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Antônio N. Rosa5, Gélson L. D. Feijó5, André L. J. Ferraz6, Luiz O. C. Silva5, Sérgio R. Medeiros5, Dante P. Lanna7,
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Abstract

Background: Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide
association studies (GWAS) are often used to associate markers and genomic regions to growth and meat
quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS
that involves the construction of gene network interactions, derived from results of several GWAS is the AWM
(Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the
genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP)
from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated
sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in
a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample.

Results: Our results indicate a lack of structuring between the individuals studied since principal component
analyses were not able to differentiate families by its sires or by its ancestral lineages. The application of the
AWM/PCIT methodology revealed a trio of transcription factors (comprising VDR, LHX9 and ZEB1) which in
combination connected 66 genes through 359 edges and whose biological functions were inspected, some
revealing to participate in biological growth processes in literature searches.

Conclusions: The diversity of the Nelore sample studied is not high enough to differentiate among families
neither by sires nor by using the available ancestral lineage information. The gene networks constructed from
the AWM/PCIT methodology were a useful alternative in characterizing genes and gene networks that were
allegedly influential in growth and meat quality traits in Nelore cattle.
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Background
Brazilian livestock began with taurine cattle introduced
from Europe in the colonial period, around 450 years
ago. Several years later, starting in 1930 but mainly in
1960 and 1962, a Bos indicus cattle breed named Nelore
was introduced in Brazil from India and the herd
expanded to the majority of the territory due to its good
adaptability to tropical climate. It is estimated that 7000
Nelore cattle were introduced from India, the majority
were descendants from 6 main sires named Karvadi, Taj
Mahal, Kurupathy, Golias, Godhavari and Rasta [1]. The
Nelore, a breed with white or gray pelage and short
horns, is nowadays the most representative breed in
Brazil and dominates the Brazilian beef cattle production
with more than 75 % of the total herd which equates to
more than 130 million heads of Nelore cattle. Artificial
insemination is widely used in Brazil [2] and semen for
only a few sires has been intensively used nationwide.
With the advent of the Illumina BovineHD BeadChip
(Illumina Inc., San Diego, CA), a high density SNP panel
comprising over 770,000 markers, we were able to meas-
ure the genomic diversity of the Brazilian Nelore from
the main commercial sire families and characterize their
genomic relationship and genetic profiles across a series
of phenotypes. Traditional phenotype-based selection
has been focused primarily on improving growth and
maternal traits [3]. However, marker-assisted or genomic
selection is particularly valuable for traits that have late,
onerous and expensive measurement such as meat
quality, yield and feed efficiency [4]. Despite production
advantages of Bos indicus composite breeds in tropical
and subtropical environments, the inferiority of beef
quality, especially tenderness, is a worrying issue for
producers [5, 6]. It is known that Nelore breed show
moderate heritability for meat quality [7] as well as for
growth-related traits [8], which make the application of
genomic tools feasible.
Genome-Wide Association Studies, or GWAS, are today

a common practice in order to find associations of gen-
ome regions to phenotypes of interest such as meat quality
traits [7, 9, 10]. However, GWAS are sometimes elusive
regarding the low power of association of the markers
to the trait and also to the association of regions of the
genome that lack apparent relation to the trait being
studied [11, 12]. Some meta-analysis approaches are
appealing as they attempt to enrich GWAS analyses
with information from other sources. One of these
methods is the system’s biology AWM/PCIT method-
ology, which involves the construction of SNP-based
gene network interactions, integrating results from several
GWAS by means of the Association Weight Matrices
(AWM) and Partial Correlation and Information Theory
(PCIT) [13–16]. We took advantage of this methodology
to explore growth and meat quality traits from 780

samples of Brazilian Nelore cattle, systematically sourced
to represent 34 highly influential sires and their 746 half-
sibs from across Brazil. Further, we inferred a gene
network focused on growth and meat quality traits
and found several genes implicated in the regulation
of these phenotypes.

Results
Genetic profile of Brazilian Nelore beef cattle
After quality control filters we retained genotypes of
449,203 SNPs for linkage disequilibrium and haplotype
block analysis, and 224,969 TagSNPs from 780 Nelore
animals, including 34 prominent sires and their 746
progeny (Table 1). These genotypes were coupled with
genotypes of the same SNP for a sample of 46 Brahman,
Hereford and 44 Angus cattle sourced from the Bovine
HapMap project [17, 18], and used to calculate a genomic
relationship matrix (GRM) that was used in a principal
component analysis (PCA) [19]. This analysis (Fig. 1a,
inset) shows that the first component, explaining 86 % of
the variation in genotype profiles, separates the taurine
(Angus and Hereford) from the indicine (Brahman and
Nelore) breeds, indicating that the genotyping data is
reliable. A GRM considering only the 780 Nelore animals
and the 224,969 TagSNPs was also constructed and used
for a PCA analysis exclusive for the Brazilian Nelore
sample. The results for the PCA (Fig. 1a) shows that
although some half-sib families are well distinguished (e.g.
the NE001383, NE001398 and NE001362 families), the
bulk of the samples were not well separated by the first
component, indicating a lack of structuring. The first and
second components only explain 8.1 % and 6.8 % of the
variation respectively. It is interesting to note in Fig. 1a
that the distance from a given sire (greater labeled circles)
to its corresponding cluster of half-sibs is visually symmet-
rical to the distance of the half-sib cluster to the center of
the figure. We suggest that this effect is due to the
randomness diversity of the genetic effect of the dams that
would bring more related individuals to the center of the
figure, indicating that these sires are less related to its
half-sib families and even less related to the bulk of more
related individuals in the center. The average genomic
inbreeding coefficient from the GRM (FGRM) reports
values of 2 % (± 5 % SD) for sires and 0 % (± 3 % SD) for
progeny. Also, inbreeding coefficient derived from runs of
homozygosity (FROH) reports values of 9 % (± 5 % SD)
for sires, and 6 % (± 2 % SD) for progeny, showing that
the 34 sires are more inbred than their progeny, and that
the random genetic pool from the dams brought more
variability into this sample. The distribution of these
inbreeding coefficients (FGRM and FROH) can be seen in
Fig. 2. Additional file 1: Figure S1C depicts the pedigree
with the information of the dams showing that some dams
participate in more than one family.
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In addition to the PCA, we performed a hierarchical
cluster analysis of the GRM and plotted the resulting
heatmap (Fig. 1b). This analysis shows that the 34 fam-
ilies are well distinguished in the heatmap (grey squares
in the central diagonal) and the sire relatedness to its
sibs can be distinguished in some cases by a white cross
inside the central squares (e.g. NE001710 family) or a

