

 Universidade de São Paulo

2015-11

IGMM-CD: a gaussian mixture classification

algorithm for data streams with concept drifts

Brazilian Conference on Intelligent Systems, IV, 2015, Natal.
http://www.producao.usp.br/handle/BDPI/49973

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciências de Computação - ICMC/SCC Comunicações em Eventos - ICMC/SCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37526245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/49973

IGMM-CD: A Gaussian Mixture Classification

Algorithm for Data Streams with Concept Drifts

Luan Soares Oliveira, Gustavo E. A. P. A. Batista

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

São Carlos, SP, Brazil

{luanso,gbatista}@icmc.usp.br

Abstract—Learning concepts from data streams differs signif-
icantly from traditional batch learning, because in data streams
the concepts to be learned may evolve over time. Incremental
learning paradigm is a promising approach for learning in
a data stream setting. However, in the presence of concept
drifts, outdated concepts can cause misclassifications. Although
several incremental Gaussian mixture models methods have been
proposed in the literature, we notice that these algorithms lack
an explicit policy to discard outdated concepts. In this paper, we
propose a new incremental algorithm for data stream learning
based on Gaussian Mixture Models. The proposed method is
compared to various algorithms widely used in the literature,
and the results show that it is competitive with them in various
scenarios, overcoming them in some cases.

Keywords—Incremental learning, data stream, concept drift,
gaussian mixture model

I. INTRODUCTION

Learning concepts from data streams differs significantly
from traditional batch learning. In batch learning there is an
implicit assumption that the concept to be learned is static and
does not evolve significantly over time. Therefore, it is possible
to collect a set of training data and induce a model that will
be applied to future unknown data, assuming that both data
samples have the same distribution.

In data stream learning, the concepts to be learned may
evolve over time. This evolution is called concept drift [1].
Thus, the creation of a fixed training set is no longer applicable.
In fact, many data streams are potentially infinite, so we can
not accumulate all the examples that occur in the stream in a
training set. Usually, we assume that each example in a data
stream is seen only once, and then discarded [2].

The incremental learning paradigm is a promising approach
for learning in a data stream setting [1], [3]–[6]. In incre-
mental learning, the classification model is updated for each
new event, without the need to review all previous training
examples. Thus, incremental algorithms can be highly efficient
in terms of memory usage.

In this paper, we propose a new incremental algorithm
for data stream learning based on Gaussian Mixture Models
(GMM). Although other incremental algorithms for Gaussian
mixture models have been proposed in the literature, such as
IGMM [3], we notice that these algorithms lack an explicit
policy to discard outdated concepts.

In the presence of concept drifts, outdated concepts can
cause misclassifications, increase processing times and mem-
ory requirements. This can be easily observed in the GMM
model, since all concepts are described by Gaussian compo-
nents. The components that represent outdated concepts are
likely to cause misclassification since they do not represent
the current data distribution; increase processing time since
the GMM inference model requires to verify all components
that match a new instance; and require additional memory to
store the component parameters.

We use IGMM as starting point and evaluate its behavior
in the presence of concept drifts. We then propose a policy
to discard outdated concepts and evaluate its performance in
terms of classification accuracy and processing time in com-
parison to IGMM. We name our method IGMM-CD (IGMM
with support to Concept Drifts).

The proposed method is also compared to various algo-
rithms widely used in the literature, available in the Massive
Online Analysis (MOA)1 environment, such as Naive Bayes,
Hoeffling Adaptive Tree [7]–[9]. The results show that the pro-
posed algorithm is competitive with them in various scenarios,
overcoming them in some cases.

This paper is organized as follows: Section II describes the
conventional GMM, with its fundamental equations. Section
III shows the incremental version of GMM (IGMM) proposed
by [3]. The changes proposed in this paper are described in
Section IV. Section V presents the results and comparisons of
IGMM-CD with the state-of-the-art in data stream classifica-
tion. Finaly, Section VI presents our conclusions and directions
to future research.

II. GAUSSIAN MIXTURE MODEL

The Gaussian mixture model is a statistical modeling tool
that has been successfully used in diverse applications in
supervised and unsupervised tasks.

In classification, each example, seen as a D dimensional
characteristics vector, is assigned to a pre-determined set
of classes with a certain probability of belonging to each
class. The GMM algorithm seeks to maximize the likelihood
function, which provides a measure of the way in which the
probability distribution function (pdf) fits the dataset. Each
pdf consists basically of three parameters: wi (weight or
priori probability of Gaussian component i), μi (mean of the

1http://moa.cms.waikato.ac.nz/

2015 Brazilian Conference on Intelligent Systems

978-1-5090-0016-6/15 $31.00 © 2015 IEEE

DOI 10.1109/BRACIS.2015.61

55

Gaussian component i) and Σi (variance or covariance of the
Gaussian component i) [10]. Given these parameters, the algo-
rithm will seek to estimate them so that the adjustment of the
pdf on the training data is the best possible, i.e., the value of
the likelihood function is as large as possible. To perform this
estimation it is common to use the Expectation-Maximization
(EM) algorithm, which ensures that the likelihood function is
not decreasing and converges at least to a local maximum.

