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Abstract—Efficient training of machine learning algorithms
requires a reliable labeled set from the application domain.
Usually, data labeling is a costly process. Therefore, a selective
approach is desirable.

Active learning has been successfully used to reduce the
labeling effort, due to its parsimonious process of querying
the labeler. Nevertheless, many active learning strategies are
dependent on early predictions made by learning algorithms.
This might be a major problem when the learner is still unable to
provide reliable information. In this context, agnostic strategies
can be convenient, since they spare internal learners - usually
favoring exploratory queries. On the other hand, prospective
queries could benefit from a learning bias.

In this article, we highlight the advantages of the agnostic
approach and propose how to explore some of them without fore-
going prospection. A simple hybrid strategy and a visualization
tool called ranking curves, are proposed as a proof of concept.
The tool allowed to see clearly when the presence of a learner was
possibly detrimental. Finally, the hybrid strategy was successfully
compared to its counterpart in the literature, to pure agnostic
strategies and to the usual baseline of the field.
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I. INTRODUCTION

Several machine learning algorithms have been proposed
to induce models able to deal with a variety of application
tasks. Such algorithms need a reliable sample of the application
domain for training, which, in the case of classification, is a
set of labeled instances. Usually, labeling requires expensive
human supervision effort. To reduce this effort, active learning
is a useful approach due to its parsimonious process of
querying the supervisor [1]. However, many active learning
strategies are dependent on learning algorithms to evolve its
internal model - called learner. This is a major problem when
neither the domain peculiarities nor the user expertise are
enough to define the proper algorithm in advance. Without
a proper algorithm, its predictions are unreliable, inadequate
to be used by the active learning strategy. A possibility to
determine the best learning algorithm, would be to rely on
the initial training set to select it by cross-validation, but the
number of labeled instances is frequently scarce or inexistent.
In this context, agnostic strategies are convenient because
they do not need internal learners. Indeed, agnostic sampling
still allows improvements in label complexity over traditional
passive learning [2]. On the other hand, agnostic approaches
lack the prospective capability of a learning bias that could

speed up the learning process regarding the number of queries.
Ideally, both, resilience to a still roughly trained/inadequate
learner, and prospection capability are desirable properties of
an active learning strategy.

In this study, we empirically demonstrate that agnostic
strategies are more effective than gnostic approaches in the first
exploratory steps, while the learner bias is important later in
the learning process. As a result, we propose a hybrid approach
able to identify the moments when relying on the learner is
detrimental. It achieved better performance than the baseline
and directly related strategies.

This article is organized as follows. Background informa-
tion concerning active learning and related work is provided
in Section II, including a review of pertinent active learning
strategies; the proposed method is presented in Section III;
experiments and results are detailed in Section IV; and, finally,
conclusions are drawn in Section V.

II. RELATED WORK

An effective way to label data selectively is the employ-
ment of active learning [1]. It is reasonable to only acquire
labels for the most important part of the data, due to acquisition
costs. The focus of this work is the pool-based query, when the
learner is given the freedom to choose the most informative
instance among several others in a pool [3]. Depending on
the learning algorithm, there are several successful strategies
for the pool-based setting [4]. Three strategies are relevant for
this work. They are explained in sections II-A, II-B and II-C,
respectively: uncertainty sampling, density-weighted sampling
and cluster-based sampling. Convenient abbreviations are pro-
vided between parentheses after the name of each strategy.

A. Uncertainty Sampling

A purely prospective strategy is Uncertainty Sampling
(Unc). It focuses on exploitation while neglecting exploration.
The criterion to select an instance is based on the maximum
posterior probability. The posterior probability is given by
a probabilistic model [3], which provides how probable is
the class y given an instance x. The maximum posterior
probability is presented in Equation 1:

Pmax(x) = max
y

P (y|x) (1)
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where x is sampled from the pool U , and P (y|x) is the
posterior conditional probability of x being of the class y.
The output of a probability-based model, for instance, can be
adopted as P (y|x). The uncertainty sampling strategy consists
of querying the most informative instance, i.e. the instance
with the lowest Pmax(x), to explore the decision boundary
in the attribute space - or parameter space, depending on the
classifier. Although this measure depends on a probabilistic
model, probability distributions can be estimated for other
families of learning algorithms.