white border line for some squares that follows the red
lines in the upper palette representing the sires. In over-
all the heatmap is greyish than what would be expected
taking into account that the sires were selected to be
more unrelated with each other, suggesting that the half-
sib families are genetically related. Wright’s F statistic
(Fst) was applied to evaluate the degree of genetic dif-
ferentiation among each sire with its progeny as one
population (34 populations) and each lineage with its
descendants as one population (17 populations) yield-
ing values of Fst = 0.14 and Fst = 0.09, respectively,
which can be considered a small level of genetic differ-
entiation in this Nelore sample [20]. The clustering
analysis also put together the majority of the animals
evidencing the relatedness of the families. Some darker
grey shades can be seen within the progeny of individ-
ual NE001383, which is the individual that is more
distant in the PCA analysis, showing that this sire and
its half-sibs are more unrelated to all other individuals.
Although this individual sire is from the Karvadi
lineage and supposed to be related to the NE001394,
NE001393, NE001360 and NE001385 (see Fig. 1c), in
the PCA it is more distinguished from others. Overall,
the lineage information obtained from pedigree was not
useful to evidence any kind of relatedness between
individuals with similar ancestry. For example, nor the
PCA or the hierarchical clustering show any improve-
ment in distinguishing related and unrelated animals
regarding to its lineages (Additional file 1: Figure S1A
and S1B). The hierarchical clustering also does not
cluster individuals according to its ancestral lineages
(see for example the cluster of individuals NE001383,
NE001362 and NE001398, from the Karvadi, Taj Mahal
and Godar Imp lineages). One explanation for the
failure of these analyses to differentiate the half-sib
families is the fact that the families do not have the
same number of animals and the same goes for the
lineage ancestry of the families (see Table 1). These
distributions could affect the effectiveness of the GRM
to provide enough information to generate a good dif-
ferentiation in the PCA or hierarchical cluster analyses
across lineages.
We obtained information of mitochondrial DNA

(mtDNA) of 30 of the 34 sires from a previous study
[21]. Results show that 23 (76.66 %) of these have
Bos taurus maternal ancestry (Table 1), which agrees
with the hypothesis that most of the Brazilian Nelore
herd was obtained by backcrossing with females of
taurine origin [22]. Although two of the most diver-
gent sires, NE001398 and NE001362 were of indicine
maternal ancestry, in overall the maternal ancestry
seems not to have influenced the PCA results. For a
better characterization of the genomic data under study
we analyzed the haplotype structure of the population and

Table 1 Genetic background of the sires

Sire ID Number
of Sibs

mtDNA Lineage Lineage
descendants
(Sire + Sibs)

NE001388 36 Taurus Akasamu 37

NE001398 43 Indicus Godar Imp. 44

NE001390 20 Taurus Godhavari 21

NE001358 31 Taurus Golias 32

NE001389 36 Taurus IRCA 37

NE001361 35 Indicus IZ

96

NE001386 14 Taurus IZ

NE001392 13 Taurus IZ

NE001395 25 Indicus IZ

NE004368 4 – IZ

NE001357 17 Taurus Karvadi

129

NE001360 19 Taurus Karvadi

NE001383 40 Taurus Karvadi

NE001385 5 Taurus Karvadi

NE001393 19 Taurus Karvadi

NE001394 23 Taurus Karvadi

NE001397 14 Indicus Kurupathy 15

NE001381 36 Taurus Lengruber

76
NE001384 12 Taurus Lengruber

NE001710 14 Taurus Lengruber

NE003322 10 – Lengruber

NE001391 34 Taurus Mocho GR 35

NE001380 37 Taurus Nagpur Imp 38

NE001707 18 Indicus NO 19

NE003323 22 – OB 23

NE001359 26 Taurus Padhu 27

NE001379 19 Taurus Padhu-Akasamu 20

NE001362 36 Indicus Taj Mahal

107

NE001378 10 Taurus Taj Mahal

NE001382 24 Taurus Taj Mahal

NE001387 13 Taurus Taj Mahal

NE001712 16 Indicus Taj Mahal

NE004369 2 – Taj Mahal

NE001711 23 Taurus Visual 24

TOTAL 746 7 Indicus (23.33 %) 17 780

23 Taurus (76.66 %)
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estimated the extent of the linkage disequilibrium (LD),
decay by physical genomic distance on autosomes, as
the squared correlation coefficient (r2) between SNP
pairs. Additional file 2: Figure S2 shows that LD varies
from r2 = 0.58 between SNPs distance up to 1 kb for
BTA5 to r2 = 0.03 between SNPs distance of 500 kb to
1 Mb for BTA25. The average distance between SNPs
for this LD study was 5.62 kb, with large gaps of
1.08 Mb on BTA7, and of 0.9 Mb and 0.84 Mb on
BTA12 and on BTA27, respectively. At the distance of
10 kb to 25 kb, the overall average r2 was ≈ 0.30, which
is considered strong LD and can be used for QTL
mapping [23], while at distance of 25 kb to 50 kb, the
overall average r2 was ≈ 0.20, which is sufficient to
provide an accuracy of 0.85 for estimation of genomic

breeding value [24]. A summary of the haplotype block
description is provided on Additional file 3: Table S1.
From the SNPs considered for the LD and haplotype
block study, 335,179 (75 %) were clustered into haplo-
type blocks constituted of 3 or more SNPs, spanning
1.35 MB (54 %) of the total autosomal genome size.
There were 54,461 haplotype blocks with overall average
length of 24.25 kb, BTA16 (882 kb) followed by BTA4
(783 kb), and BTA5 (669 kb) presented the longest haplo-
type blocks, the average number of SNPs into haplotype
blocks was 6, with a maximum of 111 SNPs (BTA18). The
haplotype block size and distribution along autosomes is
provided in Additional file 4: Figure S3.
The effective population size (Ne) was estimated to

be around 214 animals in average per chromosome,

a

b c

Fig. 1 Genetic profiling using the Genomic Relationship Matrix. a PCA analysis of all 780 Nelore (families differentiated by colors, sires are labeled).
Inset shows a PCA with other breeds from Hapmap. b Heatmap and hierarchical clustering of the 780 Nelore. Lateral palette colors represent the
families (same color correspondence to (a); upper color palette differentiates sires (red) from sibs (blue); shades of grey from the heatmap represent
relationship similarities (darker is less related). c Pedigree view of the families showing the sires (blue), sibs (green) and the lineage ancestral from father
side (red)
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with a confidence interval of 13.5, one generation ago
(assuming ≈ 7 years for each generation). This number
is higher than the Ne obtained from pedigree records,
varying from 98 to 68, calculated from past periods of
time (from 1979 to 1998) [25] and from another study also
using pedigree records, that shows Ne to be around 120
for a Brazilian Polled Nelore breed [26]. We estimated Ne
to be higher 10 generations ago (around 270 ± 16.86
animals, in average per chromosome), when the breed
was introduced in Brazil. Ne shows a decreasing pattern
over the last generations especially for the last two (see
Additional file 5: Figure S4).