The EM algorithm works in two steps that are repeated
until a convergence is reached, and at each iteration the pa-
rameters wi, μi and Σi are adjusted to maximize the likelihood
function.

Lets θ = (wi, μi,Σi) be the set of Gaussian mixtures
parameters, x a D-dimensional continuous-valued data vector
(i.e. measurement or features), the Gaussian mixture model is
a weighted sum of M Gaussian component densities given by
Equation 1.

p(x|θ) =
M∑
i=1

wig(x|μi,Σi) (1)

with the restriction that
∑M

i=1 wi = 1.

In this equation g(x|μi,Σi) represents each D-dimensional
Gaussian component, defined by Equation 2.

g(x|μi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
1

2
(x− μi)

ᵀΣ−1
i (x− μi)

}

(2)

As already mentioned, the EM algorithm is used to estimate
the θ parameter set that maximizes the likelihood of the
Gaussian mixture model given some observed data. Therefore,
consider a training set X = (x1, x2, x3, ..., xn), the likelihood
function assumes independence between events [10] and can
be expressed as in Equation 3.

L(θ,X) =

n∏
i=1

p(xi|θ) (3)

Such function is not linear on θ. This makes its direct
maximization not possible. However, we can use EM to
estimate the parameter set.

The EM algorithm uses a given initial θ to estimate a new
parameter set θ such that L(θ,X) ≥ L(θ,X). In the next
iteration, the new model becomes the initial model, and the
process is repeated until it reaches a convergence criterion.

Estimation of the θ parameter set of each EM iteration
follows the Equations 4, 5 and 6.

wi =
1

n

n∑
j=1

Pr(i|xj , θ) (4)

μi =

∑n
j=1 Pr(i|xj , θ)xj∑n
j=1 Pr(i|xj , θ)

(5)

Σi =

∑n
j=1 Pr(i|xj , θ)x

2
j∑n

j=1 Pr(i|xj , θ)
− μ2

i (6)

given a posteriory probability of a component i expressed as
Equation 7.

Pr(i|xj , θ) =
wig(xj |μi,Σi)∑M

k=1 wkg(xj |μk,Σk)
(7)

It is important to note that the original EM algorithm is not
incremental. Thus, the update equations (4, 5 and 6) require
knowledge of the probabilities of all the examples viewed so
far. This requirement is incompatible with the data stream
scenario, where the algorithm can receive examples anytime.

In the incremental algorithm, the order in which the ex-
amples are given is important. Therefore, the notation so far
will be modified to add an overwritten (t) indicating the time
instant at which the variable assumes a determined value.

III. INCREMENTAL GAUSSIAN MIXTURE MODEL

Similarly to the EM algorithm, the Incremental Gaussian
Mixture Model (IGMM) [3] performs the modeling of Gaus-
sian mixtures probability distributions. However, the incremen-
tal approach allows each Gaussian component parameters to be
adjusted as soon as each new example is computed, followed
by approximately incremental equations. Thus the model may
be updated as new relevant information arrives in the data
stream.

At this point, since the incremental algorithm creates a
new model for each incoming example, we need to extend our
notation. From here on we use the superscript (t) to indicate
the different models in time.

IGMM uses some measures to control the number of com-
ponents required to represent the data already seen. The model
begins with a single component having a priori probability,

w
(1)
1 = 1 and μ

(1)
1 equals to the first observed example. Also

a standard diagonal covariance matrix is used as Σ
(1)
1 = σ2

iniI ,
with σini being previously defined by the user and I being the
identity matrix.

New components are added to the model using a minimal
likelihood criterion. Each new data point x(t) is checked if it
fits some Gaussian component i with probability p(x(t)|i) =

g(x(t)|μ
(t−1)
i ,Σ

(t−1)
i) above a minimum value. If p(x(t)|i)

does not reach the minimum value for all components, the data
point is considered new information and a Gaussian component
is added to the model with parameters set as described above.

The value of the minimum likelihood criterion Cver may
be defined as a fraction of the maximum likelihood function,
so that the addition of a new component occurs when:

p(x(t)|i) <
Cver

(2π)D/2|Σ
(t−1)
i |1/2

, ∀i (8)

This parameter has a simple intuition, it indicates how

“distant” an example x(t) should be from μ
(t−1)
i to not be

considered as a member of component i.

56

However, points that meet this criterion and thus fit into
an existing component must be incorporated into the model,
leading to the need to update its parameters. The IGMM is
based on an incremental version of the EM process.