This strategy requires only a single training on the labeled
instances to be able to test all remaining candidates. Margin
and entropy measures are alternative variants to uncertainty for
multiclass problems.

B. Density-weighted Sampling

While Unc exploits only the uncertainty of the model,
density weighted (DW) strategies exploit the data distribution
in addition to the uncertainty measure. The information density
measure [5] is given by Equation 2:

ID(x) = H(x)
1

|U|
∑
u∈U

sim(x,u) (2)

or the training utility (TU) [6], measure adopted in this
work, shown in Eq. 3:

TU(x) = ID(x)(
∑
l∈L

sim(x, l))−1 (3)

where L is the set of labeled instances. Any similarity
sim(x,u) and informativity measures H(x) can be adopted.
In this work, the Euclidean distance was adopted and trans-
formed into a similarity measure by the formula in Eq. 4:

sim(x,u) =
1

1 + d(x,u)
(4)

The uncertainty Pmax(x) was adopted as the informativity
measure in the experiments.

The complexity order is O(1), but |U|2 distance calcula-
tions are needed for each query; they should be cached in fast
access memory before the active sampling process is started.

C. Cluster-based Sampling

The active sampling process can exploit natural clusters in
the pool, instead of performing queries that focus on decision
boundaries. One such approach is the Hierarchical Sampling
(HS) [7]. It is based on hierarchical clustering [8]. Hierarchical
clustering organizes the instances according to a hierarchy,
usually represented by a tree. Each leaf node represents an
instance and each parent node represents a similarity/proximity
relation between its children. A child is a leaf or a parent of
other children. Any node can be seen as a single group of all
its descendant leaves. Different pruning choices can be made,
leading to different partitioning schemes. Once the instances
are partitioned, each group is a cluster.

In the active learning context, instances are queried with
higher probability from the most impure and representative
clusters. Purity is the proportion between the most frequent

class and the others. Representativeness is the amount of
instances contained in the cluster. Both measures are com-
bined, and the pruning is defined, according to statistical
bounds; details in [7]. It is guaranteed to not perform worse
than random sampling. This strategy and random sampling
are examples of agnostic approaches. In the experiments, the
original implementation provided by the authors was adopted.
The clustering algorithm employed was Ward’s average linkage
method [8].

III. PROPOSAL

We propose two strategies to assess the effect of the learner
in the strategy during learning. One agnostic, to track the
effects of the learning bias absence; and, a hybrid agnostic-
gnostic/exploratory-prospective approach.

A. Agnostic

The usefulness of taking an exploratory step before making
any assumptions about the data is intuitive. When one needs
to investigate a problem in more depth, data obtained from
the exploration step can allow more confident prospection.
One form of prospection is to resort to a learned model.
However, any model is biased towards assumptions about the
data distribution [9]. Therefore, there is a trade-off in the
balance of exploration and exploitation which can lead to a
confident but inefficient, or to an efficient but highly biased
search of the instance space. For purposes of comparison of
both cases, we defined a strategy to show the effect of the
absence of a learning bias. It can be seen as the agnostic
version of TU, called Density-weighted Agnostic Sampling,
ATU, to simplify future references in the text.

Agnostic approaches have some advantages. They can
query all the instance space instead of only the areas near
a learner decision boundary. The absence of a learner to spend
training time makes agnostic strategies faster than gnostic
ones. Also, it avoids the problem of the choice of a learning
algorithm in advance. Another advantage is the independence
among queries, which allows e.g. to have simultaneous multi-
ple oracles and to answer the queries in any order1. However,
an agnostic approach like random sampling have a non uniform
exploratory nature. Redundant instances or outliers can be
preferred by chance over more representative instances.

We propose that even without a learner, density weighting
can be employed to ensure densely and unlabeled areas in the
instance space are queried. The new informativity measure is
presented in Eq. 5.

ATU(x) =
1

|U|
∑
u∈U

sim(x,u)(
∑
l∈L

sim(x, l))−1 (5)

The equation of this illustrative strategy balances proximity
to dense unlabeled groups of instances and departure from
already labeled areas of the instance space.

