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Investigation into nanostructured organicfilms has servedmanypurposes, including the design of functionalized
surfaces that may be applied in biomedical devices and tissue engineering and for studying physiological pro-
cesses depending on the interaction with cell membranes. Of particular relevance are Langmuir monolayers,
Langmuir–Blodgett (LB) and layer-by-layer (LbL) films used to simulate biological interfaces. In this review,
we shall focus on the use of vibrational spectroscopymethods to probemolecular-level interactions at biomimet-
ic interfaces, with special emphasis on three surface-specific techniques, namely sum frequency generation
(SFG), polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface-enhanced
Raman scattering (SERS). The two types of systems selected for exemplifying the potential of the methods are
the cell membrane models and the functionalized surfaces with biomolecules. Examples will be given on how
SFG and PM-IRRAS can be combined to determine the effects from biomolecules on cell membrane models,
which include determination of the orientation and preservation of secondary structure. Crucial information
for the action of biomolecules on model membranes has also been obtained with PM-IRRAS, as is the case of
chitosan removing proteins from the membrane. SERS will be shown as promising for enabling detection limits
down to the single-molecule level. The strengths and limitations of these methods will also be discussed, in
addition to the prospects for the near future.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of biointerfaces has been emphasized in view of the
increasing use of biomaterials and for biomedical applications, both in

diagnosis as well as in therapy. Adequate interactions at the interface
are necessary between biomaterials replacing parts of living systems
and living tissues [1,2]. A clear example is the area of tissue engineering
[3], for cell growth and differentiation are essential for producing artifi-
cial organs [4–8] and implants [9–19]. In drug delivery systems, surface
coatings may be required for some types of release [20–24]. For the
design of new pharmaceutical drugs, an important ingredient is the
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identification of the mode of action which is normally associated with
the cell membranes (i.e. biointerfaces). In clinical diagnosis, the fabrica-
tion of novel biosensors relies increasingly on functionalized surfaces
that may also be considered as biointerfaces [25–29].

Biointerfaces are now investigated using a myriad of experimental
methods and computer simulations [30]. These include techniques to
probe surface properties such as wetting and adhesion, methods to de-
termine structure, e.g. X-ray [31–33] and neutron reflectivity [34–37],
several types of microscopy and various spectroscopic methods
[38–43]. For the purposes of this review paper, we shall concentrate
on the vibrational spectroscopymethods, whose usewill be exemplified
for two types of systems associatedwith biointerfaces. Thefirst is model
cellmembranes that aremimickedwith nanostructured films, including
Langmuir monolayers [44–46], Langmuir–Blodgett (LB) films [47,48]
and layer-by-layer (LbL) films [49–51]. The second type of system is
functionalized surfaces where biomolecules are employed in coatings
for several applications.

The review is organized as follows. Section 2 brings a brief descrip-
tion of the three vibrational spectroscopic methods considered here,
namely infrared absorption-based spectroscopy, sum-frequency gener-
ation (SFG) spectroscopy and surface-enhanced Raman scattering
(SERS) spectroscopy. Examples of their use for cell membrane models
and functionalized surfaces are given in Section 3. We emphasize here
that our survey of possible uses of these methods is by no means
exhaustive; we simply selected a variety of papers to illustrate the
strengths of the methods for biointerfaces. Section 4 is dedicated to a
comparison of strengths and limitations of the methods considered,
which is followed by Conclusion and future prospects in Section 5.

2. Vibrational spectroscopy techniques

In this section, a brief introduction to the spectroscopy techniques
most useful for biointerfaces will be provided, with the aim of offering
some background for understanding the results and contributions to
be discussed throughout the review paper. Experimental details and
the theoretical background behind the techniques are either omitted
or presented very briefly, and the readers are referred to the literature.
For instance, readers interested in the use of vibrational spectroscopy
for investigating biological applications may consult ref. [52]. Because
it is less frequently used, sum-frequency generation (SFG) is described
at a greater length.

2.1. Infrared absorption-based spectroscopic methods

The electromagnetic radiation in the infrared (IR) region of the spec-
tra has oscillation frequencies thatmatch the characteristic frequency of
vibrational modes of matter, and therefore IR spectroscopies have been
ubiquitously used as characterization techniques. A variation of the tra-
ditional transmission Fourier Transform Infrared spectroscopy (FTIR),
developed by Greenler [53], was based on measuring the reflected
light from a film supported on reflective substrates (e.g. metals), and
is now referred to as IRRAS (infrared reflection-absorption spectrosco-
py). With IRRAS one has improved sensitivity and orientation specifici-
ty, which is achieved with the interference of the incident and reflected
components of the electric field, attained at incidence angles of ca. 80°,
and the surface selection rule according to which only p-polarized
light will be reflected from the surface [53]. Derivations of reflection–
absorption IR technique were developed over the years, which include
the internal total reflection–absorption FTIR spectroscopy (nowadays
known as ATR — attenuated total reflection) [54]. ATR is now among
the most useful tools to characterize biological films supported by
solid crystals [55,56]. As a method to probe biointerfaces, IRRAS had
its applicability largely expanded when it was adapted to Langmuir
monolayers [57,58].

An extension to IRRAS was made by Golden and co-workers in the
early 1980s [59], where the incident polarized infrared source had its

beam polarization alternated between s and p at a frequency of tens of
kHz. They were then able to calculate the differential reflectivity (S),
given in Eq. (1), where Rp and Rs are, respectively, the reflectivities for
p and s polarizations. The new variant was named PM-IRRAS, where
the letters PM stand for polarization modulated.

S ¼ Rp−Rs

Rp þ Rs
: ð1Þ

Blaudez and co-workers [60,61] realized the importance of PM-
IRRAS and applied it to the characterization of Langmuir films. Water
is not a perfect reflector and therefore both p and s polarizations can
be simultaneously absorbed because the surface selection rule is not
applicable for the air/water interface. Since p-polarized light is more
sensitive to vertically oriented dipoles and s-polarized beam is sensitive
to horizontally oriented ones, the relative orientation of chemical
groups from the film constituents can be estimated from the analysis
of the differential reflectivity. Moreover, by subtracting the bare water
reference spectrum from the film reflectivity (ΔS = Sfilm + water —

Swater), contributions to the signal can be filtered out from isotropically
oriented molecules, such as CO2 and H2O (the latter from vapor right
above the film or from the subphase beneath it), which are the main
noise sources to the final spectrum.

In the 1980s another FTIR-related technique was developed based on
the enhancement of IR absorption by plasmons inmetallic nanostructures,
which was named Surface-enhanced infrared-absorption spectroscopy
(SEIRA). In recent years, SEIRA has been used to probe metal-supporting
biological and organic thin films [62,63].

Because of the large number of contributions in the literature associ-
ated with IR-related methods, we chose a few examples of the use of
ATR, SEIRA, IRRAS and PM-IRRAS to characterize films mimicking
biointerfaces to be mentioned in this review, while many others can
be found in other pieces in the literature [64,65].

2.2. Sum-Frequency Generation spectroscopy

Sum-Frequency Generation spectroscopy (SFG) is a nonlinear
optical spectroscopic technique with which to obtain the vibrational
spectrum of interfacial molecules, discriminating them from those in
the bulk material. It is therefore surface-specific, with intrinsic selectiv-
ity to interfacial contributions. Here we describe only the fundamentals
of SFG spectroscopy. A detailed theory can be found elsewhere [66–68],
and references [69,70] are tutorial reviews of its applications to many
fields of surface science. Recent reviews of applications of SFG spectros-
copy to selected fields are also available [71–73].

In SFG spectroscopy, two high-intensity laser beams at frequencies
ωvis andωIR overlap at an interface and generate an output beam at fre-
quencyωSFG=ωvis+ωIR in the reflection direction. The intensity of the
SFG signal is proportional to the square of the effective second-order
nonlinear susceptibility of the interface, χeff

(2)(ωSFG = ωvis + ωIR). As
second-order process, SFG is forbidden inmediawith inversion symme-
try, such as gases, bulk liquids, amorphous solids and most crystals of
achiral molecules, but allowed at interfaces where the inversion sym-
metry is broken. This is why SFG spectroscopy is intrinsically sensitive
to interfaces. Since the process relies on broken inversion symmetry,
only molecules without inversion symmetry may be detected in SFG.
However, if such molecules arrange at an interface with random orien-
tations, the net SFG signal vanishes. Conversely, if there is a substantial
SFG signal, it can be concluded that molecules have a net average orien-
tation at the interface. Thus, we can obtain information about the aver-
age orientational ordering of the interfacial molecules. For vibrational
spectroscopy, ωIR is tunable in the mid-infrared, (in the range of the
vibrational modes of the surface molecules), while ωvis is a fixed
frequency within the visible spectrum, so that ωSFG is also in the visi-
ble–UV and can be detected with high sensitivity. In some cases, ωvis

may be tunable as well, yielding the electronic spectrum of interfacial
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molecules [74], although this is less commondue to the added complex-
ity in the experimental setup and data analysis.

For the analysis of the vibrational spectrum, the intensity of the SFG
signal may be expressed as

ISFG∝ χ 2ð Þ
eff

���
���2 ¼ χ 2ð Þ

NR þ χ 2ð Þ
R

���
���2 ¼ χ 2ð Þ

NR þ Ns∑q
Aq

ωIR−ωq þ iΓq

�����

�����
2

ð2Þ

where χNR
(2), χR

(2), Ns, Aq, ωq, Γq are the nonresonant and resonant contri-
butions to χeff

(2), the surface density of molecules and the oscillator
strength, resonant frequency and linewidth of the q-th vibrational
mode, respectively. From Eq. (2) one notes that when ωIR is near the
frequency of molecular vibrations, the SFG output is resonantly
enhanced, yielding a vibrational spectrum of the interface. Eq. (2) also
demonstrates a feature of nonlinear spectroscopic methods that are
very different from their linear counterparts: there is interference of
the resonant contribution, χR

(2), with the non-resonant background,
χNR
(2), leading to changes in the spectral lineshape which depend on

both themagnitude and phase ofχNR
(2), and also on the presence of near-

by resonances. Therefore, a quantitative analysis of SFG spectra requires
curve fitting to Eq. (2) in order to obtain the amplitudes, frequencies
and linewidths of the resonances. In particular, the peak SFG intensity
only occurs at the resonance (ωIR = ωq) and is proportional to the
square of the mode amplitude Aq if the nonresonant background is
negligible. Furthermore, if a mode is broadened but keeps the same
amplitude Aq, the area under the peak is not constant, as it would be
in conventional IR or Raman spectroscopy.

As in any vibrational spectroscopy, information on the molecular
arrangement at the interface is obtained indirectly by the interpretation
of SFG spectra. For instance, the frequency/linewidth of vibrational res-
onances could be related to the interaction of molecular moieties with
neighboring molecules, such as in the case of H-bonding. Besides the
spectral information, it is possible to obtain qualitative, and sometimes
quantitative [75] information on the molecular orientation at the
interface within the following framework. Since the surface nonlinear
susceptibility is a third-rank tensor,χijk

(2), themeasured effective suscep-
tibilityχeff

(2) depends on the polarizations (s or p) of the input and output
beams. For an isotropic sample along the surface (xy plane) andwithωSFG

and ωvis away from electronic resonances, the only nonvanishing χ(2) el-
ements areχzzz

(2),χxxz
(2)=χyyz

(2), andχzxx
(2)=χzyy

(2) =χxzx
(2)=χyzy

(2), which can be
probed, respectively, with the polarization combinations ppp, ssp. and sps
(from the first to last, the letters indicate the polarization of the SFG, vis-
ible andmid-IR beams). For each vibrationalmode, these tensor elements
are related to the molecular second-order polarizability by a transforma-
tion of coordinates from the molecular frame (ξ,η,ζ) to the laboratory
frame (x, y, z),

χ 2ð Þ
ijk ¼ Ns

X
ξηξ

î � ξ
� �

ĵ � η̂
� �

k̂ � ξ̂
� �D E

α 2ð Þ
ξηξ ð3Þ

where the angular brackets indicate an average over themolecular orien-
tational distribution. Since αξηξ

(2) is proportional to both the IR dipole mo-
ment and Raman polarizability derivatives with respect to the normal
coordinate, ∂μζ

∂Q and ∂αξη

∂Q , respectively, it is usually possible to obtain the
ratio of the nonvanishing αξηξ

(2) tensor elements. Therefore, for a known
αξηξ
(2) andwith themeasuredχijk

(2) the orientation of themoiety responsible
for that vibration may be obtained. Eq. (3) also highlights another inter-
esting feature of SFG spectroscopy: if the molecular orientation inverts
from upward to downward (z → −z) the sign of χR

(2) changes. The
interference withχNR

(2), from the sample or introduced externally in a het-
erodyne detection scheme [71], reveals this sign change, which can be
used to determine the absolute orientation of the asymmetric molecules
(up or down).

One particularly interesting aspect of SFG spectroscopy with regard
to the biomimetic systems considered in this review is the ability to
probe (at least qualitatively) the conformation of alkyl chains, a major

component of all lipids and other biomolecules. As shown by Guyot-
Sionnest et al. [76], if a Langmuir monolayer is compressed to a highly
condensed phase, where the alkyl chains are known to be in the all-
trans conformation and nearly vertical, the SFG spectrum in the CH
stretch range is dominated by the terminal methyl group, even though
there is usually an overwhelmingly large number of methylene groups
along the alkyl chain. This is due to the inversion symmetry of the in-
plane arrangement of CH2 groups, which point in opposite directions
(and perpendicular to the chain axis), leading to a cancelation of their
contribution. On the other hand, the CH3 groups are well ordered,
pointing away from the subphase and giving a strong contribution to
the SFG spectrum. As the monolayer is expanded, thermally activated
gauche conformations appear, breaking the symmetry of the CH2

arrangement and making the CH3 more widely distributed. This leads
to an increase of themethylene and a reduction of themethyl symmet-
ric stretches. Therefore, the ratio of their amplitudes can be used to
quantify the relative conformational order of lipid chains [77,78].