When an example x(t) matches one or more components,
it is necessary to know the a posteriori probabilities of these
components for all the already analyzed examples to update
the Gaussian mixture parameters, as Equations 4, 5 and 6
show. Unfortunately, storing all these values for a data stream
would be inconceivable. The IGMM solves this problem by
storing a variable named sp for each existing component.
According to [3], such variables must be reset periodically
to avoid possible saturation. Equation 9 shows the update rule
for this variable.

sp
(t)
i = sp

(t−1)
i + Pr(i|x(t), θ(t−1)) (9)

Given the sum of a posteriori probabilities for each
component, IGMM can replace Equations 4, 5 and 6 by its
approximately incremental versions. Equations 10, 11 and 12
list the incremental formulas for w(t), μ(t) and Σ(t).

w
(t)
i =

sp
(t)
i∑M

j=1 sp
(t)
j

(10)

μ
(t)
i = μ

(t−1)
i +

Pr(i|x(t), θ(t−1))

sp
(t)
i

(x(t) − μ
(t−1)
i) (11)

Σ
(t)
i = Σ

(t−1)
i − (μ

(t)
i − μ

(t−1)
i)(μ

(t)
i − μ

(t−1)
i)ᵀ

+
Pr(i|x(t), θ(t−1))

sp
(t)
i

[(x(t) − μ
(t)
i)(x(t) − μ

(t)
i)ᵀ − Σ

(t−1)
i]

(12)

IGMM has two parameters that need to be defined before
its execution. According to [3], the parameter σini is not criti-
cal and needs only to be large enough to prevent components to
cover just one example. However, setting a value for the Cver

parameter is more critical since it influences the algorithm
sensitivity to concept drifts.

IV. IGMM-CD - INCREMENTAL GAUSSIAN MIXTURE

MODEL WITH CONCEPT DRIFT

In this section we present our proposal. We divide the ex-
planation in two parts. The first one describes the modifications
necessary to use the IGMM as a classification algorithm. The
second part explains how we adapted IGMM to concept drifts.

A. Incremental Gaussian Mixture Model for Classification

IGMM as defined in the previous section is a valuable tool
for estimating the pdf of a data sample. It can be used in a
large set of tasks, such as clustering. In that case, we could
assume that each Gaussian component defines a cluster and
each point can belong to a cluster with a certain probability.

In this paper, we are interested in classification problems.
Therefore, we must first expand the IGMM model to classifica-
tion tasks. This can be done by creating a GMM for each class
or by maintaining a single GMM for all classes and annotating
each Gaussian component with a class label. We describe the
second approach in this section; although, both approaches will
certainly result in very similar outcomes.

We present our extension of IGMM for classification using
algorithms. Therefore, we can better detail each necessary step
as well as the correct order of the steps.

We note here that to classify a new event in a data stream,
we first receive the unlabeled example x(t) and provide a
classification based on the current GMM model which has
the parameter set θ(t−1). Once a classification is provided we
assume that we will receive the true class label for x(t) and
are in position to update the model parameters to θ(t). This
sequence of events is very important and updating the model
before providing a classification would be unfair and lead to
over-optimistic performance results.

Algorithm 1 presents the general framework of our pro-
posal. Notice that although we keep a single GMM for all
classes, the algorithm only updates the components that match
the minimum likelihood criterion and belong to the same class
as the current example.

Require: X = (x(1), . . . , x(n)) {Ordered sequence of
examples for learning}
Y = (y(1), . . . , y(n)){Ordered sequence of true class labels
of X}
σini {Initial covariance matrix}
Cver {Minimum likelihood criterion}

Ensure: Ȳ = (ȳ(1), . . . , ȳ(n)) {Ordered sequence of
predicted labels}
θ(1) = ∅
for x(t) ∈ X do
ȳ(t) ← classify(x(t), θ(t−1))

y(t) ← true class(x(t))
new component← TRUE
for i← 1 to M do

if p(x(t)|i) ≥ Cver

(2π)D/2|Σi|1/2
and class(i) = y(t) then

new component = FALSE
end if

end for
if new component = TRUE then

create new component(x(t), y(t), σini)
else
θ(t) = update components(x(t), θ(t−1))

end if
remove outdated components()

end for
Algorithm 1: IGMM-CD

There are four sub-routines that need to be defined. The
sub-routine classify returns a predicted label ȳ(t) for each
example x(t) in the stream. We evaluate two possibilities for
this sub-routine. The first one, named global uses a maximum a
posteriori (MAP) criterium to return the class with highest sum
of a posteriori probabilities. Algorithm 2 presents a pseudo-
code for this procedure.

57

Require: x(t) {Example to be classified}
θ(t−1) {Set of GMM parameters}

Ensure: c is the MAP class
return arg max

c
p(c|x(t), θ(t−1)) =∑M

i=1 g(x
(t)|μ

(t−1)
i ,Σ

(t−1)
i)w

(t−1)
i [class(i) = c];

Algorithm 2: Global classify sub-routine

where, [class(i) = c] stands for the Iverson bracket, i.e., it
evaluates to 1 if the class of component i is c and 0 otherwise.