1However, the order is relevant when the application requires prediction
capability during the active sampling process.
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B. Hybrid

The lack of a decision boundary can imply in no exploita-
tion. This is not the case with HS, because, despite having no
learner, it is still able to exploit impure clusters. Therefore, HS
has an implicit bias, when it takes into account the available
labels. Beyond questioning its real agnostic nature, when
employing HS strategy, the desirable independence between
queries does not hold. Nonetheless, ATU is also devoid of
a learner, but unlike HS, it is able to not depend on labels.
The main weakness of ATU is that it cannot optimize towards
a target, like improving directly the model predictions or
attacking impure clusters. An alternative is to adopt a learner
late in the learning process.

A pure gnostic strategy like Unc, can optimize the search
for the final decision boundary. Its successive partitioning of
the instance space in two parts is analogous to a binary search
[10], which in ideal conditions, can lead to an exponential
reduction in labeling costs [11]. Although, in adverse condi-
tions, the budget can be wasted on a few instances and its
vicinity, before all the extent of a useful boundary is unveiled.
Therefore, a combination between exploitation and exploration
is desirable. This is already done by TU, where both behaviors
are components of the same measure. However, none of them
can act in their pure form. This results in permanent influence
of the learner, even if its learning stage is not yet adequate to
make predictions. There is also no distinction between early
and late queries. We propose a new technique to circumvent
the disadvantages of both, presence and absence of learner,
called Hybrid Density-based Training Utility Active Learning
(HTU).

HTU consists of selective use of TU and ATU when
needed and Unc to do internal comparisons. The goal of
HTU is to resort to the learner only when exploration is not
making relevant contributions anymore. This can be estimated
comparing how TU and Unc would sort the available instances
according to their relevance. If the two sorted pools were iden-
tical, then only Unc would suffice to provide the next query,
i.e., agnosticism would have become unneeded. However, this
coincidence, or any result near it, is highly improbable most
of the time. Therefore, the correlation between the outcome
from the two strategies should be quantified, avoiding the
comparison of instance positions in two ordered lists. Since
both strategies provide informativity measures, it is straight-
forward to generate two lists of values for the entire pool and
compare them via Pearson correlation [12]. Values too close
to unit indicates a small contribution of the agnostic part of
the TU informativity measure (Eq. 3). This is an indicator that
suggests to switch from ATU to TU (or from ATU to Unc) -
which is equivalent to embed a learner. An arbitrary value
representing a very strong correlation, such as higher than
0.8, can be adopted as threshold [13]. In this work, the value
0.999 was chosen based on datasets that were not included
in the experiments2 as follows. Figure 1 shows the mean

2Datasets from the UCI repository [14]: artificial charac., statlog vehicle sil.,
connect. vowel red., robot nav. sensor, vertebra column 3c, volcanoes a3, user
knowl., page blocks, waveform v2, turkiye stud., car eval., heart disease clev.,
cardiotoc. 3, abalone 3, connect. vowel, molec. splice junc., wine quality white,
statlog landsat sa., cardiotoc. 1., flare, first order theor., leaf, systhetic control,
semeion, balance scale, autoUniv au7 300, volcanoes e2, thyroid sick, statlog
image segm., autoUniv au7 700, yeast 4, volcanoes b2, mfeat fourier, thyroid
ann, volcanoes d1, movement libras. They were limited to 1000 instances.
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Fig. 1. Ranking position for different Spearman correlation thresholds.

ranking position for values of different orders of magnitude in
the interval [0.9; 0.999999]. 10-fold cross-validation was used
to estimate performance of HTU according to the κ kappa
measure after 100 queries. The kappa measure [15] is given
by Equation 6.

κ =
a− vpred·vexp

n

1− vpred·vexp

n

(6)

where vpred is a vetor with the total number of instances
predicted by class, vexp is a vetor with the total number of
instances expected by class, a is the ordinary accuracy and n
is the size of the test set.

Finally, a disadvantage of HTU is its intrinsic need of
a learner and the corresponding training time, incurring in
additional computational costs when compared to ATU. This
can be relevant in applications where the querying time is
critical.