One question that always arises is how deep into the interface is SFG
spectroscopy probing. Since the technique relies on breaking the inver-
sion symmetry, the answer depends on the particular system investi-
gated. For instance, it could be just a monolayer, as in the case of lipids
in a Langmuir film or for the surface of a surfactant solution, where
the adsorbed monolayer is oriented with chains away from the liquid,
but the molecules in solution have random orientations. However, for
charged interfaces in contact with an electrolyte, the electrical field
within the electrical double layer breaks the inversion symmetry near
the interface, and the whole depth of the double layer (typically up to
tens of nm) may contribute to the spectrum. This has been clearly
demonstrated in the case of theOH stretches of interfacialwater [79]. Fi-
nally, for a solution of chiral molecules there is no inversion symmetry,
since inversion would change the handedness of the molecules. In this
case, the SFG signal may be generated from the bulk solution, up to
the coherence length for the particular experimental configuration —

usually several hundred nm, for the reflection geometry [80].
For the implementation of SFG spectroscopy, usually ultrashort

pulsed laser systems are used (from 100 fs to tens of ps) to attain the
high peak intensities at the sample, but with low repetition rates (tens
of Hz to a few kHz) to avoid average heating and damage to the samples
(typical average powers of a fewmWonly). Themost popular laser sys-
tems used to date can be divided in two categories: (i) ps pulse duration
and low repetition rate (~10 Hz), where the SFG spectrum is obtained
by scanning the frequency of the mid-IR pulse generated by an optical
parametric amplifier (OPA) and measuring the intensity of the SFG sig-
nal, and (ii) ~100 fs pulse duration andhigher repetition rates (~1 kHz),
where the bandwidth of the mid-IR pulse produced by the OPA is large
enough to allow measuring the whole SFG spectrum at once by mixing
themid-IR pulsewith a ps visible pulse anddetecting the SFG signal on a
multichannel spectrometer. These latter systems have the advantage
that laser intensity fluctuations do not affect the quality of the SFG
spectra, generally yielding higher signal-to-noise data.

2.3. Surface Enhanced Raman Scattering (SERS)

Thevibrational spectroscopic technique based on theRaman scatter-
ing, i. e., the inelastic scattering of light, has limited use for low concen-
trated systems such as diluted solutions, ultrathin films and interfaces
due to the small cross section (10−30 cm2/molecule). Making use of
the SERS effect is thus a viable alternative owing to signal enhancement
by several orders of magnitude when the target molecule is placed
close to metallic nanoparticles. The average enhancement factor ranges
from 103 to 106, and can reach up to 1010at the interstices of metallic
nanoparticles, referred to as hot spots [81,82]. The enhancement of
the Raman signal can be explained according to two main mechanisms
of different origins: the electromagnetic effect and the chemical effect
(or charge transfer).
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In the electromagnetic effect, SERS arises from amplification of the
electric field (E) of the incident radiation surrounding the surface of
metallic nanoparticles. The latter can sustain localized surface plasmon
resonances (LSPR), which leads to an amplification factor proportional
to E4 [81,82]. The polarizability of the target molecule is not affected,
i.e., this effect is independent of the chemical nature and type of
metal–molecule interaction (physisorption). It depends on the dielectric
function of the metal and of the surrounding medium, the size, shape
and aggregation of the metallic nanoparticles. Because incident radia-
tion from lasers is normally in the visible, noble metals such as Au, Ag
and Cu, exhibit suitable dielectric functions. A simplified explanation
for a spherical isolated metallic nanoparticle can be found in [83]. On
the other hand, amplification based on the chemical effect results from
the interaction between the metal and the target molecule adsorbed
on siteswhere there is strong electron–photon coupling. Changes inmo-
lecular polarizability generated by the interaction between themolecule
and the surface (chemisorption) are now relevant. The latter can lead
to signal enhancement factors up to 102. Both electromagnetic and
chemical mechanisms may contribute simultaneously to the Raman
signal [81].

Gold (Au), silver (Ag) and copper (Cu) nanoparticles (NPs) are used
as SERS active surfaces, especially the ones close to the spherical shape.
A variety of nanoparticles with different shapes, including nanorods
[84], nanoprisms [85,86], and nanocubes [86] have also been developed.
Li et al. [87] proposed an approach for obtaining SERS based on shell-
isolated nanoparticles (SHIN). The key factor was the ultrathin shell of
SiO2, which prevents the nanoparticles from aggregating and separates
them from direct contact with the probed material. Another advantage
is the possibility of achieving surface-enhanced fluorescence (SEF),
since the silica shell avoids fluorescence quenching bymetal nanoparti-
cles, as shown by Guerrero et al. [88].

SERS has been competitive in the investigation of biological systems,
for targets can be detected without the need of labels. Unlike fluores-
cence, SERS provides information about the molecular structure and
chemical composition of the sample. Besides, SERS enhancement factor
enables detection limits comparable to fluorescence spectroscopy,
down to the single-molecule level. Short acquisition times and low
laser powers can often beused for SERS as a result of the signal enhance-
ment [89], which is also favorable for biological samples [90].

3. Understanding biological interfaces with spectroscopy methods

The term “biological interfaces”may refer to systems involving exter-
nal bodies that interact with living tissues, as in biomedical implantable
devices or surgery tools in action, and even interfaces of two inanimate
biomaterials in a biological context, e.g. titanium knobs and epoxy resins
in dental prosthetics. But the environment better described by this term is
the one inwhich cells and/or tissues interactwith themselves. Ultimately,
such systems interface through cell membranes interactions involving
major membrane components such as phospholipids, cholesterol and
proteins. Hence, nanostructured films made from these molecules are
suitable for models to mimic the interfaces.

The concept of using nature's inspired nanoscale self-assembly to
build bottom-up structures thatmimic biological architectures is already
well diffused in laboratories and industry worldwide [91]. The most
employed films and assemblies are Langmuir and Langmuir–Blodgett
(LB) films, layer-by-layer (LbL) films and liposomes or vesicles [92].
They are used to model cell membranes [93], tissue engineering and
cell adhesion interfaces [94]. Alsoworthmentioning is that nanotechnol-
ogy has impacted the study of biological interfaces with fabrication of
artificial biointerfaces using lithography techniques [95].

3.1. Cell membrane models

The main aim in using Langmuir monolayers as cell membrane
models [96,97] is to understand how molecules of biological interest

interact with the membrane. This is important for various reasons, in-
cluding the identification of the mode of action of pharmaceutical
drugs [98,99] and the attempts to understand toxicological properties
of nanoparticles [100], to name just a few. Important features investi-
gated in this type of work are whether the molecules penetrate into
the membrane, how they affect the membrane elasticity and whether
concentration effects from the guest molecules exist. Traditional
methods to characterize Langmuirmonolayers, such as surface pressure
and surface potential measurements and microscopy techniques, may
give valuable information on the possible penetration of the guest
molecules and on the changes in elasticity. However, in order to be
sure that the guest molecules indeed penetrate into the monolayer
and to establish the chemical groups involved in the intermolecular
interactions, spectroscopic techniques are necessary.

Vibrational spectroscopy methods, in particular, may provide infor-
mation not only on the functional groups involved inmolecular interac-
tions but also on their orientation, and whether they are affected
by hydration or H-bonding. Indeed, the importance of spectroscopy
techniques for cell membrane models has already been widely
acknowledged [101]. For biomolecules, perhaps the most interesting
feature in PM-IRRAS studies is the possibility of verifying whether the
proteins preserve their native structure, or undergo interface mediated
conformational changes. This is normally done bymonitoring the amide
bands, which are known to be shifted when changes in the protein
secondary structure occur.

The molecular structuring, orientation and hydration levels of Lang-
muir monolayers can be monitored with SFG, as was demonstrated for
thefirst time decades ago [76]. Furthermore, SFG spectroscopy is unique
in its ability to probe the organization of water molecules at interfaces
[102], and in particular its interaction with Langmuir films [78]. Fig. 1
shows schematic diagrams depicting a liquid-expanded to liquid-
condensed phase transition in a Langmuir monolayer of deuterated
dipalmitoylphosphatidylcholine (DPPC-d62), where the squeezing out
of water molecules around the polar headgroups upon compression
could be monitored [103].

An example of how FT-IRRAS can be used to determine the orienta-
tion of biomolecules at the air–water interface was provided by Sarangi
et al. [104] who studied interactions of L-tryptophan with DPPC. Fig. 2a
shows the details of the polarized FT-IRRAS instrumentation to
determine the molecular orientations for a neat monolayer of DPPC as
well as the molecular orientations when the monolayer interacts with
L-tryptophan. The angle of incident φi was varied from 25 up to 65°
from the surface normal, and spectra collected for both s and p polariza-
tions. An example is given in Fig. 2b of how the reflectance–absorbance
of the CH2 antisymmetric stretching band changes as a function of the
angle of incidence φi and of the electric field polarization. With such
a setup, one is able determine the reorientations of the DPPC polar
head groups and their dependence on subphase compositions and
temperature.

While penetration of guest molecules into the cell membranemodel
represented by Langmuirmonolayers can be inferred from surface pres-
sure isotherms, the interpretation is never unequivocal since other
types of interaction may lead to expansion in the isotherms. With spec-
troscopic methods, on the other hand, the possible penetration can be
tested beyond doubt, and for biomolecules one may even determine
whether the native conformation was kept. For water-soluble proteins,
in particular, several issues may be investigated. Perhaps the first is
whether these proteins will adsorb onto the monolayer and under
which conditions. For instance, Diederich et al. [105] used FTIR to show
that the S-layer protein from Bacillus sphaericus CCM2177 does not in-
terpenetrate but rather couples to the monolayer via lipid head groups.
Polverine et al. [106] showed with FTIR measurements that a myelin
basic protein (MBP) binds to negatively charged phospholipids thus
forming a complex.

Insertion of a protein into amonolayermay change its orientation, as
it occurred for the farnesylated and hexadecylated N-Ras protein, or
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simply HFar-N-Ras protein [107]. The monolayer mimicking the cell
membrane was made with a mixture of POPC, brain sphingomyelin
and cholesterol. Changes in orientation of the protein secondary struc-
ture were determined upon comparing experimental and simulated
angle-dependent IRRAS spectra of HFar-N-Ras. The results in the refer-
ence above illustrate how modulation of polarization makes PM-IRRAS
advantageous over IRRAS, since laborious angle-dependent measure-
ments are not needed to extrapolate relative protein orientation in
PM-IRRAS. There are cases in which protein adsorption leads to multi-
layers below a phospholipid monolayer. PM-IRRAS was employed to
monitor adsorption of γ- and ω-gliadin proteins on DMPC and DMPG
monolayers [108], thus forming micrometer-sized domains. The spec-
troscopic technique was used in conjunction with other physicochemi-
cal characterization methods to determine that γ-gliadins adsorbed
under the phospholipid monolayer with β-turns and small α-helices
forming multilayers, while ω-gliadins aggregates displayed a constant
thickness consistent with a monolayer.

As alreadymentioned, one of themost important features in protein
adsorption that can be interrogatedwith spectroscopic techniques is the
preservation and the state of secondary structure. This is normally done
in PM-IRRAS and SFG by observing the amide bands, which are known
to be shifted to higher wavenumbers when the structure changes
from β-sheet to α-helices. VandenAkker et al. [109] reported changes
in secondary structure of amyloid fibrils by following the changes in
the amide I band in SFG measurements. Fig. 3a shows the normalized
SFG spectra for amide I in amyloid fibrils formed at concentrations
between 3.0 and 7.5%, while Fig. 3b shows the fraction of the integrated
intensity of peaks fitted to the SFG data for these two bands resulting in
different proportions of β-sheet and random/α-helical structures.

The kinetics of conformational changes of proteins was studied with
SFGby using an intrinsically disordered protein that is known tomisfold

into theβ-sheet structure upon interactionwithmembranes [42]. Chang-
es in the amide I bandof human islet amyloid polypeptide in the air/water
interface were observed after addition of dipalmitoylphosphoglycerol
(DPPG), with the initial α-helical structure gradually folding into
β-sheets. The same trend of secondary structure transformations was
seen by Lopes et al. using IRRAS [110]. It is important to highlight that
probing the amide I bandwith SFG leads to spectra free fromproblems as-
sociatedwith the background from thewater OH bendingmode,which is
a limitation in IRRAS or PM-IRRAS.

The confirmation of preserved secondary structure was crucial in a
study with septin proteins involved in the formation of amyloid-like
fibers found in patients with Alzheimer's disease. Damalio et al. [111]
studied the interaction of SEPT2 protein with DPPC and the lipid
PtdIns(4,5)P2 using PM-IRRAS spectroscopy to monitor the amide I
and amide II bands. The native structure of SEPT2 was preserved
when it interacted with PtdIns(4,5)P2, but changes from α-helices
into β-sheets were observed upon interaction with DPPC, probably
because the protein was forced to expose its hydrophobic portion. The
differences in behavior are probably due to the larger headgroup of
PtdIns(4,5)P2 whichmaintains the protein hydrated at the water inter-
face, rather than inserted in the hydrophobic tails. Furthermore, fibrils
of deliberately prepared SEPT2 aggregates were unable to adsorb onto
Langmuir monolayers of either DPPC or PtdIns(4,5)P2, thus indicating
the irreversibility of the aggregation process.