Gene networks for growth and meat quality traits
Data inspection
We performed correlation analyses using the phenotype
collection (see Table 2 for summary statistics) with the
VCE software [27]. Although we obtained low heritabil-
ity values (h2 < 0.10) for lightness of meat (LM), lightness
of fat (LF), pH (PH), cooking loss (CLO) and dressing
(DRE), higher estimates were observed for rib eye area
(REA; h2 = 0.55), total carcass weight (TCW; h2 = 0.26)
and back fat thickness (BFT; h2 = 0.15). There was a
negative correlation between BFT and REA (−0.735) and
between BFT and TCW (−0.774) and a strong positive
correlation between TCW and REA (0.774) which makes
biological sense indicating that the data is consistent.
We calculated the influence (1 % increase) of inbreeding
over the phenotypes, by estimating the inbreeding depres-
sion coefficients derived from FROH and FGRM (Table 3).
Only BFT, PH and CLO appeared to be significantly af-
fected by inbreeding although this was not a consensus

among the two methods of estimation. The results suggest
that inbreeding did not strongly influentiate the traits.

Genome-wide association studies
The QXPAK.5 software was used [28] to perform gen-
ome wide association studies (GWAS) using the 224,969
TagSNPs for all eight phenotypes. Manhattan plots with
the results are displayed in Fig. 3. When looking for
markers with a significance threshold of p ≤ 10−3 we
obtained several hundreds of significant TagSNPs, vary-
ing from 1723 (BFT) to 680 (DRE). This high number of
significant markers using this significance threshold
indicates some inflation of the p-values (see Additional
file 6: Figure S5 for QQ-plots). If the threshold is pushed
further to p ≤ 10−4 the number of significant TagSNPs fall
to a few hundreds and still if a more stringent threshold is
used (p ≤ 10−5) we obtain just several dozens of signifi-
cant TagSNPs (see Table 2). Although we had some
dozens of SNPs with very low p-values (below 10−5), the
traits that had better heritabilities, like BFT, REA and
TCW showed a scattered distribution of significant
SNPs over the chromosomes. Other traits showed more
specific regions with significant SNPs like the pH trait,
showing chromosome 11 with a visual peak of signifi-
cant SNPs (markers BovineHD1100009381, Bovine
HD1100009391, BovineHD1100009772, Hapmap25798-
BTA-126388, BovineHD1100009860, p-values lower than
10−8) in the region of 31 to 32 Mb, pointing to the Follicle
Stimulating Hormone Receptor (FSHR) gene, but no
evidence was found in the literature linking this gene to
pH of meat. Other traits like LM have some diffuse peaks
in chromosomes 3, 8, 10 and 27, and LF with some less
intense peaks in chromosomes 1 and 14, but the lower

Fig. 2 Genomic inbreeding coefficients. Runs of homozygosity (FROH) estimations with a minimum length of 30 SNPs, and inbreeding coefficient
derived from a genomic relationship matrix (FGRM) for sires and its progeny
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heritability of these traits discouraged more profound
analyses of these regions.
We did a literature survey of the top 10 genes associ-

ated to the lowest p-value TagSNPs for BFT, REA and
TCW. For the later we searched for the involvement
of the significant genes that could influence the total
carcass weight phenotype. We found the gene Sero-
tonin Receptor 2, (HTR2A) associated to the marker
BovineHD1200005266 (BTA12, p = 1e-6) which plays a

role in appetite control [29] and was found associated
to birth weight in humans [13]. We also found the
Leukemia inhibitory factor receptor (LIFR) gene, asso-
ciated to the marker BovineHD2000010215 (BTA20,
p = 1.21e-6) which is involved in skeletal growth and
bone formation and resorption in humans [30]. For
the BFT phenotype we searched for genes involved in
studies related to adipose tissue and fat. We found
the gene EPHA6 (ephrin receptor a6), associated to
the marker BovineHD0100011825 (BTA1, p = 1.10e-6)
found associated in a copy number variation (CNV)
study to childhood obesity [31] and the gene TMEM182
(transmembrane protein 182), associated to the marker
BovineHD1100002798 (BTA11, p = 1.5e-7) which is found
up-regulated in brown adipose tissue during adipogenesis
and myogenesis [32] and also found associated in another
GWAS for BFT [7], discussed below. We found no
specific genes related to REA in the literature, that could
be influencing muscle growth and myogenesis, associated
to any TagSNPs of the top 10 list. In a previous work from
our group [7], GWAS were performed using a Bayesian
approach, with a subset of the data used in this work
(smaller number of animals and traits). We compared the
set of SNP, associated with significance below 10−5 in our
work, against the ones associated in this previous work, to
try to find genes simultaneously associated in both studies.
We found one common gene for LM, 37 common genes
for LF, 15 common genes for BFT and 12 genes for
REA (gene ids at Additional file 7: Spreadsheet S1).