We wonder in a data stream with concept drift scenario,
whether a more local approach of updating components and
classifying examples would be beneficial. In particular, ex-
amples that represent new concepts should have little or
no effect in updating components which represent outdated
concepts. Such an approach would allow a faster creation of
new components to represent recent concepts. Although this
“local” approach can be implemented in different degrees, here
we just evaluate the extreme case in which only one component
is updated and used to provide a classification. Algorithm 3
presents a pseudo-code for the local classification procedure.

Require: x(t) {Example to be classified}
θ(t−1) {Set of GMM parameters}

Ensure: c is the class provided by component with highest
probability

return class(arg max
j

g(x(t)|μ
(t−1)
j ,Σ

(t−1)
j)w

(t−1)
j)

Algorithm 3: Local classify sub-routine

In a similar way, we have evaluated two procedures for
updating the components. The first one is “global” and updates
all components that belong to the same class as the current
example. The update rules are the same as the ones defined
by Equations 10, 11 and 12. Algorithm 4 list them for clarity
reasons.

Require: x(t) {Current example}
y(t) {True class label of x(t) }
θ(t−1) {Set of GMM parameters}

Ensure: θ(t) {Updated GMM parameter set}
sp(t) {Updated sp parameter}
for i← 1 to M do

if class(i) = y(t) then

sp
(t)
i = sp

(t−1)
i + Pr(i|x(t), θ(t−1))

μ
(t)
i = μ

(t−1)
i + Pr(i|x(t),θ(t−1))

sp
(t)
i

(x(t) − μ
(t−1)
i)

Σ
(t)
i = Σ

(t−1)
i − (μ

(t)
i − μ

(t−1)
i)(μ

(t)
i − μ

(t−1)
i)ᵀ +

Pr(i|x(t),θ(t−1)

sp
(t)
i

[(x(t) − μ
(t)
i)(x(t) − μ

(t)
i)ᵀ − Σ

(t−1)
i]

w
(t)
i =

sp
(t)
i∑M

j=1 sp
(t)
j

end if
end for

Algorithm 4: Global update components sub-routine

Algorithm 5 presents the pseudo-code for the “local” up-
date of components. The idea is to update the same component
that provided the classification. In both cases (global and

local), when ȳ(t) �= y(t), IGMM-CD does not update the
component, but creates a new component based on x(t) and
y(t) values as described in Algorithm 1.

Require: x(t) {Current example}
y(t) {True class label of x(t) }
θ(t−1) {Set of GMM parameters}

Ensure: θ(t) {Updated GMM parameter set}
sp(t) {Updated sp parameter}

i← arg max
j

g(x(t)|μ
(t−1)
j ,Σ

(t−1)
j)w

(t−1)
j

sp
(t)
i = sp

(t−1)
i + Pr(i|x(t), θ(t−1))

μ
(t)
i = μ

(t−1)
i + Pr(i|x(t),θ(t−1))

sp
(t)
i

(x(t) − μ
(t−1)
i)

Σ
(t)
i = Σ

(t−1)
i − (μ

(t)
i − μ

(t−1)
i)(μ

(t)
i − μ

(t−1)
i)ᵀ +

Pr(i|x(t),θ(t−1)

sp
(t)
i

[(x(t) − μ
(t)
i)(x(t) − μ

(t)
i)ᵀ − Σ

(t−1)
i]

w
(t)
i =

sp
(t)
i∑M

j=1 sp
(t)
j

Algorithm 5: Local update components sub-routine

The create new component can be trivially implemented
by adding a new component to the data structure that maintains
all Gaussians components. As this sub-routine is simple and
implementation-dependent, we will not provide an algorithm
for it.

The last sub-routine is remove outdated components. In
our framework, this subroutine is performed for each new
example. We present a few different criteria in the next section.

B. Gaussian Component Removal Criteria

As we will demonstrate empirically in the next section,
the original IGMM has a tendency to create a large number
of components in the presence of concept drifts.

There are several possible approaches in the literature to
deal with this problem, such as merge of similar components
[6], [11], [12], the use of negative examples to eliminate
concepts considered wrong and/or outdated [13] and removal
information using criteria such as time or relevance.

In this paper we propose adding a third parameter T to the
algorithm. This parameter is a limit of allowed components in
the model. So when there is a very large number of compo-
nents, those ones having the smallest a priori probabilities are
eliminated. The maximum allowable amount is based on the
parameter T and the number of existing classes in the model,
i.e. the model allows, on average, T components representing
each class. When the model is represented by more than
T×numberOfClasses components, the algorithm eliminates
the components with lowest a priori probability (w), since
these components are represented by the smallest number of
examples.

This change, although simple, allows to control the model
growth and consequent the computational cost of the algo-
rithm. On the other hand, it establishes a limit for model com-
plexity and favors the perpetuation of more dense components.

V. RESULTS AND DISCUSSIONS

We organize this section into two main parts. In the first
part we compare IGMM-CD with the original IGMM. We

58

briefly show that IGMM leads to over-complex models in
datasets with concept drifts. Unfortunately, the run times of
IGMM are so large that we could make this comparisons just
to the smallest datasets.