The effects from the polysaccharide chitosan on the adsorption of
proteins onto phospholipid monolayers, and its action on their possible
removal from the biointerfaces, have been investigated with PM-IRRAS.
The main objective was to test hypotheses associated with the action of
chitosan in biological applications. Chitosan has proven antimicrobial
and antifungal activities [112], and is believed to be effective for reduc-
ing cholesterol and fat [113]. Also, chitosan was shown to successfully

Fig. 1. Phase transitions from liquid-expanded to liquid-condensed of a Langmuir monolayer of DPPC-d26 as the barriers compressed themonolayer. Thewatermolecules represented by
blue dots are squeezed out of the head groups thus inducing the molecular ordering inferred by SFG. Reprinted adapted with permission from [103]. Copyright 2014 American Chemical
Society.

Fig. 2. (a) Configuration of modulated polarization FT-IRRAS equipment used to study the molecular orientations of a neat DPPC monolayer or when the monolayer is interacting
with L-tryptophan. (b) Reflection–absorption of the monolayers depending on the light polarization and angle of incidence (Brewster angle concept). Reprinted adapted with
permission from [104]. Copyright 2014 American Chemical Society.
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remove the protein β-lactoglobulin from whey [114], pointing to its
important industrial applicability as an antiallergenic material.

Using Langmuir monolayers as biomembrane models, chitosan was
found capable of removing some proteins, namelyβ-lactoglobulin [115]
andmucin [116], fromnegatively charged phospholipidmonolayers, for
which irrefutable proof came from a comparison of PM-IRRAS spectra
for the protein-containing phospholipid monolayers in the presence
and absence of chitosan. Fig. 4a shows that the amide I and amide II
bands from β-lactoglobulin are increasingly vanishing as time pro-
gresses with chitosan present in the subphase (Fig. 4b). A cartoon
picture of the removal is shown in Fig. 5. Also relevant is the specificity
of the removal action, since it only occurredwhen therewas electrostat-
ic attraction between the positively charged groups from chitosan and
the negatively charged phospholipid, such as dipalmitoylphosphatidyl
glycerol (DPPG) and dimyristoylphosphatidic acid (DMPA). The
removal action did not take place in a biomembrane formed by the
zwitterionic dipalmitoylphosphatidyl choline (DPPC), or for the
enzymes horseradish peroxidase and urease [115].

Other effects from chitosan on membrane models made up with
phospholipids and/or cholesterol were studied by Pavinatto et al. [77]
using SFG and PM-IRRAS. While chitosan caused chain ordering in
DMPA monolayers at a biomembrane-like packing state, cholesterol
caused disordering, which is contradictory to its well-known role as a
stiffener of the cell membrane [117,118]. This discrepancy was due to
a change in the phospholipids headgroup ionization state, which was
sensed as a shift to lower frequencies of the DMPA phosphate bands
in PM-IRRAS spectra, in agreement with NMR data for similar lipids

[119]. Furthermore, the expansion effect caused by cholesterol reflected
also in the disappearance of the PM-IRRAS band at 2889 cm−1, and in
the decrease of an order parameter calculated from the symmetric
stretching bands for CH3 and CH2 groups in SFG. When both materials
act together the overall effect over DMPA films was an expansion. The
cholesterol effect was suppressed by the stronger electrostatic-driven
chitosan effect. Nevertheless, cholesterol was important for mediating
chitosan penetration in the films.

As demonstrated in the results from the removal of proteins by
chitosan above, the charge of the phospholipids used to mimic the cell
membrane may have an important effect. Chièze et al. [120] studied the
interaction with a protein (apolipoprotein A–I) by evaluating the influ-
ence of the charge and chain organization of the phospholipids through
PM-IRRAS. Protein insertion into the phospholipidmonolayerwasmainly
controlled by compressibility and a minimum distance between the
phospholipid headgroups was required for the insertion to occur. Larger
insertion was observed for phospholipids with anionic headgroups.

The mediation of another polysaccharide (ι-carrageenan) was rele-
vant for the binding of the enzyme alkaline phosphatase from
Neurosporacrassa (NCAP) to the synthetic phospholipid DHP (sodium
salt of dihexadecylphosphoric acid) [121]. With SFG used to monitor
lipid conformation and carrageenan adsorption, Zn+2 ions were found
to mediate the interaction between DHP and the anionic polysaccha-
ride, which adsorbed with sulfate groups orientated towards the DHP
monolayer, while the hydroxyl and ether groups were exposed to the
subphase. This particular conformation of the polysaccharide interacted
with the protein and induced its adsorption.

Fig. 3. (a) SFG spectra of the amyloidfibrils in the amide I spectral region at concentrations between 3.0 and7.5%. (b) The relative presence ofβ-sheets and random/α-helical structures as a
function of the concentration inferred by integrating the intensity of peaks fitted. The AFM images show the structure of the proteins reached by varying the concentration (Scale bar is
100 nm). Reprinted adapted with permission from [109]. Copyright 2014 American Chemical Society.

Fig. 4. (a) PM-IRRAS spectra in the range of amides I and II bands of β-lactoglobulin adsorbing on DMPAup to 240min. (b) Adsorption is increasingly vanishedwhen chitosan is present in
the subphase, as can be seen after 240 min (green spectrum). Reprinted adapted with permission from [115]. Copyright 2014 American Chemical Society.
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With regard to probing the orientation of α-helical peptides, SFG
and ATR-FTIR may be combined to determine peptide orientation in
substrate-supported lipid bilayers by following amide I bands. For a bi-
layer of 1–2 dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), the ori-
entation and distribution of melittin (model for α-helical peptides)
when interacting with the phospholipid bilayer could be elucidated
using the amide I signals from SFG and ATR-FTIR measurements. The
data were consistent with a dual δ-function distribution for themelittin
orientation, where α-helical peptides may be parallel or perpendicular
to the substrate when inserted in phospholipid bilayers [122]. The
interaction between melittin and DPPG or deuterated DPPG (dDDPG)
bilayers could also be monitored with real-time SFG measurements by
following the C\H and C\D stretching signals [123].

Amyloid peptides have also been studied at lipid-aqueous interfaces,
where their orientationwas determinedwith SFG following the amide I
band in psp polarization, which is specific to the contribution of chiral
molecules, as shown in Fig. 6a [124]. The human islet amyloid polypep-
tide was found to be oriented at 48 ± 1° relative to the interface as
shown in Fig. 6b, which was induced by the amphiphilic properties of

the β-sheet aggregates with the peptide hydrophilic part exposed to
the aqueous phase and the hydrophobic region to the lipid. This orien-
tation suggests a potential disturbing effect on membrane integrity
and may be the onset of diseases, such as Parkinson's disease and type
II diabetes.

The conformation of peptides affects their interaction with lipids in
membranes and vesicles, as one should expect, and this was proven
with PM-IRRAS and FTIR by Kouzayha et al. [125]. Using the alanine-
rich peptide K3A18K3 and alamethicin, made to interact with DPPC
monolayers and DMPC vesicles, Kouzayha et al. found that interaction
should occur via the hydrophobic parts in α-helical peptides and via
the hydrophilic parts in β-sheet peptides. The nonsteroidal anti-
inflammatory drug meloxicam and its complex with β-cyclodextrin
inhibited the enzymatic lipolysis of phospholipids in the membrane,
as observed with PM-IRRAS, which could be related to their ability to
prevent inflammatory processes [126].

The technological importance of lung surfactants has generated
considerable work with Langmuir monolayers. Because DPPC and
DPPG are the most abundant lipid components in the inner interface

Fig. 5. Proposed model for chitosan action removing BLG from a monolayer of phospholipids. Reprinted adapted with permission from [115]. Copyright 2014 American Chemical Society.

Fig. 6. (a) SFG spectra for the islet of amyloid polypeptide obtained at amide I region using psp polarization configuration (p— for SFG, s— for visible and p— for IR), which is specific for
contribution of chiral molecules. (b) Orientation at 48± 1° relative to the interface when the amyloid polypeptide interacts with the lipid at the air–water interface. Reprinted from [124].
Copyright 2014, with permission from Elsevier.
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of the lungs, they have been widely used in interaction studies [127],
for which spectroscopic methods are ideally suited. Flach et al. [128]
isolated a specific pulmonary protein from lung porcine to investigate,
via IRRAS, the role of the two thioester-linked palmitoyl chains located
near the N-terminus from deacylated protein SP-C. Deacylation of SP-
C produced more fluid DPPC monolayers, with the helical-secondary
structure and tilt-angle of the protein remaining essentially unchanged.
A comparison of the secondary structure of surfactant proteins in bulk
and at the air/water interface is important since these proteins facilitate
replacing components across interfaces, which could be essential
for in vivo functions in the alveolar subphase and at the air/alveolar
interface [129]. Dieudonne et al. [129] used IRRAS to probe structure-
function relationships and protein–lipid interaction in bulk phase
and monolayer for three peptides with amino acid sequences based
on the pulmonary surfactant protein SP-B (SP-B1–20, SP-B9–36a and SP-
B40–60A), with substantial differences being observed in peptide surface
activity. The influence of tobacco smoke in clinical lung surfactants has
been studied by using FTIR [130], where hydrophobic proteins from
tobacco smoke-treated Survanta (a specific lung surfactant) affected
the conformation of SP-B and SP-C.

3.1.1. Films deposited on solid substrates
As a complementary strategy to investigate protein interaction with

cellmembranemodels, Langmuir–Blodgett (LB)filmshave been obtain-
ed with proteins adsorbed onto phospholipid monolayers. DMPA is one
of themost used phospholipids in this context owing to its suitability to
deposit multilayers [131,132]. Examples include studies of a mucin pro-
tein in LB films of DMPA, where chitosan was able to gradually remove
the protein, according to FTIR measurements [116] and interaction
studies between DMPA and the protein–polysaccharide complex ex-
tracted from themushroom Agaricus blazeiMurill [133]. The adsorption
of horseradish peroxidase in DPPG films was explored to enhance its
activity when compared with protein-containing solutions [134],
where the protein was found to preserve its native structure when
adsorbed onto DPPG. This type of information was obtained by analyz-
ing PM-IRRAS spectra, with which the α-helix conformation of horse-
radish peroxidase in the phospholipid matrix was confirmed by
monitoring its C_O and N\H groups.

In another example of cell membranemodel with adsorbed films on
solid substrates, Wang et al. [135] replaced an inorganic-lipid interface
by an organic-lipid one. They examined and compared single lipid bilay-
ers of DPPG and dDPPG assembled on solid surfaces of CaF2 (inorganic-
lipid interface) and on a poly(lactic acid) (PLLA) cushion (organic-lipid
interface).With SFG they showed that the supported bilayers have sim-
ilar structures, also interacting with an antimicrobial peptide in the
same fashion. Fig. 7 depicts the experimental setup used to measure
the PLLA-lipid bilayers interface interacting with the peptide Cecropin
P1. Because similar results to inorganic-lipid interacting with the pep-
tide were obtained, the hydrophilic PLLA was found suitable to support
lipid bilayers, which is important for studies involving transmembrane
proteins, where the possible inorganic-lipid interactions may affect
protein structure or function.

One important role of cell membranes is the ability to control charge
transport from and to the cell, and this is mostly done by gating ion
channels. This issue was addressed by Chen and co-workers [136],
where the alamethicin peptide, which adopts α/310-helix structure,
interacted with palmitoyloleoylphosphatidyl choline (POPC) lipid
bilayers deposited on CaF2 substrates in the presence of an electric
field created by changing the solution pH (an electric potential across
themembrane). The localized pH changemodulated themembrane po-
tential and thus induced variations in both tilting angle θ (inclination of
the peptidewith respect to the normal to the plane) and bending angles
φ of the helices in the peptide (angle between the two helical compo-
nents in the peptide). This indicates the mechanism for opening the
ion channel in living cells, which regulates ionic permeability through
the membrane.

Lipkowski and co-workers [137] also studied ion channels in support-
ed bilayers mimicking cell-membrane using PM-IRRAS. A mixed bilayer
containing 90% of DMPC and 10% of gramicidin (a well-known ion chan-
nel) was deposited onto a gold substrate. Upon applying an electrostatic
potential to the gold electrode, they could switch states characterized by
different packing and orientation of DMPC molecules and distinct orien-
tations of the helix structures of gramicidin. With a more sophisticated
molecular architecture to represent a cell membrane, the same group
investigated the effects from binding cholera toxin to the membrane
[138]. The first layer deposited on a gold substrate comprised DMPC
and cholesterol, on top of which another layer was adsorbed which
contained DMPC, cholesterol, monosialotetrahexosylganglioside (GM1)
and a bound cholera toxin binding (CTB) unit. This latter layer was
meant to model the outer (extracellular) leaflet of a cell plasma mem-
brane. With PM-IRRAS being used to monitor the orientation of the
fatty acid chains, Leitch et al. [138] showed that binding cholera toxin in-
creased the tilt angle of the chains but did not affect the overall conforma-
tion of the bilayer to any great extent. Themost important effect appears
to be related to a significant voltage-dependent change in the opening of
the CTB pore, which is governed by reorientation of the α-helix compo-
nents of CTB. According to those authors, this finding is highly significant
insofar as the pore opening mechanismmay explain the transport of the
toxin through the membrane [138].

LbL films have also been used to mimic cell membranes. Pilbat et al.
[139] reported a method to immobilize cell membrane bilayers of DPPC
in LbL films of poly-(glutamic acid)/poly(lysine) (PGA/PLL). The film
growth regime was altered by inserting a DPPC bilayer in between the
polyelectrolyte bilayers because this DPPC bilayer blocked diffusion for
the next PGA/PLL layers. FTIR was used to monitor film growth and
the immobilization of Gramicidin A on top of the LbL film, by following
mainly the bands assigned to C\H stretching, amide I and amide II
regions [140].