Table 2 Trait data and GWAS results information

Trait n min max avg SD h2 p≤ 10−3 p ≤ 10−4 p ≤ 10−5

TCW 671 182.5 346.8 250.26 27.88 0.262 1246 219 32

(0.114) (17.97) (10.26) (7.03)

DRE 671 42.6 86.5 56.22 3.63 0.092 680 100 20

(0.080) (33.02) (22.49) (11.25)

REA 669 39.24 84.43 60.45 7.26 0.557 826 157 31

(0.130) (27.16) (14.32) (7.26)

BFT 669 0.07 20 6.16 2.25 0.154 1723 305 56

(0.112) (12.97) (7.37) (4.02)

LM 671 33.5 49.43 40.09 3.18 0.037 957 218 64

(0.050) (23.43) (10.31) (3.51)

LF 671 12.02 40.21 19.94 5.41 0.097 1388 340 96

(0.663) (16.12) (6.61) (2.34)

PH 671 9.48 24.28 15.31 3.15 0.040 928 215 56

(0.067) (24.17) (10.45) (4.02)

CLO 671 16.54 84.36 75.65 4.45 0.041 939 138 22

(0.057) (23.88) (16.29) (10.22)

TCW, Kg Total Carcass Weight, DRE, % Dressing, REA, cm2 Rib Eye Area, BFT, mm Back Fat Thickness, LM Lightness of Meat, LF Lightness of Fat, PH pH, CLO, % Cooking
Loss. n is the number of animals used, min. is the minimum value, max is the maximum value, avg is the average value, SD is the standard deviation, h2 is the
heritability (standard error inside brackets), p ≤ 10−3 is the number of SNPs under this p-value, p ≤ 10−4 is the number of SNPs under this p-value, p ≤ 10−5 is the number
of SNPs under this p-value. Inside parentheses is the FDR threshold (%) for each given significance [78]

Table 3 Estimates of inbreeding depression for meat quality
traits. Estimates expressed as change in adjusted phenotype per
1 % increase, using a inbreeding coefficient derived from a
genomic relationship matrix (FGRM), and a inbreeding
coefficient derived from runs of homozygosity (FROH)

FGRM FROH

Trait Meana SD Estimate SE Estimate SE

LM −0.249 3.90 4.42 5.11 8.98 6.33

LF −0.446 7.19 10.39 9.41 9.02 11.68

PH −0.073 0.66 2.00** 0.86 0.91 1.07

CLO −0.357 5.30 11.66* 6.93 −5.14 8.61

DRE −0.336 5.63 10.78 7.37 9.72 9.14

REA −0.541 8.71 16.88 11.39 −1.37 14.15

BFT −0.053 2.08 −3.82 2.71 −7.79** 3.36

TCW −1.467 30.36 6.42 39.76 26.34 49.30

*P < 0.1; **P < 0.05; aadjusted phenotype; SD standard deviation, SE standard
error, LM Lightness of Meat, LF Lightness of Fat, PH pH, CLO Cooking Loss,
DRE Dressing, REA Rib Eye Area, TCW Total Carcass Weight, BFT Back
Fat Thickness
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Fig. 3 GWAS results for the eight traits. a-h panels show the manhattan plots for: a Total Carcass Weight (TCW); b Dressing % (DRE); c Rib Eye
Area (REA); d Back Fat Thickness (BFT); e Lightness of Meat (LM); f Lightness of Fat (LF); g pH (PH); h Cooking Loss (CLO)
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The accordance between both works for BFT, REA
and LF were of 26 %, 38 % and 38 % respectively, of
all genes with significance below 10−5. We could not
estimate the accordance for the TCW trait as it was
not used in this previous work.
To test for Gene Ontology (GO) enrichment, we or-

dered all TagSNPs according to the pleiotropy test [33]
used. The ordered list of all corresponding genes was used
as input to GOrilla [34] and results showed “cell adhesion”
(GO:0007155, false discovery rate or FDR q-value = 2.8e-4),
“biological adhesion” (GO:0022610, FDR q-value = 1.52e-4)
and “developmental growth” (GO:0048589, FDR q-value =
1.29e-4) as the three GO terms from the biological process
tree enriched with significant values after a FDR correction.
Cell adhesion was also found significantly enriched for
color of muscle and fat and for meat tenderness in our
previous work [7]. For the list of genes in each GO, check
Additional file 8: Spreadsheet S2.

Gene networks
For a more holistic view of the genes influencing the
eight phenotypes related to growth and meat quality we
used the p-values and SNP additive effects (Z scored)
obtained with the QXPAK.5 software to construct an
AWM (see Additional file 9: Spreadsheet S3 for the list
of SNP additive effects and p-values respectively used in
the AWM). TCW was chosen as key phenotype for the
AWM which was then used to calculate a pair-wise
correlation matrix of all SNP effects. This correlation
matrix was first filtered to maintain genes with correl-
ation values equal or above 0.95. It was then used to run
the PCIT methodology, which generated a gene network
that consisted of 3371 genes (nodes) and 6961 gene
relationships (edges) (data not shown). This is allegedly
the network that contains genes more involved in
growth traits because of the key phenotype (TCW), and
also prone to be constituted of genes more involved with
traits highly correlated to TCW, like REA and BFT.
With less intensity, the network is supposed to contain
genes involved with the other five phenotypes as they
are less correlated to TCW. Additional file 10: Figure S6
shows a heatmap and hierarchical cluster obtained with
the standardized SNP effects of the eight phenotypes
that evidences that TCW, REA and BFT are more corre-
lated than pH, CLO, LF, LM and DRE.
For visualization we used Cytoscape v3.1 and applied

several visual filters to identify highly connected nodes.
We suggest that the number of connections is a measure
of the importance of the node to the function of the
network as a whole. The assumption is that the more
connections a gene has the more likely is its role regulat-
ing and influencing the function of other genes in the
network. After applying the filters, the size of the node
was changed to be proportional to its number of edges.

The smaller the number of connections of a node, the
smaller was the size of the node and vice-versa. This
same rule is valid for the coloring: the more reddish,
more connections and the more greenish, less connec-
tions. The obtained network shows in its center, a
cluster of nodes with larger size and stronger red color
intensity showing that these nodes are more intercon-
nected and are probably more involved in key biological
mechanisms underlying the phenotypes involved in the
network (data not shown).
As an alternative type of analysis found in similar