In the second part, we compare IGMM with the state-
of-the-art algorithms in data stream learning using the MOA
environment. We prepared a paper website [14] with detailed
results, code and data for reproducing all our experiments.
Our implementation is integrated with the MOA environment
to facilitate the reproduction of our results.

We start this section describing the datasets used in the
experiments.

A. Datasets

We performed our experiments using real and synthetic
datasets. Table I shows some of the characteristics of the syn-
thetic datasets used. These datasets were obtained from [15].
The author created videos showing the variation over time of
these datasets [16]. The column “Change every X examples”
indicates the number of examples between consecutive changes
of concept.

TABLE I: Datasets

Dataset Number
of
classes

Number
of at-
tributes

Number
of ex-
amples

Change ev-
ery X ex-
amples

1CDT 2 2 16,000 400
2CDT 2 2 16,000 400
1CHT 2 2 16,000 400
2CHT 2 2 16,000 400
4CR 4 2 144,400 400

4CRE-V1 4 2 125,000 1,000
4CRE-V2 4 2 183,000 1,000

5CVT 5 2 40,000 1,000
1CSurr 2 2 55,283 600

UG 2C 2D [17] 2 2 100,000 1,000
MG 2C 2D [17] 2 2 200,000 2,000
FG 2C 2D [18] 2 2 200,000 2,000
UG 2C 3D [17] 2 3 200,000 2,000
UG 2C 5D [17] 2 5 200,000 2,000

GEARS 2C 2D [17] 2 2 200,000 2,000

The synthetic datasets were created with Gaussian distribu-
tions that move in the feature space over time. Therefore, they
simmulate chances in p(x|c), by increasing or decreasing the
values of the attributes over time. This gives origin to different
drift patterns, some simple, such as a Gaussians that move
away from each other with time, or more complex, such as
Gaussians that rotate around each other. The videos created by
the author provide a visual and intuitive description of each
dataset.

The real datasets used in our experiments are the following:

• Poker-lsn It has 1,000,000 instances and 10 attributes.
Each instance is an example of a poker hand contain-
ing five cards taken from an ordinary deck of 52 cards,
each card is described by two attributes: suit and rank;

• ElecNormNew Dataset described by [19]. These data
were collected from New South Wales electricity
market in Australia. In this market, prices are not
fixed and are affected by supply and demand of the

market. They are adjusted every five minutes. The
dataset contains 45312 instances. Each class identifies
the price change relative to a moving average of the
last 24 hours. The normalized version of the dataset
was used, having 8 attributes and 2 classes.

• Keystroke a stream dataset of keystroke dynamics
based on CMU data [20]. In CMU data, 51 users type
the password ”tie5Roanl” plus the Enter key 400 times
captured in 8 sessions performed in different days.
The dataset has 10 features extracted from the flight
time for each pressed key. The flight time is the time
difference between the instants when a key is released
and the next key is pressed. In the stream dataset, [15]
randomly chose 4 users and merged them respecting
the chronological order in a total of 1,600 examples.

B. Comparison with IGMM

Initially, the incremental Gaussian Mixture Model [3] was
implemented as shown in Section IV but without use of
remove outdated components() method, keeping in the model
all Gaussian components created. Basically this IGMM is just
an adaptation for classification of the original that is designed
for clustering. However, at the beginning of the experiments it
was realized that such approach did not have an approximately
constant computational cost over time, increasing as new data
were presented to the algorithm and new Gaussian components
were created. Such behavior is associated to the fact that there
is no components elimination strategy over time. In presence
of concept drifts the Gaussian components associated to data
generated from obsolete concepts are represented in the model,
increasing the computational cost and possibly reducing the
accuracy of the model.

We start with a comparison to the original IGMM. Un-
fortunately, due to the high computational costs of IGMM in
concept drift data, we were able to perform the experiments
only on the smallest datasets. We use the global setting with
IGMM since it better conforms with the original concept of
mixture models.

Table II shows the total time to process the datasets used
in the experiments, while Figure 1 shows the accuracy of the
algorithms IGMM and IGMM-CD over time. The accuracy of
each point represents the mean classification accuracy over a
group of 200 examples. The lines for IGMM-CD also show
the effect of varying the parameter T.