3.2. Probing surface functionalization

The immobilization of biomolecules onto solid substrates has been
explored for two main targets, namely the immobilization of active
molecules in biosensors and for fundamental studies on biocompatible
surfaces. Early work on biosensors was performed by Barraud et al.
[141], with the immobilization of the antibody immunoglobulin G on

Fig. 7. SFG sample configuration used to study lipid bilayers deposited on solid surfaces
of CaF2 and PLLA exposed to water or peptide solutions. The inset shows the IR and visible
beams crossing unwanted interfaces and reaching the desired one, where the SFG beam
is generated. Reprinted adapted with permission from [135]. Copyright 2014 American
Chemical Society.
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fatty acid (ω-tricosenoic acid) LB films to detect Staphylococcal
enterotoxin B. Film composition and the nature of antibody–fatty acid
interactions were monitored with FTIR spectroscopy, with which the
coverage ratio of the protein could be obtained. Indeed, the intensity
of the absorption band at 1640 cm−1, assigned to C_O groups from
the protein, increased with the incubation time up to 60 min, when
the coverage ratio reached a constant value of 60%. The influence from
parameters such as pH, ionic strength, transfer pressure and antibody
concentration in the subphase was also investigated. Singhal et al.
[142] used FTIR to study immobilization of urease inmixedmonolayers
of poly(N-vinyl carbazole) and stearic acid,with thefilm being used in a
biosensor for urea. Significantly, the urease in LB films did not lose its
secondary structure, as indicated by probing the amide I and II bands
of the enzyme. These amide bands were also useful to ensure the
preservation of secondary structure for lysozyme adsorbed onto porous
carbon sieves [143].

The detection of ethanol, which could be distinguished from its
interferents, was achievedwith a sensor arraywhere one of the sensing
units was made with immobilized alcohol dehydrogenase (ADH) in a
matrix of negatively charged phospholipid DMPA, in an LB film [144].
ADH was incorporated from the subphase onto a DMPA Langmuir
monolayer, and did not lose its native structure according to PM-
IRRAS data for the amide I and II bands. PM-IRRAS was also essential
to confirm that ADH remained at the air/water interface even at high
surface pressures for the DMPA monolayer, thus making it possible to
transfer onto a solid substrate in the form of an LB film containing
both DMPA and ADH.

Since the control of molecular architecture may be essential to pro-
duce highly sensitive and selective biosensors, attempts have been
made to combine more than one component in a given film. Obviously,
such control can only be proven if suitable methods are available to
interrogate the film architecture. This was performed with IRRAS to
monitor immobilization of cholesterol oxidase (ChOx) and Prussian
Blue (PB) in LB films of octadecyltrimethylammonium (ODTA) [145],
whose structure is shown in Fig. 8. The incorporation of ChOx was
confirmed by inspecting the amide I and II bands. With this LB film
adsorbed on a Au-layer-patterned glass slide cholesterol could be
detected using a conventional three-electrode electrochemical cell
where PBwas a redoxmediator. The authors also reported awide linear
relationship between cholesterol concentration and the change in cur-
rent density within the 0.2–1.2 mmol/L range, and they attributed it
to the film structure formed by the LB technique, similarly to what
was observed in glucose sensors based on ODTA/PB/GOx LB films [146].

Hydrogen bonding is crucial for many self-assembly processes, and
FTIR spectroscopy is a prime method to monitor such interaction.
Pakalns et al. [147] produced Arg-Gly-Asp (RGD) peptides by linking
synthetic dialkyl tails in amino-terminus, carboxyl-terminus, and both
termini of RGD. All of these amphiphilic peptides were able to self-

assemble into stable monolayers with biologically active interfaces,
but FTIR studies indicated that amino-coupled RGDhead groups formed
the strongest lateral hydrogen bonds. Khopade et al. [148] used FTIR
spectroscopy to monitor the fabrication of crosslinked LbL multilayers
of poly(styrenesulfonate) (PSS) and 4th generation poly(amidoamine)
dendrimer (4G PAMAM), which were used in biocompatibility experi-
ments with biological cells.

The functionalization of poly(ethylene terephthalate) at tertiary-
amine-terminated allowed the immobilization of immunoglobin and
horseradish peroxidase [149], where FTIR spectroscopy was employed
tomonitor the light-induced amination of poly(ethylene terephthalate)
film. The attachment of amine groups increased with radiation time,
which were able to anchor immunoglobin and horseradish peroxidase.
FTIR spectroscopy was used to monitor immobilization of polyphenol
oxidase in mesoporous activated carbon matrices [150], with the shifts
in the bands assigned to polyphenol oxidase and the appearance of
new bands pointing to stronger bonding with the functional groups of
carbon matrices.

FTIR spectroscopy has been instrumental in studying the immobiliza-
tion of biomolecules in conjunction withmicro- and nanostructures that
serve as templates. Microspheres of calcium carbonate/carboxymethyl
cellulose were prepared to support lysozyme [151], alcohol dehydroge-
nase was immobilized on oxidized diamond nanoparticles [152] and
superparamagnetic carboxymethyl chitosan nanoparticles were utilized
on the immobilization of trypsin [153]. In all of these cases, FTIR was
important not only to confirm immobilization with the presence of
amides I and II bands but also to identify the enzyme structure adopted.

Various strategies are used to prevent denaturing of biomolecules
when they are immobilized onto solid supports. For instance, the
ordered structure adopted by it-PMMA/at-PMMA (poly(methyl meth-
acrylate) LbL films made it possible to immobilize β-galactosidase
with preserved activity, in contrast to the case of single-component
films coating partially ordered it-PMMA or disordered at-PMMA, for
which β-galactosidase would be denatured [154]. Information on
protein denaturing and adsorption was obtained with ATR–IR spectros-
copy, and the cartoon in Fig. 9 depicts the findings.

Inmany cases, vibrational spectroscopy is a key to determinewhether
adsorption occurred. For example, the deposition of LbL films of a phos-
pholipid polymer PMVB (synthesized from 2-methacrylocyloxyethyl
phosphorylcholine, n-butyl methacrylate, and 4-vinylphenylboronic
acid) and poly(vinyl alcohol) (PVA) on Ti substrates was performed
for improving the biocompatibility of implants [155], and adsorp-
tion was confirmed using ATR–FTIR spectra taken from the outer
layer during film fabrication. The PMBV/PVA LbL films on the Ti
substrate suppressed the adhesion of L929 cells (cultured in a
culture medium — D-MEM Gibco), compared with that on an
untreated Ti, being therefore promising for improving biocompati-
bility of Ti-based medical devices.

Fig. 8.Models for incorporation of (a) PB, and (b) PB and ChOx inODTA LBfilms. ChOxwas immobilized on the LBfilms by immersing them in an aqueous solution, and immobilizationwas
confirmed by IRRAS measurements in the spectral range of amides I and II. Reprinted adapted with permission from [146]. Copyright 2014 American Chemical Society.
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Surface coatings are now used for biosensing, especially for detect-
ing low levels of analytes in biological media [156], in many cases
exploiting plasmonic effects. In this review paper we shall concentrate
on SERS applied to biological systems, as in the possible coating of nano-
particles with lipid liposomes for biomedical diagnostics [157]. Lipids
are promising coatings for particles because of their biocompatibility,
ability to self-assemble into organized structures and potential to stabi-
lize metal nanoparticles. The lipid-encapsulated nanoparticles have
been shown stable for weeks [157]. The versatility of the lipid layer
was proven by incorporation of three SERS-active probes (malachite
green, tryptophan, and Lissamine rhodamine DSPE) into themembrane
to verify the efficiency of the lipid-encapsulated nanoparticles as SERS-
active surfaces. The lipid layer was directly observed by transmission
electron microscopy (TEM), and the incorporation of the three dye
specieswas confirmed by SERS, as shown in Fig. 10. In a similar strategy,
triangular AgNPs were coated with chitosan [156], which is a biocom-
patible shell to AgNPs [158].

Lipids, proteins and small molecules in the cell membrane are
known to present affinity towards binding nanoparticles [90]. Hodges
et al. [159] reported an immunolabeling protocol based on Au-
conjugated antibodies combinedwith AgNPs for obtaining biomolecular
information of the cell surface. Themodel systemwas the corneal endo-
thelium whose apical surface is readily accessible for antibody labeling.
Fig. 11 shows a schematic representation of AgNPs attached to the
cell achieving the SERS effect of the cell membrane components. The
nanoparticles were not modified with any SERS probe, which might
have decreased the sensitivity but the enhanced signal comes solely
from the immediate environment around the nanoparticle.

A highly sensitive optical imagingmethodwas developed by Lee et al.
[160],where the advantages of SERS andfluorescence spectroscopywere

combined in a dual mode nanoprobe (DMNP). Fig. 12a shows the
fabrication process of the SERS-fluorescence DMNP, detailed as follows:
(i) synthesis of 40 nmAuNPs and (ii) adsorption of malachite green iso-
thiocyanate (MGITC) and tris(2,20-bipyridyl)ruthenium(II) chloride
hexahydrate (Rubpy) Raman reporters onto their surface. (iii) The
Raman reporter-labeled AuNPs were encapsulated with a silica shell to
prevent the release of Raman reporter molecules. In addition, the thick-
ness of the silica shell was tuned to achieve the maximum intensity of
the fluorescent dye (fluorescent ITC-modified with FITC or RuITC) cova-
lently attached onto their surface (iv). The nanostructureswere encapsu-
lated with a final silica shell (v) in order to minimize nanoparticle
aggregation and to protect the fluorescent dye. DMNP was further at-
tached to specific antibodies for targeting and imaging specific breast
cancer markers in living cells, as displayed by the schematic outline in
Fig. 12b. The final geometry of the nanostructure allows one to collect
fluorescence signal as a fast track tool for the recognition of cancer
markers, in addition to SERS as an accurate tool for imaging localized
marker distributions [161,162]. In a related work, an aqueous-phase
immunoassay protocol was developed with the SERS-fluorescence
DMNP and magnetic nanobeads [163].

Jiang et al. [155] brought together dark field images and SERS taking
advantage of Au modified nanorods. Raman reporter molecules were
chemically attached to the nanorods through Au–S or Au–N interac-
tions. Polyelectrolyte multilayers of poly(allylaminehydrochloride)
(PAH) and poly(styrenesulfonate) (PSS) were further assembled onto
nanoparticle surfaces to reach better stability and biocompatibility.
Finally, ligands for commonly overexpressed receptors on tumors
(carcinoembryonic antibody or transferrin) were electrostatically
adsorbed onto polyelectrolyte coatings. A diagram illustrating the
preparation of Au nanorods coated with the Raman reporter and

Fig. 9. The influence of the ordered structure it-PMMA/at-PMMA, partially ordered structure it-PMMA and disordered structure at-PMMA on the immobilization of the enzyme
β-galactosidase. The enzyme can adopt different structures by varying the ordering of the molecules on the substrate. The red circles represent the interaction between the
enzyme and substrate. Reprinted adapted with permission from [149]. Copyright 2014 American Chemical Society.

Fig. 10. Illustration of the lipid-encapsulated gold nanoparticles. The solid circle represents the gold nanoparticle, the rings represent lipid layers, and the small hexagons represent
dye molecules. Also shown are the TEM image of the lipid-encapsulated gold nanoparticles and the SERS spectra of Malachite green (1), rhodaminelissamine DSPE (2), and tryptophan
(3). Reprinted adapted with permission from [157]. Copyright 2014 American Chemical Society.
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polyelectrolytes (PAH and PSS) layers is shown in Fig. 13. HeLa cells were
chosen as target cancer cells in the experiment. The modified nanorods
uptaken by cancer cells provide not only dark field cell images but also
SERS images recorded by the unique signal of the Raman reporter, as
shown in Fig. 13b and c. The designed nanostructures are potentially use-
ful for in vivo bioimaging and photothermal therapy of cancer cells [164].

Plasmon resonance Rayleigh scattering (PRRS) and SERS were com-
bined with AgNPs to analyze the influence of mannoproteins on yeast
cell wall surfaces with an inhibition assay [165], making it possible to
detect single nanoparticles. SERS is able to distinguish the Rayleigh scat-
tering of the nanoparticles and cell components, bringing the vibration-
al information of the system under analysis. Despite the lack of SERS
reproducibility pointed out by the authors, PRRS and SERS can be joined
in a powerful method for highly sensitive, non-invasive analysis of cell
surfaces.

An additional use of spectroscopic techniques is in understanding
the adsorption mechanisms in films with two or more components, in
which synergy is sought as is the case of many LbL films. Of particular
relevance is the molecular-level interaction between components
which may lead to completely distinctive properties of the final film in
comparison to those of the individual components. For instance, Aoki
et al. [166] immobilized DPPG vesicles onto PAH layers using the LbL
technique. FTIR spectroscopy revealed that the interactions between
NH3

+ (PAH) and PO4
− (DPPG) groups are the main driving forces for

the PAH/DPPG LbL film growth. A similar strategy was applied to pro-
duce LB films containing multilayers of DPPG [167]. In the spirit of the
electrostatic LbL technique, DPPG multilayer LB films were produced
by transferring DPPG Langmuir monolayers from the water subphase
containing low concentrations of PAH onto solid substrates. Once
again, the goal was to take advantage of NH3

+ (PAH) and PO4
− (DPPG)

electrostatic interactions to grow LB multilayers of PAH/DPPG. Despite
the same molecular-level interaction, the films obtained with the LB
and LbL techniques displayed distinct molecular architectures since
DPPG was structured as monolayers in the LB films and as vesicles in
the LbL films. There are cases, however, where such molecular-level
interaction is not observed, in spite of the intimate contact in LbL
films. Indeed, Moraes et al. [168] obtained FTIR spectra for LbL films
madewithDPPG liposomes alternatedwith layers of poly(amidoamine)
G4 (PAMAM) dendrimer, which were the mere sum of the spectra of
PAMAM and DPPG.