works [35–37], we decided to divide the network in a
smaller sub-network to focus on a specific set of genes
that have the highest degree of connections. We used an
algorithm to select the trio of transcription factors that
mostly span the network with minimum redundancy
[38]. Transcription factors (TF) are known to regulate
several cellular mechanisms in different degrees. We arbi-
trarily decided to select three TF with most connections,
which is a number that results in a sub-network with a
reasonable sampling of the more important genes involved
with the phenotypes. We used Cytoscape to create the
sub-network by selecting the TF trio including the edges
shared among its first degree nodes. The resulting sub-
network, with 66 nodes and 359 edges, is shown in Fig. 4.
Colors and node sizes represent the levels of connections
inherited from the original network and triangular shaped
nodes are representing the TF. The trio of TF chosen by
our algorithm is composed by the VDR (Vitamin D
Receptor), LHX9 (Lim Homeobox) and ZEB1 (Zinc finger
E-box binding homeobox 1) genes. The VDR, or Vitamin
D (1,25- Dihydroxyvitamin D3) Receptor is a hormone
receptor for vitamin D3 and is a transcription factor
involved in a variety of metabolic pathways. Mutations in
the VDR gene can lead to the rickets disease, character-
ized by growth retardation, bone deformity among other
effects [39] and this gene was also found related to bone
density in mice [40]. More interestingly, SNPs in the
coding region of VDR were found to be associated with
growth traits in bovine [41]. The LHX9 gene is a tran-
scription factor involved in developmental processes like
neuronal and gonadal development [42, 43] and also to
limb three-dimensional patterning and growth [44] in
mice. Taken together, the known functions of LHX9 are
implicated in several important growth and developmental
mechanisms which suggests it is an important player in
the growth trait phenotype network. The other TF from
the most connected TF trio is the ZEB1 (Zinc Finger E-
Box Binding Homeobox 1), a zinc finger transcription
factor which is involved in cancer and in regulation of
the expression of several genes (check the entry for
[Uniprot:P37275] at http://www.uniprot.org), this gene
have been related to muscle differentiation and myo-
genesis [45].
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From the set of genes with direct edges to the trio of
TF, there are some genes with remarkable evidence in
literature relating them to growth traits, specially bone
and muscle growth and adipogenesis. The ASB2 (anky-
rin repeat and SOCS box containing 2), is a gene found
to function in a negative regulation of muscle growth in
salmon [46]. The PROCR gene (protein C receptor,
endothelial) was found to positively regulate other genes
positively, in an osteoblastic cell line, functioning toward
bone growth [47]. The ALDH9A1 (aldehyde dehydro-
genase 9 family, member A1), has a role on fetal growth
in adult adipose tissue mass in bovine [48]. CPEB4, or
cytoplasmic polyadenylation element binding protein 4,
is associated to human waist-hip ratio [49]. The leucine-
rich repeat LGI family, member 3, LGI3, is thought to
have its function altered in obesity and to suppress
adipogenesis [50]. GPC6 (glypican 6) is implicated in
bone growth [51]. The FAM3C gene, or Family With
Sequence Similarity 3, Member C was found associated
to influence bone mineral density in humans [52]. A
gene, the IARS (isoleucyl-tRNA synthetase), was found
related to perinatal weak calf syndrome, which involves
intrauterine growth retardation and low birth weights
[53]. There are several other genes related to cell growth
and proliferation, like ERGIC3 (ERGIC and golgi 3) [54],
KHDRBS3 (KH domain containing, RNA binding, signal
transduction associated 3) [55], CEP250 (centrosomal

protein 250 kDa) [56], STIM2 (stromal interaction mol-
ecule 2) [57], HABP2 (hyaluronan binding protein 2) [58].
From all 66 genes present in this sub-network, 33 were

found also associated to REA (32 genes) and BFT (1
gene) in the work from Tizioto et al., 2013 [7]. The rib
eye area associated genes include the already discussed:
VDR, ASB2, ALDH9A1, CPEB4, GPC6, FAM3C, IARS,
KHDRBS3, CEP250 and STIM2. Only one gene was also
found associated to BFT, EPB41L1 or Erythrocyte Mem-
brane Protein Band 4.1-Like, which was found related to
growth regulation [59]. Taken together, all the evidence
found in literature of the relatedness of these genes to
growth traits suggests that our methodology is reliable
and the gene networks obtained shed a light on the
biological mechanisms beyond growth and meat quality
traits. Furthermore, as can be seen in Table 4, the SNPs
that correspond to the best trio of TF have mostly p-
values above 1e-3 meaning that this methodology captures
SNPs that would not be taken as important by traditional
GWAS.

Discussion
After the introduction of the Nelore breed in Brazil in
the last century, there were some pedigree-based studies
trying to characterize the founder lineages of the breed
[1], but no genomic approach has been made since then.
The introduction of the low and high density bovine

Fig. 4 Gene network for growth and meat quality traits. Sub network for the more connected trio of transcription factors. Triangular shaped nodes
show transcription factors. Greener nodes have lower connection levels than reddish nodes. Also, smaller nodes have lower connection levels than
larger nodes. Labels represent gene symbols, exceptions are Ensembl IDs
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genotyping panels, made possible the calculation and
use of GRM matrices [60] in genomic similarity studies
to create a genetic profile. Using only pedigree informa-
tion from the 34 sires, the average inbreeding coefficient
(FPED) was 3.23 % (± 3.9 SD) (calculation performed
during experimental design, not shown), which is similar
to the FGRM reported for sires, but lower than the
FROH reported for sires. Comparing the inbreeding
coefficients between sires and progeny, there is a clear
decrease in inbreeding, which can only be attributed to
the randomness of the genetic pool of the dams. Accord-
ing to recent literature, FGRM was determined as the
optimal method for estimating genomic inbreeding coef-
ficients as it can distinguish between markers that are
IBS (identical by state) from markers that are IBD (identi-
cal by descendent) [61, 62]. The average FROH for either
sires or progeny estimated in this study are higher than
the ones reported for a Holstein population (3.8 ± 2.1 %)
which have shown effects of inbreeding depression for
traits in dairy cattle [62]. Also, inbreeding depression
appears not to have strongly affected the phenotypes
(Table 3). This result agrees with the lower inbred estima-
tion for the progeny compared to the sires. We were not
able to cross test this hypothesis by estimating inbreeding
depression for the traits among sires, as we did not collect
their phenotypes, altough we would expect a stronger
influence of inbreeding in this case.
The average r2 values obtained in this study, considering