IV. EXPERIMENTS

The proposed method was empirically evaluated according
to the current methodology in the areas of active learning and
machine learning. Additionally, an innovative tool to visualize
the learning curve for multiple datasets is presented.

A. Methodology

For each new query, a new model is built/updated and
tested against unknown instances previously set apart. In the
literature, an arbitrary number of queries (50, 100, 200, |U|
etc.) have been used [16], [17]. We adopted a budget of 200
queries. Five runs of 5-fold cross-validation were applied.
Training folds were used as the pool of unlabeled instances
- as adopted by [18]. Duplicate instances were removed.

In the experiments, it was assumed that the label of one
instance per class was known before the start of the active
sampling process3. One or more than one instance per class
have been used in the literature [17].

The performance indicator is the Area under the Learning
Curve (ALC) [19] for κ [20]. In strict terms, the indicator is
the mean of all κ values, instead of a real area under the curve,
since there are also negative values. Kappa (κ) was chosen due
to the presence of imbalanced datasets.

3Except for the Cluster-based strategy.
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B. Datasets and algorithms

The evaluation was performed with 195 different settings
resulting from the combination of five learning algorithms and
third-nine binary labeled datasets from the UCI repository [14].
The employed classifiers were: 5NN, C4.5w4, NB5, SVM with
RBF6 and CIELM [21]–[25]. When not stated otherwise, all
parameters used the default values from the Weka library [26].
C4.5w was adjusted to predict the probability distribution with
Laplacian smoothing and to keep the number of instances
within the limit of ten instances. CIELM was built with addi-
tive sigmoid nodes, one for each training instance. SVM was
of type C-SVC [27] with the following parameters: γ = 0, 5,
C = 1, cache 200MB and eps = 0.001. 5NN was weighted
by the complement of the distance.

Datasets are detailed in Table I. They were binarized and
standardized or discretized when needed, i.e. for distance
calculations or training some of the algorithms (NB, CIELM,
SVM and 5NN). There were no missing values.

TABLE I. DATASET DETAILS: NUMBER OF INSTANCES IN THE POOL,
NUMBER OF ATTRIBUTES, NUMBER OF NOMINAL ATTRIBUTES AND

PERCENTAGE OF EXAMPLES FROM THE MAJORITARY CLASS.

Dataset #Inst. #Attrib. #Nomin. %Maj. class

1-autoUniv au1 1000 798 20 0 74
2-banana 4233 2 0 55
3-banknote authentic... 1078 4 0 55
4-bupa 273 6 0 58
5-climate simulation... 432 20 0 91
6-habermans survival 226 3 0 72
7-heart disease hung... 234 13 0 64
8-hill valley withou... 970 100 0 50
9-horse colic surgic... 240 27 14 64
10-indian liver patie... 456 10 1 71
11-ionosphere 280 33 0 64
12-kr vs kp 2557 36 36 52
13-mammographic mass 514 5 0 52
14-monks1 346 6 0 50
15-monks2 346 6 6 67
16-monks3 346 6 0 53
17-mushroom 6499 21 21 52
18-ozone eighthr 2021 72 0 94
19-ozone onehr 2022 72 0 97
20-phoneme 4316 5 0 71
21-pima indians diabe... 614 8 0 65
22-qsar biodegradatio... 842 41 0 66
23-ringnorm 5920 20 0 50
24-saheart 370 9 1 65
25-spambase 3366 57 0 60
26-spectf heart 214 44 0 79
27-statlog australian... 552 14 6 56
28-statlog german cre... 800 24 0 70
29-statlog heart 216 13 0 56
30-steel plates fault... 1553 33 0 65
31-thyroid hypothyroi... 2468 25 18 95
32-thyroid sick euthy... 2468 25 18 91
33-tic tac toe 766 9 9 65
34-twonorm 5920 20 0 50
35-vertebra column 2c 248 6 0 68
36-voting 223 16 16 67
37-wdbc 455 30 0 63
38-wholesale channel 352 7 0 68
39-wilt 3855 5 0 95

C. Experimental results

All learning curves have logarithmic shape, as can be seen
in Figure 2. As these curves are averaged over all datasets,