Asmentioned before, SFG spectroscopy can probe ordering of hydro-
carbon chains as well as the head functional groups of monolayers. The
growth and adhesion of cortical neurons on self-assembledmonolayers
depends on the functional groups for amino-terminated, carboxy-
terminated and 1:1mixed alkanethiol monolayers on gold, as described
by Palyvoda et al. [169]. Using SFG they inferred that the ordering of the
terminal amino groups does not affect the ability for neuron adhesion,
while the dissociation of carboxylic groups hampers neuron attach-
ment. They reported that a net overall positive charge on the surface
is crucial to the neuronal adhesion, being amino groups very effective
adhesion promoters, while the surface carboxyl groups which are nega-
tively charged presented no ability to bind neurons. The role played by
surface roughness was also studied, using gold substrates with mean
roughness 1.9 nm (type A) and 0.7 nm (type B). Fig. 14 shows CO
stretching bands assigned to the−COOH group at 1767 cm−1 (iii vibra-
tional mode in the figure) and at 1654 cm−1 assigned to asymmetric CO
stretching from the anionic COO− group (i vibrational mode). In the
pure carboxy-teminated SAMs (spectra C and D), the 1767 cm−1

stretching band is broad for type A gold substrate (spectrum C) and
more easily distinguished for type B gold (spectrum D). This indicates
increasing order of the terminal carboxy groups deposited on the low
roughness gold type B. Moreover, the bands for mixed SAMs (spectra
A and B) were stronger and narrower than those for pure carboxy-

Fig. 11. Schematic representation of AgNPs attached to the cell achieving the SERS effect of
the cell membrane components. Reprinted adapted with permission from [159]. Copyright
2014 American Chemical Society.

Fig. 12. (a) Fabrication process of the SERS-fluorescence DMNP and (b) schematic outline displaying cancer marker detection using SERS-fluorescence DMNP. Fast tracking is allowed by
fluorescence, and SERS provides detailed information about molecular interactions and imaging of localized marker distributions. Reprinted adapted with permission from [160]. Copyright
2014 American Chemical Society.
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terminated SAMs, revealing that mixing of carboxy- and amino termi-
nated SAMs also causes better ordering of the terminal groups.

A further advantage of the SFG method is the possible quantitative
analysis it provides, as shown by previous examples (Section 3.1). Ye
et al. [170] made use of SFG with varying polarization of the light im-
pinging onto the samples to quantitatively probe peptide orientations
adsorbed on polymer surfaces coated on solid CaF2 substrates. They
used polystyrene (PS) and polystyrene maleimide (PS-MA) and the
Cysteine-terminated cecropin P1 (CP1) as a probe peptide whose
amide I and II bands were monitored. Differences in orientation could
be noted between physically adsorbed and chemically immobilized
CP1c on the polymer surfaces. Furthermore, the peptide orientation
also depended on whether it was in air or water, as demonstrated
by measurements with the films exposed to air or exposed to buffer
solutions or water.

Hybrid LB films have been producedwith the proteins lysozyme and
bovine serum albumin being incorporated in films containing saponite,

where the presence of the latter could be confirmed in ATR–FTIR spectra
with the S\O in-plane vibration band at 1000 cm−1 while the charac-
teristic amide I and II bands confirmed the presence of the proteins
[171]. Significantly, both proteins had their native structure preserved,
and stronger adsorption was observed for the positively charged
lysozyme since saponitewas negatively charged. Another type of hybrid
film was made with carbon nanotubes (CNTs) incorporated from
their suspensions into an LB film of 4-nitro-3-(octanoyloxy)benzoic
acid – OBZ – in stearic acid [172]. These films affected the activity of
phospholipase A2 isolated from Crotalus durissus cumanensis, according
to PM-IRRAS data. It was concluded that CNTs created a newmolecular
accommodation for the enzymatic action on the film surface and
preserving enzyme activity.

Two-dimensional surface-enhanced IR absorption spectroscopy (2D
SEIRAS) in the ATR-mode was used to monitor the catalytic activity of
Cytochrome c oxidase (CcO) immobilized on a tethered bilayer lipid
membrane deposited on a gold support [173]. With potentiometric ti-
trations of CcO, differences could be noted between the non-activated
and the activated states of the enzyme, as indicated by changes in the
2D SEIRA spectra as the electric potential was varied. These states
could be correlated to different conformations of CcO.

In a pioneeringwork, Brolo and coworkers used PM-IRRAS in conjunc-
tion with surface-enhanced (resonance) Raman scattering (SERRS) to
monitor the fabrication of a biofuel cell anode [174]. The anode was
built with deposition of a monolayer of 4-hydroxythiophenol (HTP)
attached to a coenzyme cibacron blue F3G-A (CB),which is suitable for in-
corporation of the enzyme formaldehyde dehydrogenase (FalDH). The
HTP-coated Au electrode (also used as SERS substrate or gold film used
for PM-IRRAS) was immersed in a CB solution for adsorption of the coen-
zyme, forming the layered structure Au/HTP/CB. FalDH was adsorbed
via drop-coating, leading to the anode architecture Au/HTP/CB/FalDH
illustrated in Fig. 15. The fabrication process was monitored as follows.
Upon adsorbing HTP on Au the S\H band observed in the spectrum of
bulk HTP was missing because the S atoms from HTP were bonded
to the Au atoms from the electrode. The incubation of FalDH on the
Au/HTP/CB architecture altered the CB bands, with the relative intensi-
ties of the ∼1400 and ∼1580 cm−1 bands being changed and the
1636 cm−1 band shifted to a higher frequency. This indicated that the
enzyme was chemically bonded to CB.

4. Strengths and limitations of the spectroscopic methods

All techniques described here (SERS, (PM-)IRRAS and SFG) have the
capability of obtaining vibrational spectra of interfacial molecules,

Fig. 13. (a) Diagram illustrating the preparation of Au nanorods coatedwith Raman reporter and polyelectrolyte (PAH and PSS) layers. Themorphology of themodified nanorods is shown
by the TEM image. Dark field (b) and SERS (c) images of HeLa cells marked with the modified nanorods. Reprinted from [164]. Copyright 2014, with permission from Springer.

Fig. 14. SFG spectra obtained using the ppp polarization configuration for mixed SAMs
deposited on gold (A) type A and (B) type B, and neat SAMs of 10-carboxy-1-
decanethiol deposited on gold (C) type A and (D) type B. The two main vibrational
modes are (i) 1654 cm−1 assigned to stretching of COO− group and (iii) 1767 cm−1

assigned to stretching of −COOH group. Reprinted adapted with permission from [169].
Copyright 2014 American Chemical Society.
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which in turn can be used to deduce information on themolecular level
about structure and interactions at interfaces. Each one has its particular
strengths and limitations, so that usually a combination of these
methods may yield the best results.

Surface infrared spectroscopy (ATR, IRRAS and PM-IRRAS) is now a
widespread technique for investigating biomimetic interfaces, such as
Langmuir and LB films. Among its advantages one can mention a sim-
pler and lower cost experimental setup, high sensitivity, capability of
in situ and real-time experiments to observe adsorption dynamics,
and the possibility of obtaining information on molecular orientation.
However, it has a limited specificity to interfaces, and contribution of
bulk molecules to the IRRAS spectra may be significant, even in the at-
tenuated total internal reflection geometry (ATR-IRRAS), where the
penetration depth of the IR radiation may be a few hundred nm. Even
with polarization modulation (PM-IRRAS), it is not clear that the bulk
contribution is completely suppressed. For weak signals, these tech-
niques also suffer from problems associated with baseline correction,
which may lead to distorted bandshapes or incorrect intensities. One
difficulty for using infrared absorption-based techniqueswhich remains
is associatedwith the bendingbands ofwater, for they generally overlap
with amide I bands of biomaterials.

SFG spectroscopy has several advantages with respect to other tech-
niques. The most important is its extreme surface selectivity, which
makes it possible to probe, for example, the surface structure of pure liq-
uids and solutions [102], or water interacting with Langmuir films [78].
Furthermore, it has high sensitivity, leads to usually simpler vibrational
spectra due to its stringent selection rule (modes must be both IR- and
Raman-active), it is non-destructive and capable of in situ and real-
time experiments. It is also generally possible to obtain qualitative
information on molecular orientation, and in many cases a quantitative
analysis is feasible, although in this case it usually relies on several
parameters and models for the nonlinear response of the molecules
that may be poorly known. One interesting aspect of SFG spectroscopy
with regard to biomembrane mimetic systems is its ability to qualita-
tively probe lipid chain conformation with high sensitivity. This can
also be probed with IR spectroscopy, but it usually relies on small fre-
quency shifts (a few cm−1) or slight broadening of CH2 stretches
[175,176], which may be difficult to observe in weak signals. With
SFG, conformational changes in lipid chains lead to changes in the
ratio of intensities for CH2 and CH3 stretches, a much more sensitive
and compelling evidence [76]. Detection of molecular chirality is also
quite simple and sensitive with SFG [80,124]. Finally, the possibility of
SFG imaging of interfaces, with chemical (vibrational spectroscopy)
and orientational sensitivities, and good spatial resolution (a few μm)
has been demonstrated in the last decade [177,178]. Even near-field
(~100 nm) resolution SFG imaging has been accomplished, but with
quite limited sensitivity [179]. Themajor drawback of SFG spectroscopy
is a relatively complex and costly experimental setup. Additionally,

since it is a coherent nonlinear optical process, the vibrational
lineshapes may be complicated by interference with nonresonant
contributions or nearby resonances, which makes data analysis and
interpretation more involved. These two factors still prevent a wider
applicability of SFG spectroscopy. Other important limitations of the
SFG technique are: it can only probe non-centrosymmetric molecules,
the need of flat (optically reflecting) interfaces, and the possibility of
optical damage to the samples due to high laser intensities.

The SERS technique is advantageous in comparison to other
methods for analytical tasks, including extremely high sensitivity,
inherent molecular specificity of unlabeled targets, no water interfer-
ences, narrow spectral bands, and being also non-destructive and non-
invasive. It may be applied in-situ and in-vitro for biological samples,
and works under a wide range of temperature and pressure condi-
tions [180]. For biosensing and diagnosis, the major advantage of SERS
over electrical or electrochemical biosensors is in the absence of inter-
ference from background conductivities and non-specific binding
[180]. In relation to other optical techniques such as surface plasmon
resonance (SPR), SERS can be used as a specific measurement while
SPR is based on the measure of mass accumulation, in which changes
due to molecules non-specifically bound cannot be differentiated from
the target. With respect to fluorescence techniques, besides the
photostability (photobleaching of fluorescent probes), SERS presents
simpler sample preparation [180]. Among SERS' important features
are molecular identity (fingerprint spectrum), information about 3D
structural changes (orientation, conformation) and intermolecular
interactions. Furthermore, of the three techniques discussed here,
SERS is the only one that allows high-resolution imaging with chemical
(vibrational) information. Typical spatial resolution in micro-Raman
instruments is ~1 μm, while for SFG microscopy and IR microscopy it
varies in the range of about 5 to 20 μm.

5. Conclusion and future prospects

The many examples for the use of spectroscopy methods in cell
membrane models and surface functionalization presented here are
indication that such techniques will become increasingly prevalent in
various areas of materials science, physical chemistry, biophysics and
biochemistry.Wehave concentrated on applications for nanostructured
films containing molecules of biological interest, which are used to
mimic biointerfaces, but the spectroscopy methods are also relevant
for any other type of interface. A crucial step in the next few years is
to disseminate the methods to health and life sciences, particularly to
assist in the design of new drugs and understanding physiological
action depending on interactionswith cell membranes, and in the iden-
tification of new opportunities for diagnosis and therapy based on
surface coatings. This will require close cooperation with professionals
from other fields, especially physicists and chemists.

Fig. 15. Surface-enhanced (resonance)Raman scattering (SERRS) and PM-IRRAS used tomonitor the construction of a biofuel cell anode. The depositions ofHTPonto gold (Step 1), CB onto
HTP (Step 2) which is suitable for enzyme incorporation, and the enzyme FalDH onto CB (Step 3)weremonitored using these spectroscopic techniques. Reprinted adapted with permission
from [174]. Copyright 2014 American Chemical Society.
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With regard to prospects associated with the methods themselves,
for SFG spectroscopy we envisage both technological and theoretical/
experimental advances. On the former, although commercial SFG spec-
trometers are available, it would be interesting to develop compact,
lower-cost and user-friendly SFG setups, so that the technique may be
more widely used, even by non-specialists. This would be important
to make the technique available to biomedical researchers for in vivo
investigations. On the theoretical side, it would be helpful to have calcu-
lations of the nonlinear (χ(2)) vibrational response of molecules, which
would allow more reliable determination of molecular orientation
[124], and simulations of the SFG spectra, whichwould greatly facilitate
obtaining structural information from the vibrational spectra [181]. Two
aspects of SFG spectroscopy that have already been demonstrated re-
main to be further explored in the context of biomimetic systems: SFG
imaging [177,178] and SFG scattering [182]. For example, SFG imaging
of lipid domains (rafts) in mixed films, bilayers or real membranes
would be very interesting, and could bring additional molecular-level
information such as conformation, interaction and orientation. The
extension to non-planar surfaces by SFG scattering is indeed very prom-
ising, since a greater variety of systems could be investigated, including
functionalized liposomes or colloidal particles, which include the effect
of curvature and would be better models for cell membranes.