SNPs with distance up to 150 kb apart, are higher than
the values reported in the literature for Nelore and indi-
cine breeds. Beyond 150 kb distance, the average r2 values
are similar to ones found in the literature [63, 64]. How-
ever, it is worth mentioning that it is difficult to make
direct comparisons among LD studies, as LD levels vary
due to many factors (sample size, marker type, marker
density, and population history) [65]. In this study, both
maternal and paternal haplotypes were considered in

contrast to studies that only consider maternal haplotypes,
as it is our understanding that the Nelore population (and
cattle production in general) presents higher influence
from males than females and not considering paternal
haplotypes would underestimate r2 values. We believe that
the backcrossing with taurine local breeds, evidenced by
the mtDNA origin, could have influenced the values of
LD and Ne estimated for this Nelore sample.
There are some reports in the literature considering

haplotype block structure in cattle, but none was found
for Nelore cattle. These reports stated that with the
increase in marker density, there will be more haplotype
blocks of smaller sizes which will respond for higher
genome coverage [66–68]. A recent study using the high
density SNP panel in crossbred cattle population reports
61 % of the genome covered by haplotype blocks, and a
total of 78 % of SNPs clustered into haplotype blocks
[69]. The recent Ne found for Nelore in this study, is in
agreement with reports of recent Ne for Holstein and
Swiss Eringer breed varying from 80 to 150 individuals,
and can go higher than 2000 animals for past Ne (about
2000 generations ago) [67, 70, 71]. Our results show that
the diversity among sire families and lineages is not high
enough to correctly separate those in a PCA, or hierarch-
ical clustering analysis (Fig. 1). This is corroborated by the
low Fst values obtained for sire families and lineages
subpopulations. The uninformative values of Ne and Fst
estimates were expected for the lineages as they do not
represent isolated populations and should have been
crosses among them.
Some of the traits used in this work were already ana-

lyzed for genome wide associations elsewhere using part
of the data and with a different approach [7]. Although
the phenotype data is the same in both works, our
sample size was larger and the software and algorithms
used for association studies were different. We have not
found larger accordance than 38 %, between the set of
associated genes with significance of 1e-5 to BFT, REA
and LM traits, studied in that work, although we could
not verify this for TCW as this trait was not present in
that work. However, the quality and consistency of the
genotyping data were found reliable since the PCA
against other breeds showed consistent results (Fig. 1a,
inset). We also checked for the fluctuation of heterozy-
gosity along the 224,969 TagSNPs and found reasonable
smoothed values of heterozygosity fluctuating around
0.3 to 0.4 (Additional file 11: Figure S7). The traits
correlations were also found reasonable (see Results).
Furthermore some of the top TagSNPs that had lowest
p-values in the GWAS, had the corresponding gene with
functional biological correlation to the main growth
traits, indicating that the GWAS was able to extract
some of the signal out of the noise from the data. In
addition, we also performed a gene enrichment test with

Table 4 P-values of the SNPs assigned to the genes of the trio
of TF (inside parentheses)

Trait BovineHD0500009454
(VDR)

BovineHD1600024663
(LHX9)

BovineHD1300009960
(ZEB1)

TCW 2.80E-02 3.66E-02 6.66E-04

DRE 4.21E-01 4.59E-02 1.96E-01

REA 1.24E-01 2.59E-02 2.21E-03

BFT 1.00E + 00 7.42E-01 9.05E-01

LM 9.15E-01 5.01E-02 1.84E-02

LF 4.67E-01 1.60E-01 4.41E-01

PH 1.23E-01 1.00E + 00 1.00E + 00

CLO 1.27E-01 6.16E-01 5.13E-01

TCW, Kg Total Carcass Weight, DRE, % Dressing, REA, cm2 Rib Eye Area,
BFT, mm Back Fat Thickness, LM Lightness of Meat, LF Lightness of Fat,
PH pH, CLO Cooking Loss
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GOrilla, after ordering the TagSNPs for the pleiotropic
effect. The pleiotropic test is a methodology to try to
rank genes that are most influencing the traits in the
AWM. The results showed GO terms for biological and
cell adhesion and developmental growth, which are again
evidence that the terms are enriched for genes related
mainly to growth which is the key phenotype of the
AWM. Cell adhesion is a biological process that is also
found significantly enriched in the work of Tizioto et al.,
2013 [7]. Cell adhesion is a process involved in the binding
of a cell to a substrate which sustains its growth and
therefore is intrinsically related to the growth process.
With a similar objective of the pleiotropy test, the

construction of the gene networks with the AWM/PCIT
[13, 35–37] is an alternative to analyze pure GWAS
results as this methodology gathers the 8 GWAS results
and constructs a gene network that influences the traits
in a simultaneous way, but weighting accordingly to the
correlations within the AWM. We decided to select
TCW as the key trait for the AWM because of its rea-
sonable heritability estimate and its congruent correla-
tions to REA and BFT, together with the economic
importance of growth traits for livestock. As the result-
ing network is too large (3371 nodes), we used a heuris-
tic to divide the network into a sub-network in a way
that it would be feasible to analyze and still gather most
of the biological importance regarding these traits. This
heuristic is implemented in an algorithm that selects
the trio of TF that most span the network and its first
degree nodes. As the coloring and shape of the nodes
of the resulting sub-network are inherited from the ori-
ginal network, it can be noticed a majority of reddish
and larger nodes (with more connections) indicating
that the objective of the heuristic was achieved (Fig. 4).
Also, a survey in the literature showed correlations
between the trio of TF and several nodes from the sub-
network to growth traits, suggesting that our method-
ology is correct. It is remarkable to note that some
genes like VDR (which is the most connected TF from
the network) was already associated to growth in a
bovine GWAS [41] and many others have relations to
the biology of growth, like proliferation and growth of
muscle and bones and adipogenesis (e.g. LHX9, CPEB4,
ASB2, and many others). Although comparing the re-
sults of single SNP association to the work of Tizioto et
al. 2013 did not lead to more than 38 % of common as-
sociated genes, the genes from the sub-network are in
50 % of accordance with the genes associated to BFT
and REA from that work. This suggests that the meth-
odology that created this network was able to select
genes that are more related to the traits involved with
growth. We compared the genes from the sub-network
to genes found in other studies [35–37] that also used
the AWM/PCIT methodology and similar datasets (but

different breeds). Although there were no great correla-
tions, some genes in these studies were found to have
similarities or to encode the same protein domains to
some of the genes from the sub-network: metalloprotease
and ankyrin domains (genes ADAMTS14 and ASB2 re-
spectively), the RAB6B oncogene [36], the MER Proto-
Oncogene Tyrosine Kinase (MERTK) and the SLC solute
carrier gene family (SLC34A2) [35].
Taken together, these results are suggesting that the

gene networks obtained are related to growth and meat
quality traits and their genes should be thoroughly
inspected to try to discover the biological mechanism
beneath growth and meat quality phenotypes.

