed by the optimization algorithms is able to drive, with success, the mean value of the
DC motor speed to track the reference sawtooth wave signal.

5. CONCLUDING REMARKS

The main theoretical result in this paper is the evaluation of the gradient for the static control problem of
MJLS with unobservable mode (Theorem 2.1). To design a real-time controller for a DC motor device,
we collected the data from the experiments to generate the corresponding expression for the gradient.
Using this gradient, we evaluated distinct optimization methods available in literature, to check their
efficiency, in the design of the controller. Such controller was implemented in the laboratory testbed as
described in Section 4.

We implemented 800 distinct experiments by imposing power failures on the motor, in which the
controlled system successfully tracked the reference signal (Figure 4).

The novelty of this paper is as follows. We use the expression of the gradient '.�/, as derived in
Theorem 2.1, into these 10 selected optimization algorithms to make a comparison of their efficiency
for a specific example. In fact, the example under investigation is based on the data collected from a
real-time DC motor device subject to abrupt failures. We verified that all of the algorithms converge to
the same solution (Table II), and then we implement this numerical solution in a real-time controller
to control the velocity of the corresponding DC motor device.

APPENDIX

Proof of Lemma 2.1
To prove the main result, it is necessary to introduce some auxiliary results. To begin with, notice from
the formulas (6) that we can write
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U; V 2 Sr ) @ tr¹U.Ai C BiG/V.Ai C BiG/0º

@G
D 2B 0iU.Ai C BiG/V; i D 1; : : : ; �: (A.1)

Let us now turn our attention to the recurrence (10). If we set k D 1 in (10), one can verify that

Xi1.1/ D

�X
i0D1

pi0i1.Ai0 C Bi0G/Xi0.0/.Ai0 C Bi0G/
0; i1 D 1; : : : ; �:

With k D 2 in (10), we have

Xi2.2/ D

�X
i1D1

�X
i0D1

pi0i1pi1i2.Ai1 C Bi1G/.Ai0 C Bi0G/

�Xi0.0/.Ai0 C Bi0G/
0.Ai1 C Bi1G/

0; i2 D 1; : : : ; �:

Proceeding similarly with k D `C 1 in (10), we obtain

Xi`C1.`C 1/ D

�X
i`D1

� � �

�X
i0D1

�
pi0i1 � � �pi`i`C1.Ai` C Bi`G/ � � � .Ai0 C Bi0G/

�Xi0.0/.Ai0 C Bi0G/
0 � � � .Ai` C Bi`G/

0
�
; i`C1 D 1; : : : ; �:

(A.2)

Combining (5) and (A.2), we obtain the identity

@ hQCG0RG;X.`C 1/i

@G
D

�X
i`C1D1

@

@G
tr
®
.Qi`C1 CG

0Ri`C1G/Xi`C1.`C 1/
¯

D

�X
i`C1D1

� � �

�X
i0D1

pi0i1 � � �pi`i`C1

�
@

@G
tr
®
.Qi`C1 CG

0Ri`C1G/ (A.3)

�.Ai`CBi`G/ � � � .Ai0CBi0G/Xi0.0/.Ai0CBi0G/
0� � � .Ai`CBi`G/

0

�̄
:

On the other hand, the derivative chain rule [17, Sec. 10.3.1] states that

@ hQCG0RG;X.`C 1/i

@G
D
@ h

variable‚ …„ ƒ
QCG0RG;

fixed‚ …„ ƒ
X.`C 1/i

@G
C
@ h

fixed‚ …„ ƒ
QCG0RG;

variable‚ …„ ƒ
X.`C 1/i

@G
: (A.4)

The first expression in the right-hand side of the equality (A.4) is identical to (see (6))

�X
iD1

@ tr¹

variable‚ …„ ƒ
Qi CG

0RiG;

fixed‚ …„ ƒ
Xi .`C 1/º

@G
D

�X
iD1

2RiGXi .`C 1/: (A.5)

To evaluate the second term in the right-hand side of (A.4), we start with (A.3) taking Qi`C1 C
G0Ri`C1G as a fixed term. The derivative chain rule will be useful in this calculation. Indeed, the idea
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behind the derivative chain rule is to consider (A.3) with .Ai0CBi0G/ as variable and all of the other
terms fixed, and after this, we take .Ai1 C Bi1G/ as variable and all of the other terms fixed, and so
on until the evaluation of the term .Ai` C Bi`G/ is accomplished.

Let us now start this procedure. Assume that U 2 Sr and V 2 Sr are fixed and defined in (A.1) as

U D .Ai1 C Bi1G/
0 � � � .Ai` C Bi`G/

0.Qi`C1 CG
0Ri`C1G/.Ai` C Bi`G/ � � � .Ai1 C Bi1G/;

V D Xi0.0/:

Thus, the term inside the brackets of (A.3) equals

@

@G
tr¹U.Ai0 C Bi0G/V.Ai0 C Bi0G/

0º;

which yields

2B 0i0

�
.Ai1 C Bi1G/

0 � � � .Ai` C Bi`G/
0.Qi`C1 CG

0Ri`C1G/

�.Ai` C Bi`G/ � � � .Ai1 C Bi1G/
�
.Ai0 C Bi0G/Xi0.0/:

Substituting this expression into (A.3), we obtain

�X
i0D1

2B 0i0

2
4 �X
i1D1

pi0i1.Ai1 C Bi1G/
0 � � �

�X
i`D1

pi`�1i`.Ai` C Bi`G/
0

�

�X
i`D1

pi`i`C1.Qi`C1 CG
0Ri`C1G/.Ai` C Bi`G/ � � � .Ai1 C Bi1G/

3
5 .Ai0 C Bi0G/Xi0.0/:

Notice that the term inside the brackets is identical to Ei0.W.`//. Hence, when .Ai0CBi0G/ is variable
and all of the other terms remain fixed, we get that

@ hQCG0RG;X.`C 1/i

@G
D

�X
i0D1

2B 0i0Ei0.W.`//.Ai0 C Bi0G/Xi0.0/:

Let us now assume that the term .Ai1 C Bi1G/ is variable and all of the others are fixed. Because
(A.3) can be rewritten as

�X
i`C1D1

� � �

�X
i1D1

pi1i2 � � �pi`i`C1

�
@

@G
tr
®
.Qi`C1 CG

0Ri`C1G/

�.Ai` C Bi`G/ � � � .Ai1 C Bi1G/Xi1.1/.Ai1 C Bi1G/
0 � � � .Ai` C Bi`G/

0
¯�
;

one can repeat the previous reasoning, taking .Ai1CBi1G/ as variable and all of the other terms fixed,
to
show that

@ hQCG0RG;X.`C 1/i

@G
D

�X
i1D1

2B 0i1Ei1.W.` � 1//.Ai1 C Bi1G/Xi1.1/:
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Finally, summing up the elements from this argument, we obtain

@ h

fixed‚ …„ ƒ
QCG0RG;

variable‚ …„ ƒ
X.`C 1/i

@G
D

�X
i0D1

2B 0i0Ei0.W.`//.Ai0 C Bi0G/Xi0.0/

C

�X
i1D1

2B 0i1Ei1.W.` � 1//.Ai1 C Bi1G/Xi1.1/ (A.6)

:::

C

�X
i`D1

2B 0i`Ei`.W.0//.Ai` C Bi`G/Xi`.`/:

The desired result then follows from (A.4)–(A.6).
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