A more widespread use of PM-IRRAS will also depend on the
development of less costly equipment and software for data analysis.
In terms of determining the structure of biomolecules at the interfaces,
it is probably the most versatile method currently available, though
other IR absorption methods have also performed well in this regard
[183,184]. As for SERS, the theoretical background has been firmly
established, but in terms of experimental setups three main challenges
remain: i) to design and produce reliable and reproducible SERS-
substrates. The latter is intimately related to the development of nano-
technology regarding templates and metallic nanoparticles, which
could allow one to obtain SERS-substrates with predictable enhance-
ment factors. This is a necessary step to make SERS a routine analytical
technique. ii) to understand the possible interaction between metallic
nanoparticles and the system under investigation, for chemisorption
could affect the sample, especially in biological samples for which the
nanoparticles could be toxic. iii) to reach single molecule detection in
routine procedures, rather than on limited conditions as it is today. A
first step in such direction was made with the use of computational
techniques related to information visualization to improve the spectral
analysis [185].

Acknowledgments

This work was supported by FAPESP, CNPq, CAPES and the nBioNet
network (Brazil).

References

[1] Kasemo B. Biological surface science. Surf Sci 2002;500:656–77.
[2] The 4th International Symposium on Surface and Interface of Biomaterials Rome,

Italy; 2013.
[3] Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellularmicroenvi-

ronments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23:47–55.
[4] E.F. Bernstei, P.L. Blackshe, Keller KH. Factors influencing erythrocyte destruction in

artificial organs. Am J Surg 1967;114:126.
[5] Colton CK. Implantable biohybrid artificial organs. Cell Transplant 1995;4:415–36.
[6] Desai TA. Micro- and nanoscale structures for tissue engineering constructs. Med

Eng Phys 2000;22:595–606.
[7] Bridgewater K. Achievements and advances for artificial organs. Artif Organs

2013;37:499–500.
[8] Grundfest-Broniatowski S. What would surgeons like from materials scientists?

Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:299–319.
[9] Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in

regulating bone and cartilage cell response. Biomaterials 1996;17:137–46.
[10] Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater

2005;4:518–24.
[11] Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional

arteries grown in vitro. Science 1999;284:489–93.

[12] Stevens MM, George JH. Exploring and engineering the cell surface interface.
Science 2005;310:1135–8.

[13] Cui HG, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from
molecules to nanostructures to biomaterials. Biopolymers 2010;94:1–18.

[14] Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve,
cartilage and bone. Carbohydr Polym 2009;76:167–82.

[15] Petersen TH, Calle EA, Zhao LP, Lee EJ, Gui LQ, Raredon MB, et al. Tissue-engineered
lungs for in vivo implantation. Science 2010;329:538–41.

[16] Zhang LJ, Webster TJ. Nanotechnology and nanomaterials: promises for improved
tissue regeneration. Nano Today 2009;4:66–80.

[17] Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and genetically
engineered proteins for tissue engineering. Prog Polym Sci 2012;37:1–17.

[18] Kamaly N, Xiao ZY, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted
polymeric therapeutic nanoparticles: design, development and clinical translation.
Chem Soc Rev 2012;41:2971–3010.

[19] Seliktar D. Designing cell-compatible hydrogels for biomedical applications.
Science 2012;336:1124–8.

[20] Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understand-
ing biophysicochemical interactions at the nano-bio interface. Nat Mater
2009;8:543–57.

[21] Huang HJ, Pierstorff E, Osawa E, Ho D. Protein-mediated assembly of nanodiamond
hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano
2008;2:203–12.

[22] Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug
delivery. Int J Pharm 2010;385:113–42.

[23] Siepmann F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends for
controlled release coatings. J Control Release 2008;125:1–15.

[24] Zelikin AN. Drug releasing polymer thin films: new era of surface-mediated drug
delivery. ACS Nano 2010;4:2494–509.

[25] Chaki NK, Vijayamohanan K. Self-assembled monolayers as a tunable platform for
biosensor applications. Biosens Bioelectron 2002;17:1–12.

[26] Katz E,Willner I. Probing biomolecular interactions at conductive and semiconductive
surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-
Sensors, and enzyme biosensors. Electroanalysis 2003;15:913–47.

[27] Kharitonov AB, Zayats M, Lichtenstein A, Katz E, Willner I. Enzyme monolayer-
functionalized field-effect transistors for biosensor applications. Sens Actuators B
2000;70:222–31.

[28] Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH. Glucose oxidase–graphene–
chitosan modified electrode for direct electrochemistry and glucose sensing.
Biosens Bioelectron 2009;25:901–5.

[29] Srivastava RK, Srivastava S, Narayanan TN, Mahlotra BD, Vajtai R, Ajayan PM, et al.
Functionalized multilayered graphene platform for urea sensor. ACS Nano
2012;6:168–75.

[30] Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L.
Computer simulation study of fullerene translocation through lipid membranes.
Nat Nanotechnol 2008;3:363–8.

[31] Cai KY, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD. Surface functionalized
titanium thin films: zeta-potential, protein adsorption and cell proliferation.
Colloids Surf B Biointerfaces 2006;50:1–8.

[32] Iwasaki Y, Saito N. Immobilization of phosphorylcholine polymers to Ti-supported
vinyldimethylsilyl monolayers and reduction of albumin adsorption. Colloids Surf B
Biointerfaces 2003;32:77–84.

[33] Satriano C, Fragala ME, Aleeva Y. Ultrathin and nanostructured ZnO-based films for
fluorescence biosensing applications. J Colloid Interface Sci 2012;365:90–6.

[34] Wong JY, Majewski J, Seitz M, Park CK, Israelachvili JN, Smith GS. Polymer-
cushioned bilayers. I. A structural study of various preparation methods using
neutron reflectometry. Biophys J 1999;77:1445–57.

[35] Fragneto-Cusani G. Neutron reflectivity at the solid/liquid interface: examples of
applications in biophysics. J Phys Condens Matter 2001;13:4973–89.

[36] Irvine DJ, Mayes AM, Satija SK, Barker JG, Sofia-Allgor SJ, Griffith LG. Comparison of
tethered star and linear poly(ethylene oxide) for control of biomaterials surface
properties. J Biomed Mater Res 1998;40:498–509.

[37] Krueger S, Meuse CW,Majkrzak CF, Dura JA, Berk NF, TarekM, et al. Investigation of
hybrid bilayer membranes with neutron reflectometry: probing the interactions of
melittin. Langmuir 2001;17:511–21.

[38] Ge CC, Du JF, Zhao LN, Wang LM, Liu Y, Li DH, et al. Binding of blood proteins to
carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A 2011;108:
16968–73.

[39] Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, et al. Scale: a
chemical approach for fluorescence imaging and reconstruction of transparent
mouse brain. Nat Neurosci 2011;14 [1481-U166].

[40] Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: from
fundamental mechanisms to biomedical applications. Chem Soc Rev 2008;37:
912–20.

[41] Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor
targeting and spectroscopic detection with surface-enhanced Raman nanoparticle
tags. Nat Biotechnol 2008;26:83–90.

[42] Fu L, Ma G, Yan ECY. In situ misfolding of human islet amyloid polypeptide at
interfaces probed by vibrational sum frequency generation. J Am Chem Soc
2010;132:5405–12.

[43] Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T. Structure and orientation of
water at charged lipid monolayer/water interfaces probed by heterodyne-
detected vibrational sum frequency generation spectroscopy. J Am Chem Soc
2010;132:10656–7.

[44] Shaffer MF, Dingel JH. A study of antigens and antibodies by the monolayer film
technique of Langmuir. Proc Soc Exp Biol Med 1938;38:528–30.

212 D. Volpati et al. / Advances in Colloid and Interface Science 207 (2014) 199–215

http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0005
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0875
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0875
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0010
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0010
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0880
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0880
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0015
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0020
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0020
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0885
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0885
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0025
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0025
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0030
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0030
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0035
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0035
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0040
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0040
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0045
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0045
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0050
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0050
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0055
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0055
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0060
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0060
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0065
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0065
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0070
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0070
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0075
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0075
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0075
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0080
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0080
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0085
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0085
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0085
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0090
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0090
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0090
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0095
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0095
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0100
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0100
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0105
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0105
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0110
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0110
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0115
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0115
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0115
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0120
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0120
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0120
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0125
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0125
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0125
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0130
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0130
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0130
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0135
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0135
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0135
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0140
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0140
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0140
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0145
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0145
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0145
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0150
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0150
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0890
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0890
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0890
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0160
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0160
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0165
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0165
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0165
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0170
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0170
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0170
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0175
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0175
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0175
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0895
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0895
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0895
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0185
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0185
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0185
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0190
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0190
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0190
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0195
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0195
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0195
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0200
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0200
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0200
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0200
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0205
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0205


[45] Maget-Dana R. The monolayer technique: a potent tool for studying the interfacial
properties of antimicrobial and membrane-lytic peptides and their interactions
with lipid membranes. Biochim Biophys Acta Biomembr 1999;1462:109–40.

[46] McConnell HM. Structures and transitions in lipid monolayers at the air–water-
interface. Annu Rev Phys Chem 1991;42:171–95.

[47] Germer LH, Storks KH. The structure of Langmuir–Blodgett films of stearic acid.
Proc Natl Acad Sci U S A 1937;23:390–7.

[48] Czolkos I, Jesorka A, Orwar O. Molecular phospholipid films on solid supports. Soft
Matter 2011;7:4562–76.

[49] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites.
Science 1997;277:1232–7.

[50] Lvov Y, Ariga K, Ichinose I, Kunitake T. Assembly of multicomponent protein
films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc
1995;117:6117–23.

[51] Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer
assembly: from biomimetics to tissue engineering. Adv Mater 2006;18:3203–24.

[52] Barth A, Zscherp C. What vibrations tell us about proteins. Q Rev Biophys
2002;35:369–430.

[53] Greenler RG. Infrared study of adsorbed molecules on metal surfaces by reflection
techniques. Journal of Chemical Physics 1966;44:310–5.

[54] Fahrenfort J. Attenuated total reflection — a new principle for the production of
useful infra-red reflection spectra of organic compounds. Spectrochim Acta
1961;17:698–709.

[55] Binder H. The molecular architecture of lipid membranes — new insights from
hydration-tuning infrared linear dichroism spectroscopy. Appl Spectrosc Rev
2003;38:15–69.

[56] Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared
spectroscopy of proteins and lipids in biological membranes. Biochim Biophys
Acta Rev Biomembr 1999;1422:105–85.

[57] Dluhy RA, Cornell DG. In situ measurement of the infrared-spectra of insoluble
monolayers at the air–water-interface. J Phys Chem 1985;89:3195–7.

[58] Mendelsohn R, Brauner JW, Gericke A. External infrared reflection–absorption
spectrometry monolayer films at the air–water-interface. Annu Rev Phys Chem
1995;46:305–34.

[59] Golden WG, Dunn DS, Overend J. A method for measuring infrared reflection–
absorption spectra of molecules adsorbed on low-area surfaces at monolayer and
submonolayer concentrations. J Catal 1981;71:395–404.

[60] Blaudez D, Buffeteau T, Cornut JC, Desbat B, Escafre N, Pezolet M, et al. Polarization-
modulated FT-IR spectroscopy of a spread monolayer at the air–water-interface.
Appl Spectrosc 1993;47:869–74.

[61] Blaudez D, Buffeteau T, Cornut JC, Desbat B, Escafre N, Pezolet M, et al. Polarization
modulation ftir spectroscopy at the air–water-interface. Thin Solid Films
1994;242:146–50.

[62] Ataka K, Heberle J. Biochemical applications of surface-enhanced infrared absorp-
tion spectroscopy. Anal Bioanal Chem 2007;388:47–54.

[63] Osawa M. Surface-enhanced infrared absorption. Near-field Opt Surf Plasmon
Polaritons 2001;81:163–87.

[64] Mendelsohn R, Flach CR. Handbook of vibrational spectroscopy. New Jersey: John
Wiley & Sons; 2001.

[65] Mendelsohn R, Mao G, Flach CR. Infrared reflection–absorption spectroscopy:
principles and applications to lipid–protein interaction in Langmuir films. Biochim
Biophys Acta Biomembr 2010;1798:788–800.

[66] Shen YR. The principles of nonlinear optics. San Diego Academic Press; 1988
[Chapter 25].

[67] Shen YR. Surfaces probed by nonlinear optics. Surf Sci 1994;299:551–62.
[68] Boyd RW. Nonlinear optics. San Diego: Academic Press; 1992 439.
[69] Lambert AG, Davies PB, Neivandt DJ. Implementing the theory of sum frequency

generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev
2005;40:103–45.

[70] Williams CT, Beattie DA. Probing buried interfaces with non-linear optical spectros-
copy. Surf Sci 2002;500:545–76.

[71] Shen YR. Phase-sensitive sum-frequency spectroscopy. In: Johnson MA, Martinez
TJ, editors. Annual review of physical chemistry, vol. 64; 2013. p. 129–50.

[72] Geiger FM. Second harmonic generation, sum frequency generation, and chi((3)):
dissecting environmental interfaces with a nonlinear optical Swiss army knife.
Annu Rev Phys Chem 2009;60:61–83.

[73] Jubb AM, HuaW, Allen HC. Environmental chemistry at vapor/water interfaces: in-
sights from vibrational sum frequency generation spectroscopy. In: Johnson MA,
Martinez TJ, editors. Annual review of physical chemistry, vol. 63; 2012. p. 107–30.