Conclusion
We used high density SNP panels to genotype 34 sires,
and its half-sib families, totaling 780 animals. The sires
were previously selected in order to represent most of
the variability of the Nelore beef cattle in Brazil. We be-
lieve this is the first work that used a genomic approach
in order to try to investigate the amount of diversity of
the Brazilian Nelore breed by investigating its ancestral
lineages. Results showed that the population studied was
not structured enough in order to differentiate families
using ancestral information of sires or lineages. Eight phe-
notypes related to growth and meat quality were used in
whole genome association studies and the results were used
to construct gene networks focused on growth, using the
methodology of AWM/PCIT. Literature surveys showed
that both the GWAS and the gene networks constructed
had significant SNPs associated to genes related to growth
in former studies like the VDR, LHX9, CPEB4, ASB2 and
many others. These results suggests that the methodology
used to construct the gene networks can be used as an
alternative approach to standard GWAS, in order to reach
for novel information and to try to understand the bio-
logical mechanisms and gene compositions that leads to
complex phenotypes, like growth in beef cattle.

Methods
Pedigree and sire lineages
Aiming to select sires that represent the bulk of genetic
variability within the Nelore breed in Brazil, we con-
sulted the main insemination centers of the country,
selecting the more commercially frequent Nelore sires
(polled and horned), with semen value equal or inferior
to R$50.0 (around US$25.0 at the time of the study) to
represent the breeders preference. Afterwards, using infor-
mation from the National Zootechnical File maintained by
Embrapa Beef Cattle in partnership with ABCZ (Brazilian
Association of Zebu Breeders) the pedigree of all animals
were assembled and a relationship pedigree matrix was
created (data not shown). The sires were selected by the
following rules: having the most commercialized semen
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among the breeders association in Brazil and ii) being the
most unrelated with each other according to the value of
similarity from the pedigree relationship matrix.
A list of 34 sires was assembled representing almost

all lineages of the Nelore breed in Brazil (see Table 1):
Karvadi, Taj Mahal, Golias, Padhu-Akasamu, Kurupathy,
NO, Godar, Godhavari, Mocho GR, Nagpur, Akasamu,
Padhu, Lengruber (Mundo Novo), Visual, OB, IZ and
IRCA. The sire lineage was surveyed by following infor-
mation about the most ancestral sire from the paternal
side. Our sample study was composed of 34 sires and
half-sib families with 746 animals in a total of 780 ani-
mals. The 746 calves, sons of commercial cows (not pure
Nelore), were born on five different ranches, where they
were raised to around 21 months old, before allocation
to individual or collective pens in a feedlot located in
Sao Carlos, SP, Brazil; or in Campo Grande, MS, Brazil,
in an interval of 3 years. The pedigree was visualized
with Cytoscape version 3.1 [72].
The mtDNA genotype was characterized as taurine

(GenBank AY526085) or indicine (GenBank AY126697)
from total DNA by amplification of a 366 bp fragment
of mtDNA 16S (rRNA) gene using allele-specific PCR.
The complete methodology can be found in [21].

Phenotype correlations
Eight phenotypes related to growth and meat quality
were collected: Total Carcass Weight (TCW, Kg); Dress-
ing percentage (DRE, %); Rib Eye Area (REA, cm2); Back
Fat Thickness (BFT, mm); Lightness of Meat (LM);
Lightness of Fat (LF); pH (PH); Cooking Loss (CLO, %).
The phenotypes were collected as described elsewhere
[7], see Table 2. The number of animals with phenotype
measurements varied around 670. The VCE software
(ftp://ftp.tzv.fal.de/pub/vce6/) was used to calculate the
correlations between phenotypes, the heritabilities and
the respective standard errors (SE). The model used was
the following (Equation 1):

y ¼ Xβ þ Zg þ E ð1Þ

Where y is a vector with the values for a given pheno-
type, X and Z are incidence matrix, β is a vector for
fixed effects composed of the first principal component
used as co-variate, Slaughter Age also a co-variate, the
contemporary group effect is represented by Origin * Year
of Birth and Animal ID, representing the pedigree. g is a
vector of additive genetic effects, normally distributed
g ~ N(0, σg

2). E represent the vector of residual effects,
E ~ N(0, σe

2).

Genotyping and quality control
All 34 sires and 746 half-sibs were genotyped with a high
density SNP panel (Illumina Bovine HD SNP Chip). The

DNA sample collection and the SNP chip genotyping
were performed as previously described [7]. We used
quality control filters for minor allele frequency (5 %)
and call rate for sample and SNPs (95 %). Filters were
applied using PLINK [73] and Biocoductor/R [74, 75].
This filters yielded a dataset comprised of 449,203 SNPs
which was used for linkage disequilibrium and haplotype
block description using BEAGLE [76] for genotype phas-
ing and missing genotype imputation and LDexplorer
[77] for haplotype block recognition following Gabriel et
al. 2002 [78] algorithm, and for estimating effective
population size (Ne) according to [79].

Genomic relationship matrix
The genomic relationship matrix (GRM) was constructed
[60, 80] using the TagSNPs. The GRM was used to esti-
mate genomic inbreeding coefficient (FGRM), estimated
as the diagonal elements of the GRM [60], and to perform
PCA analyzes with all 780 Nelore samples and the same
TagSNPs for 46 samples of the Brahman breed, 36 sam-
ples of Hereford breed and 44 samples of Angus breed,
genotyped with the same high density SNP panel from the
Hapmap project [18].

Genome Wide Association Study (GWAS)
All GWAS were performed using the software QXPAX5
[28]. Although we have used the first principal component
of the PCA analysis as covariate to correct for population
substructure bias [81], we needed to perform a manual
correction to fix for contemporary group substructure
bias, as follows. We calculated the mean phenotype value
for each contemporary group and the raw phenotype
value of every animal from a given group was subtracted
from its correspondent mean contemporary group value.
The model used was the one that follows (Equation 2),
now without the contemporary group covariate:

y0ij ¼ Xβ
0 þ Zg þ Sksjk þ Eij ð2Þ

Where y ' is a vector containing the phenotype corrected
for the contemporary group effect from the i-th animal to
the j-th trait (check Table 2), X is the incidence matrix
relating fixed effects in β' with observations in y'ij. β' is a
vector for fixed effects composed of the first principal
component used as co-variate, slaughter age also a co-
variate, representing the pedigree. Z is the incidence
matrix relating random additive polygenic effects in g with
the observations in y'ij. g is a vector composed of the
additive genetic effects, normally distributed g ~ N(0, Aσg

2);
were A represents the numerator relationship matrix
derived from the pedigree. Sk is the vector of genotypes
for the k-th SNP across all animals. sjk is a vector that
represents the additive effect of the k-th SNP on the j-th
trait and E represents the vector of residual effects,
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E ~ N(0, σe
2). QXPAK5 was run for the eight pheno-

types using the TagSNP set. The p-values and additive
genetic values for each SNP were obtained for each
phenotype and used to construct the AWM matrix.
The FDR (false discovery rate) was calculated using
the formula of [33].