TABLE II: Accumulated time cost results (in seconds) for
IGMM and IGMM-CD with local update. For IGMM-CD we
also present the effect of varying the parameter T

IGMM IGMM-CD

T value

Dataset 1 5 9 13

1CDT 26.42 0.21 0.76 1.26 1.74
2CDT 886.60 0.21 0.76 1.21 1.71
1CHT 69.55 0.21 0.76 1.21 1.73
2CHT 1543 0.20 0.78 1.23 1.65

The results show that IGMM can take up to approximately
half-hour to process a simple dataset with only 16,000 in-
stances. The use of the T parameter reduces the processing

59

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Events

A
cc

ur
ac

y
(%

)

IGMM − CD (1)
IGMM − CD (3)
IGMM − CD (5)
IGMM − CD (7)
IGMM − CD (9)
IGMM − CD (11)
IGMM − CD (13)
IGMM

(a) 1CDT

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Events

A
cc

ur
ac

y
(%

)

IGMM − CD (1)
IGMM − CD (3)
IGMM − CD (5)
IGMM − CD (7)
IGMM − CD (9)
IGMM − CD (11)
IGMM − CD (13)
IGMM

(b) 1CHT

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Events

A
cc

ur
ac

y
(%

)

IGMM − CD (1)
IGMM − CD (3)
IGMM − CD (5)
IGMM − CD (7)
IGMM − CD (9)
IGMM − CD (11)
IGMM − CD (13)
IGMM

(c) 2CDT

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Events

A
cc

ur
ac

y
(%

)

IGMM − CD (1)
IGMM − CD (3)
IGMM − CD (5)
IGMM − CD (7)
IGMM − CD (9)
IGMM − CD (11)
IGMM − CD (13)
IGMM

(d) 2CHT

Fig. 1: Accuracy variation over time for IGMM (Without Elim-
ination) and IGMM-CD with local update and T parameter
variation in datasets (a) 1CDT, (b) 1CHT, (c) 2CDT and (d)
2CHT

time to around one second. Such speed-up does not lead to
classification accuracy degradation (see Figure 1). We can see
that IGMM-CD has similar or better performance than IGMM
for all but the smallest values of T .

Due to the high computational demand of IGMM, we will
not include this method in the next experiments. We also
perform the remainder experiments with T = 7 since this
parameter seems to be able to significantly decrease processing
time without affecting classification performance.

C. Comparison with the State-of-the-art

The state-of-the-art algorithms used in our experiments are
Naive Bayes, Hoeffling Adaptive Tree [7]–[9], Active Classi-
fier [21], [22], Drift Detection Method, Perceptron and Accu-
racy Updated Ensemble [23]. The choice of these algorithms
is based both on the availability of MOA environment as in a
search for different approaches, since the list includes naturally
incremental algorithms, such as Naive Bayes, methods based
on ensemble, as the Accuracy Updated Ensemble, based on
detecting concept drifts as Drift Detection Method, decision
trees, such as Hoeffling Tree Adaptive, and others. Table III
shows the comparative results between the algorithms.

The results show that IGMM-CD can perform similarly to
the state-of-the-art. Note that IGMM-CD is a single classifier
with no drift detection mechanism, but performs much better
than Naive Bayes that has similar characteristics. In contrast,
IGMM-CD sometimes perform poorly in the global or local
setting alternatively. This seems to indicate that neither ap-
proach is the best for data streams and a midterm should be a
better solution. We will further analyze this in future research.

It is worth noting that a study on the effects of varying
the parameter T is relevant, since such variation can improve

the performance of the algorithm. Table IV shows some
examples where the variation of the parameter T provided an
improvement in IGMM-CD accuracy.

TABLE IV: Accuracy - mean (standard deviation) over the full
flow - for IGMM-CD with global update (G) and local update
(L) with T parameter variation

Dataset IGMM-CD (G) T IGMM-CD (L) T

ElecNormNew 85.32 (4.25) 1 85.32 (4.25) 1
FG 2C 2D 93.54 (3.78) 13 91.33 (3.69) 13

GEARS 2C 2D 91.58 (4.48) 13 86.33 (4.66) 13
1CSurr 96.04 (4.08) 11 95.79 (1.80) 13

Keystroke 77.56 (10.41) 13 39.06 (6.66) 7
MG 2C 2D 90.58 (8.31) 13 88.7 (8.26) 13

poker lsn 74.19 (8.04) 1 73.91 (8.27) 9
4CRE-V1 95.78 (7.95) 3 96.65 (5.64) 13
4CRE-V2 89.54 (9.73) 5 88.38 (9.57) 13

4CR 99.89 (0.26) 3 99.89 (0.24) 13
1CDT 99.74 (0.90) 7 99.65 (1.17) 13
2CDT 92.42 (3.29) 5 93.37 (2.09) 13
1CHT 98.88 (2.57) 7 98.76 (2.78) 13
2CHT 82.77 (5.92) 5 84.64 (3.07) 13
5CVT 67.00 (7.98) 1 88.44 (3.37) 13

UG 2C 2D 94.40 (4.28) 11 92.61 (4.83) 13
UG 2C 3D 92.65 (7.63) 13 90.99 (8.05) 13
UG 2C 5D 81.20 (12.41) 3 87.41 (8.07) 13

These results are interesting due to the fact that by varying
the (T) parameter it was possible to obtain good results for all
datasets using IGMM-CD with both global and local updates.
Furthermore, T allows to control the computational cost of
processing new examples because the number of components
per class is directly proportional to the processing time to
update the model and to classify a new event. We believe this
parameter is the most relevant to the algorithm performance,
having great influence on its performance.