4Weka version for C4.5 decision tree, called J48.
5Naive Bayes
6Support Vector Machines with Radial Basis Function
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Fig. 2. Average learning curves for all datasets.
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Fig. 3. Average ranking curves for all datasets.

strategies should not be compared by them. The effective range
of κ is problem-dependent, causing averages to be biased
towards easier datasets. Therefore, a more adequate curve
would take into account the relative position among strategies.
This can be done by ranking curves. At each time step, the
ranking of strategies is averaged for all datasets. The result is
the mean position per time step. The plot of all mean positions
is the ranking curve presented in Figure 3 for each strategy.
Until 80 queries, the two proposed methods are clearly superior
to the others. As expected, agnosticism was advantageous in
the beginning for both and, as the model evolved, the purely
agnostic ATU and the purely gnostic Unc switched roles.
This is confirmed by the fact that even the baseline Rnd and
HS, both agnostic, were better than Unc early in the process
of learning. Only after 100 queries, the most frequent limit
employed in the literature, Unc prevails.

These findings were verified statistically by the Friedman-
Nemenyi test [28] applied to the ALC-κ values for: all queries;
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the first 50; the first 100; and, the last 100 queries. The
resulting tables are respectively: II, III, IV and V. All pairs
of strategies are compared by their ranking position in each
dataset. Each symbol sr,c in a cell at row r and column c
indicates that the strategy r is better than strategy c.

In the first 50 queries, the two proposed methods were
better than Rnd, Unc and DW with p = 0.01 (Table II).
The purely prospective Unc was worse than four of five
strategies with some degree of exploration (p ≤ 0.10). The
advantage decreases with 100 queries (Table III), but the
overall superiority of ATU and HTU remains. The same can
be noted with 200 queries (Table IV), except by the overall
equivalence between TU and ATU. Finally, with the last 100
queries (Table V), HTU, Unc and TU achieve the same overall
performance, with little advantage to Unc, which was slightly
better than ATU (p = 0.10) - according to the expected and
already graphically noticed gnostic-agnostic switch.

TABLE II. ONE VERSUS ONE FOR THE FIRST 50 QUERIES.
Each symbol indicates a p-value: * (0.01), + (0.05) and . (0.10).

1 2 3 4 5 6 7
1 - Rnd -
2 - HS - . *
3 - ATU * - * *
4 - HTU * - * *
5 - Unc -
6 - TU . - *
7 - DW -

TABLE III. ONE VERSUS ONE FOR THE FIRST 100 QUERIES. Details in
Table II.

1 2 3 4 5 6 7
1 - Rnd -
2 - HS -
3 - ATU * . - . *
4 - HTU * + - + *
5 - Unc -
6 - TU + - *
7 - DW -

TABLE IV. ONE VERSUS ONE FOR ALL 200 QUERIES. Details in Table
II.

1 2 3 4 5 6 7
1 - Rnd -
2 - HS -
3 - ATU * + - *
4 - HTU * * - *
5 - Unc * - *
6 - TU * + - *
7 - DW -

TABLE V. ONE VERSUS ONE FOR THE LAST 100 QUERIES. Details in
Table II.

1 2 3 4 5 6 7
1 - Rnd -
2 - HS -
3 - ATU * . -
4 - HTU * * - *
5 - Unc * * . - *
6 - TU * * - *
7 - DW -

V. CONCLUSION

The experiments have clearly demonstrated that agnos-
ticism plays an important role in the beginning of the ac-
tive learning. We demonstrate experimentally that a density-
weighted method can be made agnostic and still achieve good

performance within the usual budget adopted in the literature.
Additionally, we proposed a proof of concept to demonstrate
how to automatically explore such findings. It performed
statistically better in the critical part part of the learning
curve than the baseline and most relevant contenders. The
inclusion of a pure gnostic step is intended as future work. A
heuristic, or a meta-learning, approach to objectively define the
correlation threshold value, experimentally fixed in 0.999, is
also a relevant topic for more in-depth research. Another topic,
suggested by a reviewer, is to turn the uncertainty measures
into probabilistic measures to balance between exploration and
exploitation. All implemented code is available at [29].
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