AWM/PCIT and gene networks
AWM is a methodology to explore the results obtained
from several GWAS (many traits) and generate a matrix
of genes (or SNPs) co-associated in a pair-wise manner
to these traits. The rows in the AWM are composed of
the genes (or SNPs) and the columns represent the
traits. The AWM matrix is filled with the additive effects
of the SNPs. AWM was used to select SNPs associated
to the key trait (TCW) and also SNPs associated to
several (three or more) other traits. This was done in
order to keep SNPs that are important to “growth” in a
holistic manner. Afterwards, a pair-wise Pearson’s correl-
ation is calculated and the data is submitted to PCIT
that is a network inference methodology used to con-
struct the gene network. The AWM was constructed as
described elsewhere [82]. The correlation matrix was
calculated for every entry of the AWM, using the stan-
dardized Z score (the additive SNP effect divided by the
standard deviation) within the R environment. The correl-
ation matrix was used as input for the PCIT package for R
[16]. A list of genes that correspond to each TagSNPs were
obtained from Ensembl version 74 (http://www.ensembl.
org), where genes were assigned to its nearest TagSNP.
Gene networks generated by PCIT were visualized with
Cytoscape version 3.1 [72]. A transcription factor list was
obtained from the Animal Transcription Factor Database
[83] and the most connected trio of transcription factors
from the gene network was obtained as described else-
where [38].

Pleiotropy and gene enrichment
To test for pleiotropy we employed the approach described
by [33]. In brief, the effects of the 224,969 TagSNPs esti-
mated from the GWAS were divided by their associated
standard errors to obtain a t-value corresponding to the
studentized SNP effects. A multi-trait test of the i-th
TagSNP was performed by storing its studentized effects
across the 8 traits in the 8 x 1 vector ti. Then, the quadratic
form ti'V

− 1ti, where V is the correlation matrix among the
SNP effects, is distributed approximately as a chi-squared
with 8 df under the null hypothesis that the TagSNP does
not affect any of the traits [33]. The TagSNPs where
then ordered according to the results and the ordered
list of corresponding genes were used as input to
GOrilla [34].

Linkage disequilibrium and other analyses
The relationship between LD (r2) and Ne can be expressed
by the Equation 3:

r2 ¼ 1 = 4cNeþ 1ð Þ ð3Þ

where, c is the genetic distance between two SNP expressed
in Morgans [84]. Considering each SNP pairs located
within 100Mbp of the same autosomal chromosomes, with
physical distances between SNP converted to genetic dis-
tances by the simple assumption of 1 cM ~ 1 Mb were
used for Ne estimation. Haploview was used for obtaining
TagSNPs, which were used for deriving inbreeding coeffi-
cient by runs of homozygozity (FROH), calculated with
PLINK, as described by [62]. Heterozygosity changes along
the 224,969 TagSNPs were calculated with PLINK and
plotted in R using a smoothing function from the lokern
package, one point for each 100 TagSNPs, as described
elsewhere [80]. The Wright’s F statistics (Fst) analyses
were run with PLINK 1.9 (https://www.cog-genomic-
s.org/plink2) using the TagSNPs of the 780 animals, sepa-
rated: i) by lineage (17 subpopulations) and ii) by sire
families (34 subpopulations).
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Additional file 1: Figure S1. Genetic profiling using the Genomic
Relationship Matrix. (A). PCA analysis of all 780 Nelore (lineages
differentiated by colors). (B). Heatmap and hierarchical clustering of the
780 Nelore. Lateral palette colors represent the families; upper color
palette represent the lineages (same color correspondence to A); shades
of grey from the heatmap represent relationship similarities (darker is less
related). (C). Pedigree view of the families showing the sires (blue), sibs
(green), dams (pink) and the lineage ancestral from father side (red).
(PDF 1027 kb)

Additional file 2: Figure S2. Overall autosomes average r2 values for
Nelore animals with respect to physical genomic distance (kb) and its
confidence interval (0.05). (PDF 5 kb)

Additional file 3: Table S1. Haplotype block summary per autosome
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Additional file 6: Figure S5. QQ-plots from the GWAS results. (A-H)
panels show the QQ-plots for: A. Total Carcass Weight (TCW); B. Dressing
% (DRE); C. Rib Eye Area (REA); D. Back Fat Thickness (BFT); E. Lightness of
Meat (LM); F. Lightness of Fat (LF); G. pH (PH); H. Cooking Loss (CLO).
(PDF 302 kb)

Additional file 7: Spreadsheet S1. List of genes tagged by significantly
associated SNP in common to this report and Tizioto et al. 2013. (XLSX 16 kb)

Additional file 8: Spreadsheet S2. Genes found enriched according to
GOrilla. Genes present in the GO:0007155 (“cell adhesion”); GO:0022610
(“biological adhesion”) and GO:0048589 (“developmental growth”), after
running GOrilla using an ordered list of genes after a pleiotropy test.
(XLSX 14 kb)

Additional file 9: Spreadsheet S3. AWM populated with SNP additive
effects and p-values (4047 entries). Also genes assigned to each SNP in
symbol and ENSEMBL format. (XLSX 747 kb)

Additional file 10: Figure S6. Heatmap and hierarchical plot of the
AWM/PCIT matrix. Hierarchical plot using the AWM/PCIT correlation
matrix (standardized values) for the eight traits. Total Carcass Weight
(TCW); Dressing % (DRE); Rib Eye Area (REA); Back Fat Thickness (BFT);
Lightness of Meat (LM); Lightness of Fat (LF); pH (PH); Cooking Loss
(CLO). (PDF 113 kb)

Additional file 11: Figure S7. The fluctuation of heterozygosity along
the 224,969 tagSNPs. Red line shows smoothed dataset (one point every
100 tagSNPs). (PDF 269 kb)
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