VI. CONCLUSION

In this paper we proposed a novel Gaussian mixture model
classification algorithm for data streams with concept drifts.
Our algorithms differ from previous proposal by having an
explit policy to remove outdated components.

We showed that IGMM-CD can provide accurate results
in comparison to the state-of-the-art. However, it is highly
dependent of the parameter T , which controls the number of
components per class. This parameter will be further analysed
in future research. Our method would be benefited by a simple
heuristic that could allow us to adjust this parameter for
different datasets, or an adaptive approach that would adjust
T during the data stream.

In terms of efficiency, IGMM-CD is significantly faster
than the original incremental algorithm since it controls the
maximum number of components. However, we can further
improve the efficiency of our method by exploring simple ideas
such as the replacement of full covariance matrix by a diagonal
covariance matrix. This change would result in a great savings
of processing time, since the calculation of a matrix inverse
requires costly algorithms, typically O(n3). This strategy has
already been used in the literature, resulting in better efficiency
without compromising efficacy [24]. However, we still need to
evaluate the impact of such a change in the algorithm accuracy.

60

TABLE III: Accuracy - mean (standard deviation) over the entire data stream - for IGMM-CD with global update (G) and local
update (L), active learning, drift detection, tree, naive bayes, perceptron and ensemble

Dataset IGMM-CD (G) IGMM-CD (L) Active Drift Det. Tree N. Bayes Perceptron Ensemble

ElecNormNew 79.12 (7.68) 57.28 (11.07) 75.49 (11.67) 81.19 (9.7) 83.79 (8.29) 73.20 (12.09) 79.11 (5.90) 77.30 (11.42)

FG 2C 2D 90.75 (5.85) 88.64 (4.05) 92.64 (4.23) 91.28 (5.06) 95.07 (2.66) 84.97 (10.84) 75.00 (2.89) 95.39 (2.32)

GEARS 2C 2D 89.53 (5.32) 85.18 (3.70) 95.83 (1.36) 95.82 (1.37) 97.81 (1.42) 95.82 (1.37) 96.00 (1.38) 98.99 (1.12)

1CSurr 95.39 (3.78) 93.30 (2.49) 95.82 (3.73) 97.65 (2.01) 96.85 (2.61) 65.49 (16.02) 66.44 (9.08) 96.72 (3.56)

Keystroke 58.75 (17.24) 39.06 (6.66) 81.69 (5.59) 73.88 (7.93) 83.25 (7.36) 63.56 (11.03) 85.94 (3.83) 75.94 (13.84)

MG 2C 2D 87.94 (10.24) 86.61 (8.97) 88.69 (8.05) 88.36 (8.59) 92.69 (6.05) 55.45 (33.37) 47.73 (11.89) 93.19 (5.85)

poker lsn 73.01 (7.87) 73.24 (9.49) 60.93 (19.24) 62.01 (19.01) 66.90 (16.30) 59.48 (19.60) 0.39 (1.32) 66.82 (18.12)

4CRE-V1 27.03 (38.85) 95.80 (6.49) 94.73 (8.73) 97.10 (4.73) 77.39 (32.81) 22.20 (37.40) 98.18 (4.68) 95.16 (9.05)

4CRE-V2 41.67 (34.38) 87.6 (9.43) 83.81 (11.13) 88.08 (8.45) 88.96 (8.90) 24.17 (31.82) 92.19 (7.83) 91.70 (8.24)

4CR 29.23 (38.01) 99.80 (0.32) 99.41 (2.79) 99.87 (0.51) 99.57 (0.83) 24.84 (38.31) 98.93 (5.58) 99.94 (1.36)

1CDT 99.74 (0.90) 99.46 (1.51) 99.60 (0.97) 99.65 (0.89) 99.65 (0.86) 99.65 (0.89) 99.85 (0.64) 99.41 (2.89)

2CDT 59.09 (17.75) 91.84 (2.15) 90.28 (6.29) 94.11 (3.06) 85.85 (10.85) 59.56 (16.14) 55.25 (13.23) 86.17 (6.34)

1CHT 98.88 (2.57) 98.24 (3.33) 98.47 (2.07) 98.58 (2.02) 98.49 (2.33) 98.57 (2.05) 99.20 (2.02) 98.81 (3.74)

2CHT 81.32 (7.27) 82.74 (3.51) 77.42 (9.95) 86.36 (4.68) 84.21 (5.72) 59.46 (13.88) 57.56 (12.55) 78.72 (5.98)

5CVT 44.92 (28.77) 87.87 (2.93) 83.93 (8.64) 89.63 (4.98) 87.36 (5.37) 66.05 (15.27) 64.42 (12.10) 86.62 (5.55)

UG 2C 2D 93.14 (5.55) 90.94 (5.10) 94.22 (5.41) 94.82 (4.21) 95.61 (3.80) 58.09 (30.81) 75.43 (20.20) 95.89 (3.84)