[74] Raschke MB, Hayashi M, Lin SH, Shen YR. Doubly-resonant sum-frequency
generation spectroscopy for surface studies. Chem Phys Lett 2002;359:367–72.

[75] Zhuang X,Miranda PB, Kim D, Shen YR. Mappingmolecular orientation and confor-
mation at interfaces by surface nonlinear optics. Phys Rev B 1999;59:12632–40.

[76] Guyot-Sionnest P, Hunt JH, Shen YR. Sum-frequency vibrational spectroscopy of a
Langmuir film: study of molecular orientation of a two-dimensional system. Phys
Rev Lett 1987;59:1597–600.

[77] Pavinatto FJ, Pacholatti CP, Montanha EA, Caseli L, Silva HS, Miranda PB, et al.
Cholesterol mediates chitosan activity on phospholipid monolayers and
Langmuir–Blodgett films. Langmuir 2009;25:10051–61.

[78] Miranda PB, Pflumio V, Saijo H, Shen YR. Surfactant monolayers at solid–liquid
interfaces: conformation and interaction. Thin Solid Films 1998;327:161–5.

[79] Du Q, Freysz E, Shen YR. Vibrational-spectra of water-molecules at quartz water
interfaces. Phys Rev Lett 1994;72:238–41.

[80] Belkin MA, Kulakov TA, Ernst KH, Yan L, Shen YR. Sum-frequency vibrational
spectroscopy on chiral liquids: a novel technique to probe molecular chirality.
Phys Rev Lett 2000;85:4474–7.

[81] Aroca R. Surface-enhanced vibrational spectroscopy. Chichester: JohnWiley & Sons
Ltd; 2006.

[82] Ru ECL, Etchegoin PG. Principles of surface-enhanced ramanspectroscopy: and
related plasmonic effects. Oxford: Elsevier; 2008.

[83] Alessio P, Constantino CJL, Aroca RF, Oliveira Jr ON. Surface-enhanced Raman
scattering: metal nanostructures coated with Langmuir–Blodgett films. J Chil
Chem Soc 2010;55:469–78.

[84] Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods
(NRs) using seed-mediated growth method. Chem Mater 2003;15:1957–62.

[85] Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the
morphology of biologically synthesized gold nanotriangles. Langmuir 2006;22:
736–41.

[86] Im SH, Lee YT,Wiley B, Xia YN. Large-scale synthesis of silver nanocubes: the role of
HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed
2005;44:2154–7.

[87] Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, et al. Shell-isolated nanoparticle-
enhanced Raman spectroscopy. Nature 2010;464:392–5.

[88] Guerrero AR, Aroca RF. Surface-enhanced fluorescence with shell-isolated
nanoparticles (SHINEF). Angew Chem Int Ed 2011;50:665–8.

[89] Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, et al. Surface-
enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl
Spectrosc 2002;56:150–4.

[90] Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, et al. Single cell
optical imaging and spectroscopy. Chem Rev 2013;113:2469–527.

[91] Tu RS, Tirrell M. Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev
2004;56:1537–63.

[92] Jones, Chapman. Micelles, monolayers and biomembranes. New York: Wiley-Liss;
1994.

[93] Brezesinski G, Mohwald H. Langmuir monolayers to study interactions at model
membrane surfaces. Adv Colloid Interface Sci 2003;100:563–84.

[94] Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte multilayer assemblies on
materials surfaces: from cell adhesion to tissue engineering. Chem Mater
2012;24:854–69.

[95] Schmidt RC, Healy KE. Controlling biological interfaces on the nanometer length
scale. J Biomed Mater Res A 2009;90A:1252–61.

[96] Holmes HN. A practical model of the animal cell membranes. J Phys Chem
1939;43:1151–3.

[97] Ross S. Solubilization of dyes in mineral oil and its application to a model biological
cell membrane. J Colloid Sci 1951;6:497–507.

[98] Schreier S, Malheiros SVP, de Paula E. Surface active drugs: self-association and in-
teraction withmembranes and surfactants. Physicochemical and biological aspects.
Biochim Biophys Acta Biomembr 2000;1508:210–34.

[99] Fa N, Ronkart S, Schanck A, Deleu M, Gaigneaux A, Goonnaghtigh E, et al. Effect of
the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers.
Chem Phys Lipids 2006;144:108–16.

[100] Cancino J, Nobre TM, Oliveira Jr ON, Machado SAS, Zucolotto V. A new strategy to
investigate the toxicity of nanomaterials using Langmuir monolayers as membrane
models. Nanotoxicology 2013;7:61–70.

[101] Nguyen KT, Soong R, Im S-C, Waskell L, Ramamoorthy A, Chen Z. Probing the
spontaneous membrane insertion of a tail-anchored membrane protein by sum
frequency generation spectroscopy. J Am Chem Soc 2010;132:15112–5.

[102] Shen YR, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water
interfaces: polar orientation of water molecules at interfaces. Chem Rev
2006;106:1140–54.

[103] Ma G, Allen HC. DPPC Langmuir monolayer at the air–water interface: probing
the tail and head groups by vibrational sum frequency generation spectroscopy.
Langmuir 2006;22:5341–9.

[104] Sarangi NK, Patnaik A. Unraveling tryptophan modulated 2D DPPC lattices: an
approach toward stimuli responsiveness of the pulmonary surfactant. J Phys
Chem B 2011;115:13551–62.

[105] Diederich A, Sponer C, Pum D, Sleytr UB, Losche M. Reciprocal influence between
the protein and lipid components of a lipid–protein membrane model. Colloids
Surf B Biointerfaces 1996;6:335–46.

[106] Polverini E, Arisi S, Cavatorta P, Berzina T, Cristofolini L, Fasano A, et al. Interaction
of myelin basic protein with phospholipid monolayers: mechanism of protein
penetration. Langmuir 2003;19:872–7.

[107] Meister A, Nicolini C, Waldmann H, Kuhlmann J, Kerth A, Winter R, et al. Insertion
of lipidated Ras proteins into lipid monolayers studied by infrared reflection
absorption spectroscopy (IRRAS). Biophys J 2006;91:1388–401.

[108] Banc A, Desbat B, Renard D, Popineau Y, Mangavel C, Navailles L. Exploring the
interactions of gliadins with model membranes: effect of confined geometry and
interfaces. Biopolymers 2009;91:610–22.

[109] vandenAkker CC, Engel MFM, Velikov KP, Bonn M, Koenderink GH. Morphology
and persistence length of amyloid fibrils are correlated to peptide molecular
structure. J Am Chem Soc 2011;133:18030–3.

[110] Lopes DHJ, Meister A, Gohlke A, Hauser A, Blume A, Winter R. Mechanism of islet
amyloid polypeptide fibrillation at lipid interfaces studied by infrared reflection
absorption spectroscopy. Biophys J 2007;93:3132–41.

[111] Damalio JCP, Nobre TM, Lopes JL, Oliveira Jr ON, Araujo APU. Lipid interaction
triggering Septin2 to assembly into beta-sheet structures investigated by Langmuir
monolayers and PM-IRRAS. Biochim Biophys Acta Bioenerg 1828;2013:1441–8.

[112] Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode
of action: a state of the art review. Int J Food Microbiol 2010;144:51–63.

[113] Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A. Effect of chitosan on weight
loss in overweight and obese individuals: a systematic review of randomized
controlled trials. Obes Rev 2005;6:35–42.

213D. Volpati et al. / Advances in Colloid and Interface Science 207 (2014) 199–215

http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0210
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0210
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0210
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0215
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0215
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0220
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0220
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0225
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0225
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0230
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0230
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0235
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0235
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0235
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0240
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0240
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0245
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0245
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0900
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0900
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0905
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0905
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0905
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0250
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0250
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0250
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0255
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0255
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0255
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0260
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0260
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0265
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0265
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0265
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0270
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0270
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0270
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0275
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0275
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0275
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0280
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0280
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0280
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0285
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0285
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0290
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0290
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0295
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0295
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0300
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0300
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0300
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0305
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0305
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0310
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0910
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0320
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0320
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0320
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0325
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0325
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0955
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0955
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0920
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0920
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0920
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0925
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0925
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0925
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0330
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0330
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0335
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0335
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0340
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0340
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0340
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0345
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0345
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0345
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0350
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0350
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0355
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0355
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0360
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0360
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0360
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0365
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0365
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0370
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0370
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0375
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0375
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0375
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0380
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0380
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0385
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0385
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0385
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0390
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0390
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0390
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0395
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0395
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0400
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0400
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0405
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0405
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0405
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0410
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0410
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0415
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0415
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0930
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0930
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0420
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0420
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0425
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0425
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0425
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0430
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0430
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0435
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0435
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0440
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0440
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0445
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0445
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0445
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0450
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0450
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0450
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0455
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0455
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0455
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0460
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0460
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0460
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0465
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0465
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0465
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0470
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0470
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0470
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0475
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0475
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0475
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0480
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0480
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0480
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0485
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0485
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0485
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0490
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0490
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0490
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0495
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0495
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0495
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0935
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0935
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0935
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0500
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0500
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0500
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0505
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0505
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0505
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0510
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0510
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0515
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0515
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0515


[114] Casal E, Montilla A, Moreno FJ, Olano A, Corzo N. Use of chitosan for selective
removal of beta-lactoglobulin from whey. J Dairy Sci 2006;89:1384–9.

[115] Caseli L, Pavinatto FJ, Nobre TM, Zaniquelli MED, Viitala T, Oliveira Jr ON. Chitosan
as a removing agent of beta-lactoglobulin from membrane models. Langmuir
2008;24:4150–6.

[116] Silva CA, Nobre TM, Pavinatto FJ, Oliveira Jr ON. Interaction of chitosan and
mucin in a biomembrane model environment. J Colloid Interface Sci 2012;376:
289–95.

[117] Finegold L. Cholesterol in membrane models. Boca Raton: CRC Press; 1993.
[118] Ohe C, Sasaki T, Noi M, Goto Y, Itoh K. Sum frequency generation spectroscopic

study of the condensation effect of cholesterol on a lipid monolayer. Anal Bioanal
Chem 2007;388:73–9.

[119] Pott T, Maillet JC, Dufourc EJ. Effects of pH and cholesterol on DMPA membranes: a
solid state H-2- and P-31-NMR study. Biophys J 1995;69:1897–908.

[120] Chieze L, Bolanos-Garcia VM, Pinot M, Desbat B, Renault A, Beaufils S, et al. Fluid
and condensed ApoA-I/phospholipid monolayers provide insights into ApoA-I
membrane insertion. J Mol Biol 2011;410:60–76.

[121] Nobre TM, de Sousa e Silva H, Furriel RPM, Leone FA, Miranda PB, Zaniquelli MED.
Molecular view of the interaction between iota-carrageenan and a phospholipid
film and its role in enzyme immobilization. J Phys Chem B 2009;113:7491–7.

[122] Chen X,Wang J, Boughton AP, Kristalyn CB, Chen Z. Multiple orientation of melittin
inside a single lipid bilayer determined by combined vibrational spectroscopic
studies. J Am Chem Soc 2007;129:1420–7.

[123] Chen X, Wang J, Kristalyn CB, Chen Z. Real-time structural investigation of a
lipid bilayer during its interaction with melittin using sum frequency generation
vibrational spectroscopy. Biophys J 2007;93:866–75.

[124] Xiao D, Fu L, Liu J, Batista VS, Yan ECY. Amphiphilic adsorption of human islet
amyloid polypeptide aggregates to lipid/aqueous interfaces. J Mol Biol 2012;
421:537–47.

[125] Kouzayha A, Nasir MN, Buchet R, Wattraint O, Sarazin C, Besson F. Conformational
and interfacial analyses of K(3)A(18)K(3) and alamethicin in model membranes. J
Phys Chem B 2009;113:7012–9.

[126] Wieclaw K, Korchowiec B, Corvis Y, Korchowiec J, Guermouche H, Rogalska E.
Meloxicam and meloxicam–beta–cyclodextrin complex in model membranes:
effects on the properties and enzymatic lipolysis of phospholipid monolayers in
relation to anti-inflammatory activity. Langmuir 2009;25:1417–26.

[127] Pinheiro M, Lucio M, Reis S, Lima JLFC, Caio JM, Moiteiro C, et al. Molecular
interaction of rifabutin on model lung surfactant monolayers. J Phys Chem B
2012;116:11635–45.

[128] Flach CR, Gericke A, Keough KMW,Mendelsohn R. Palmitoylation of lung surfactant
protein SP-C alters surface thermodynamics, but not protein secondary structure or
orientation in 1,2-dipalmitoylphosphatidylcholine Langmuir films. Biochim
Biophys Acta Biomembr 1999;1416:11–20.

[129] Dieudonne D,Mendelsohn R, Farid RS, Flach CR. Secondary structure in lung surfac-
tant SP-B peptides: IR and CD studies of bulk and monolayer phases. Biochim
Biophys Acta Biomembr 2001;1511:99–112.

[130] Stenger PC, Alonso C, Zasadzinski JA, Waring AJ, Jung C-L, Pinkerton KE. Environ-
mental tobacco smoke effects on lung surfactant film organization. Biochim
Biophys Acta Biomembr 2009;1788:358–70.

[131] Pavinatto FJ, Caseli L, Pavinatto A, dos Santos Jr DS, Nobre TM, Zaniquelli MED, et al.
Probing chitosan and phospholipid interactions using Langmuir and Langmuir–
Blodgett films as cell membrane models. Langmuir 2007;23:7666–71.

[132] Caseli L, Zaniquelli MED, Furriel RPM, Leone FA. Enzymatic activity of alkaline
phosphatase adsorbed on dimyristoylphosphatidic acid Langmuir–Blodgett films.
Colloids Surf B Biointerfaces 2002;25:119–28.