UG 2C 3D 91.03 (9.26) 89.44 (8.50) 93.92 (5.85) 94.39 (5.60) 94.58 (5.53) 61.38 (28.70) 91.89 (7.54) 94.94 (5.47)

UG 2C 5D 68.88 (15.72) 84.44 (8.46) 91.67 (6.37) 92.86 (5.42) 92.78 (5.57) 79.17 (11.45) 89.21 (8.30) 93.42 (5.34)

We note that a preset parameter T is a very simple approach
to component removal. Other possibilities are removal by
component age (older components are removed first) and
classification use (components little used for classification are
removed first), etc. We could also use more sophisticated
approaches such as component fusion, which would allow
to join two or more smaller components together instead of
removing them. As future work we also intend to evaluate
these schemes to eliminate Gaussian components and provide
a empirical comparison among them.

REFERENCES

[1] I. Zliobaite, “Learning under concept drift: an overview,” Faculty of
Mathematics and Informatics of Vilnius University, Lithuania, Tech.
Rep., 2009.

[2] M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data streams:
a review,” ACM Sigmod Record, vol. 34, no. 2, pp. 18–26, 2005.

[3] M. R. Engel, Paulo Martins e Heinen, “Incremental learning of multi-
variate gaussian mixture models,” in Proceedings of the 20th Brazilian

Conference on Advances in Artificial Intelligence, ser. SBIA’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 82–91.

[4] J. R. B. Júnior, “Classificação de dados estacionários e não estacionários
baseada em grafos,” Ph.D. Thesis, Instituto de Ciências Matemáticas e
de Computacão, Universidade de São Paulo, 2010.

[5] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, oct. 2011.

[6] A. Bouchachia and C. Vanaret, “Incremental learning based on growing
gaussian mixture models,” in Machine Learning and Applications and

Workshops (ICMLA), 2011 10th International Conference on, vol. 2.
IEEE, 2011, pp. 47–52.

[7] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2001,
pp. 97–106.

[8] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data
streams,” in Advances in Intelligent Data Analysis VIII. Springer,
2009, pp. 249–260.

[9] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Data stream mining:
A practical approach,” The University of Waikato, Tech. Rep., May
2011.

[10] D. Reynolds, “Gaussian mixture model,” Encyclopedia of Biometrics,
pp. 659–663, July 2009.

[11] M. Song and H. Wang, “Highly efficient incremental estimation of
gaussian mixture models for online data stream clustering,” in Defense

and Security. International Society for Optics and Photonics, 2005,
pp. 174–183.

[12] O. Arandjelovic and R. Cipolla, “Incremental learning of temporally-
coherent gaussian mixture models,” Society of Manufacturing Engineers

(SME) Technical Papers, pp. 1–1, 2006.

[13] M. Kristan, D. Skočaj, and A. Leonardis, “Online kernel density esti-
mation for interactive learning,” Image and Vision Computing, vol. 28,
no. 7, pp. 1106–1116, 2010.

[14] L. S. Oliveira, “IGMM-CD: A Gaussian Mixture Classifi-
cation Algorithm for Data Streams with Concept Drifts,”
https://sites.google.com/site/igmmcd9/home, 2015, [Online; accessed
on 24-May-2015].

[15] V. Souza, D. Silva, J. Gama, and G. Batista, “Data stream classifica-
tion guided by clustering on nonstationary environments and extreme
verification latency,” SIAM International Conference on Data Mining

(SDM), pp. 873–881, 2015.

[16] V. M. A. Souza, “Nonstationary Environments - Archive,”
https://sites.google.com/site/nonstationaryarchive/home, 2015, [Online;
accessed on 24-Abril-2015].

[17] K. B. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
IEEE Trans. Neural Netw. Learning Syst., vol. 25, no. 1, pp. 12–26,
2014.

[18] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 25, no. 10, pp. 2283–2301, 2013.

[19] M. Harries and N. Wales, “Splice-2 comparative evaluation: Electricity
pricing,” The University of South Wales, Tech. Rep., 1999.

[20] K. Killourhy and R. Maxion, “Why did my detector do that?!” in Recent

Advances in Intrusion Detection. Springer, 2010, pp. 256–276.

[21] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with evolving streaming data,” in Machine Learning and Knowledge

Discovery in Databases. Springer, 2011, pp. 597–612.

[22] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Worst-case analysis of
selective sampling for linear classification,” The Journal of Machine

Learning Research, vol. 7, pp. 1205–1230, 2006.

[23] D. Brzeziński and J. Stefanowski, “Accuracy updated ensemble for data
streams with concept drift,” in Hybrid Artificial Intelligent Systems.
Springer, 2011, pp. 155–163.

[24] F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-
Chagnolleau, S. Meignier, T. Merlin, J. Ortega-Garcı́a, D. Petrovska-
Delacrétaz, and D. A. Reynolds, “A tutorial on text-independent speaker
verification,” EURASIP journal on applied signal processing, vol. 2004,
pp. 430–451, 2004.

61