[133] Schmidt TF, Pavinatto FJ, Caseli L, Gonzaga MLC, Soares SA, Ricardo NMPS, et al. In-
teraction of polysaccharide–protein complex from Agaricus blazei with Langmuir
and Langmuir–Blodgett films of phospholipids. J Colloid Interface Sci 2009;
330:84–9.

[134] Schmidt TF, Caseli L, Viitala T, Oliveira Jr ON. Enhanced activity of horseradish
peroxidase in Langmuir–Blodgett films of phospholipids. Biochim Biophys Acta
Biomembr 2008;1778:2291–7.

[135] Wang T, Li D, Lu X, Khmaladze A, Han X, Ye S, et al. Single lipid bilayers constructed
on polymer cushion studied by sum frequency generation vibrational spectrosco-
py. J Phys Chem C 2011;115:7613–20.

[136] Ye S, Li H, Wei F, Jasensky J, Boughton AP, Yang P, et al. Observing a model ion
channel gating action in model cell membranes in real time in situ: membrane
potential change induced alamethicin orientation change. J Am Chem Soc
2012;134:6237–43.

[137] Laredo T, Dutcher JR, Lipkowski J. Electric field driven changes of a gramicidin
containing lipid bilayer supported on a Au(111) surface. Langmuir 2011;27:
10072–87.

[138] Leitch JJ, Brosseau CL, Roscoe SG, Bessonov K, Dutcher JR, Lipkowski J. Electrochem-
ical and PM-IRRAS characterization of cholera toxin binding at a model biological
membrane. Langmuir 2013;29:965–76.

[139] Pilbat A-M, Szegletes Z, Kota Z, Ball V, Schaaf P, Voegel J-C, et al. Phospholipid
bilayers as biomembrane-like barriers in layer-by-layer polyelectrolyte films.
Langmuir 2007;23:8236–42.

[140] Henry ER, Hofrichter J. Singular value decomposition — application to analysis of
experimental-data. Methods Enzymol 1992;210:129–92.

[141] Barraud A, Perrot H, Billard V, Martelet C, Therasse J. Study of immunoglobulin-g
thin-layers obtained by the Langmuir–Blodgett method — application to
immunosensors. Biosens Bioelectron 1993;8:39–48.

[142] Singhal R, Gambhir A, Pandey MK, Annapoorni S, Malhotra BD. Immobilization
of urease on poly(N-vinyl carbazole)/stearic acid Langmuir–Blodgett films for
application to urea biosensor. Biosens Bioelectron 2002;17:697–703.

[143] Vinu A, Miyahara M, Ariga K. Biomaterial immobilization in nanoporous carbon
molecular sieves: influence of solution pH, pore volume, and pore diameter. J
Phys Chem B 2005;109:6436–41.

[144] Caseli L, Perinotto AC, Viitala T, Zucolotto V, Oliveira Jr ON. Immobilization of
alcohol dehydrogenase in phospholipid Langmuir–Blodgett films to detect ethanol.
Langmuir 2009;25:3057–61.

[145] Ohnuki H, Honjo R, Endo H, Imakubo T, IzumiM. Amperometric cholesterol biosen-
sors based on hybrid organic–inorganic Langmuir–Blodgett films. Thin Solid Films
2009;518:596–9.

[146] Ohnuki H, Saiki T, Kusakari A, Endo H, Ichihara M, Izumi M. Incorporation of
glucose oxidase into Langmuir–Blodgett films based on Prussian blue applied to
amperometric glucose biosensor. Langmuir 2007;23:4675–81.

[147] Pakalns T, Haverstick KL, Fields GB, McCarthy JB, Mooradian DL, Tirrell M. Cellular
recognition of synthetic peptide amphiphiles in self-assembled monolayer films.
Biomaterials 1999;20:2265–79.

[148] Khopade AJ, Caruso F. Surface-modification of polyelectrolyte multilayer-coated
particles for biological applications. Langmuir 2003;19:6219–25.

[149] Yang P, Zhang XX, Yang B, Zhao HC, Chen JC, Yang WT. Facile preparation of a
patterned, aminated polymer surface by UV-light-induced surface aminolysis.
Adv Funct Mater 2005;15:1415–25.

[150] Kennedy LJ, Selvi PK, Padmanabhan A, Hema KN, Sekaran G. Immobilization of
polyphenol oxidase onto mesoporous activated carbons — isotherm and kinetic
studies. Chemosphere 2007;69:262–70.

[151] Lu Z, Zhang J, Ma Y, Song S, GuW. Biomimeticmineralization of calcium carbonate/
carboxymethylcellulose microspheres for lysozyme immobilization. Mater Sci Eng
C-Mater Biol Appl 2012;32:1982–7.

[152] Nicolau E, Mendez J, Fonseca JJ, Griebenow K, Cabrera CR. Bioelectrochemistry of
non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanopar-
ticles. Bioelectrochemistry 2012;85:1–6.

[153] Sun J, Ma H, Liu Y, Su Y, Xia W, Yang Y. Improved preparation of immobilized
trypsin on superparamagnetic nanoparticles decorated with metal ions. Colloids
Surf A Physicochem Eng Asp 2012;414:190–7.

[154] Matsuno H, Nagasaka Y, Kurita K, Serizawa T. Superior activities of enzymes
physically immobilized on structurally regular poly(methyl methacrylate)
surfaces. Chem Mater 2007;19:2174–9.

[155] Choi J, Konno T, Matsuno R, Takai M, Ishihara K. Surface immobilization of biocom-
patible phospholipid polymer multilayered hydrogel on titanium alloy. Colloids
Surf B Biointerfaces 2008;67:216–23.

[156] Potara M, Gabudean AM, Astilean S. Solution-phase, dual LSPR–SERS plasmonic
sensors of high sensitivity and stability based on chitosan-coated anisotropic silver
nanoparticles. J Mater Chem 2011;21:3625–33.

[157] Ip S, MacLaughlin CM, Gunari N, Walker GC. Phospholipid membrane encapsula-
tion of nanoparticles for surface-enhanced raman scattering. Langmuir 2011;27:
7024–33.

[158] Kumar M, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry
and pharmaceutical perspectives. Chem Rev 2004;104:6017–84.

[159] Hodges MD, Kelly JG, Bentley AJ, Fogarty S, Patel II, Martin FL, et al. Combining
immunolabeling and surface-enhanced Raman spectroscopy on cell membranes.
ACS Nano 2011;5:9535–41.

[160] Lee S, Chon H, Yoon SY, Lee EK, Chang SI, Lim DW, et al. Fabrication of SERS-
fluorescence dual modal nanoprobes and application to multiplex cancer cell im-
aging. Nanoscale 2012;4:124–9.

[161] Pallaoro A, Braun GB, Reich NO, Moskovits M. Mapping local pH in live cells using
encapsulated fluorescent SERS nanotags. Small 2010;6:618–22.

[162] Kennedy DC, Hoop KA, Tay LL, Pezacki JP. Development of nanoparticle probes for
multiplex SERS imaging of cell surface proteins. Nanoscale 2010;2:1413–6.

[163] Zong SF, Wang ZY, Zhang RH, Wang CL, Xu SH, Cui YP. A multiplex and straightfor-
ward aqueous phase immunoassay protocol through the combination of SERS-
fluorescence dual mode nanoprobes and magnetic nanobeads. Biosens Bioelectron
2013;41:745–51.

[164] Jiang L, Qian J, Cai FH, He SL. Raman reporter-coated gold nanorods and their
applications in multimodal optical imaging of cancer cells. Anal Bioanal Chem
2011;400:2793–800.

[165] Syamala KM, Abe H, Fujita Y, Tomimoto K, Biju V, IshikawaM, et al. Inhibition assay
of yeast cell walls by plasmon resonance Rayleigh scattering and surface-enhanced
Raman scattering imaging. Langmuir 2012;28:8952–8.

[166] Aoki PHB, Volpati D, Riul Jr A, Caetano W, Constantino CJL. Layer-by-layer
technique as a new approach to produce nanostructured films containing
phospholipids as transducers in sensing applications. Langmuir 2009;25:
2331–8.

[167] Aoki PHB, Alessio P, Rodriguez-Mendez ML, De Saja Saez JA, Constantino CJL.
Taking advantage of electrostatic interactions to grow Langmuir–Blodgett films
containing multilayers of the phospholipid dipalmitoylphosphatidylglycerol.
Langmuir 2009;25:13062–70.

[168] Moraes ML, Baptista MS, Itri R, Zucolotto V, Oliveira Jr ON. Immobilization of lipo-
somes in nanostructured layer-by-layer films containing dendrimers. Mater Sci Eng
C Biomim Supramol Syst 2008;28:467–71.

[169] Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen C-C, Benderskii AV,
et al. Molecular organization in SAMs used for neuronal cell growth. Langmuir
2008;24:4097–106.

[170] Ye S, Nguyen KT, Boughton AP, Mello CM, Chen Z. Orientation difference of
chemically immobilized and physically adsorbed biological molecules on polymers
detected at the solid/liquid interfaces in situ. Langmuir 2010;26:6471–7.

[171] Miao S, Leeman H, De Feyter S, Schoonheydt RA. Facile preparation of Langmuir–
Blodgett films of water-soluble proteins and hybrid protein-clay films. J Mater
Chem 2010;20:698–705.

214 D. Volpati et al. / Advances in Colloid and Interface Science 207 (2014) 199–215

http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0520
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0520
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0525
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0525
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0525
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0530
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0530
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0530
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0535
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0540
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0540
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0540
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0545
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0545
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0550
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0550
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0550
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0940
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0940
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0940
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0560
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0560
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0560
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0565
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0565
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0565
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0570
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0570
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0570
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0575
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0575
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0575
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0580
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0580
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0580
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0580
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0585
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0585
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0585
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0590
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0590
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0590
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0590
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0595
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0595
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0595
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0600
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0600
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0600
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0945
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0945
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0945
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0610
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0610
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0610
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0615
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0615
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0615
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0615
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0620
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0620
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0620
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0625
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0625
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0625
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0630
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0630
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0630
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0630
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0635
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0635
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0635
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0640
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0640
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0640
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0645
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0645
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0645
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0650
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0650
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0655
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0655
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0655
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0660
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0660
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0660
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0665
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0665
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0665
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0670
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0670
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0670
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0675
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0675
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0675
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0680
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0680
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0680
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0685
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0685
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0685
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0690
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0690
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0695
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0695
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0695
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0700
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0700
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0700
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0705
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0705
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0705
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0710
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0710
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0710
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0715
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0715
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0715
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0720
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0720
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0720
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0725
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0725
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0725
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0730
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0730
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0730
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0735
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0735
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0735
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0740
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0740
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0745
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0745
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0745
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0750
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0750
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0750
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0755
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0755
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0760
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0760
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0765
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0765
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0765
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0765
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0770
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0770
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0770
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0775
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0775
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0775
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0780
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0780
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0780
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0780
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0785
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0785
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0785
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0785
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0790
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0790
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0790
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0795
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0795
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0795
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0800
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0800
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0800
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0805
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0805
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0805


[172] Caseli L, Tiburcio VLB, Vargas FFR, Marangoni S, Siqueira Jr JR. Enhanced architec-
ture of lipid-carbon nanotubes as Langmuir–Blodgett films to investigate the
enzyme activity of phospholipases from snake venom. J Phys Chem B 2012;
116:13424–9.

[173] Nowak C, Laredo T, Gebert J, Lipkowski J, Gennis RB, Ferguson-Miller S, et al. 2D-
SEIRA spectroscopy to highlight conformational changes of the cytochrome c
oxidase induced by direct electron transfer. Metallomics 2011;3:619–27.

[174] Fan M, Marechal M, Finn A, Harrington DA, Brolo AG. Layer-by-layer characteriza-
tion of a model biofuel cell anode by (in situ) vibrational spectroscopy. J Phys Chem
C 2011;115:310–6.

[175] Snyder RG, Strauss HL, Elliger CA. C\H stretching modes and the structure of
normal-alkyl chains.1. Long, disordered chains. J Phys Chem 1982;86:5145–50.

[176] Zhao L, Feng S-S. Effects of cholesterol component on molecular interactions
between paclitaxel and phospholipid within the lipid monolayer at the air–water
interface. J Colloid Interface Sci 2006;300:314–26.

[177] Florsheimer M, Brillert C, Fuchs H. Chemical imaging of interfaces by sum-
frequency generation. Mater Sci Eng C Biomim Supramol Syst 1999;8–9:335–41.

[178] Cimatu K, Baldelli S. Sum frequency generation microscopy of microcontact-
printed mixed self-assembled monolayers. J Phys Chem B 2006;110:1807–13.

[179] Schaller RD, Johnson JC, Wilson KR, Lee LF, Haber LH, Saykally RJ. Nonlinear chem-
ical imaging nanomicroscopy: from second and third harmonic generation to mul-
tiplex (broad-bandwidth) sum frequency generation near-field scanning optical
microscopy. J Phys Chem B 2002;106:5143–54.

[180] Huh YS, Chung AJ, Erickson D. Surface enhanced Raman spectroscopy and its appli-
cation to molecular and cellular analysis. Microfluid Nanofluid 2009;6:285–97.

[181] Morita A, Ishiyama T. Recent progress in theoretical analysis of vibrational sum
frequency generation spectroscopy. Phys Chem Chem Phys 2008;10:5801–16.

[182] Roke S, Gonella G. Nonlinear light scattering and spectroscopy of particles and
droplets in liquids. In: Johnson MA, Martinez TJ, editors. Annual review of physical
chemistry, vol. 63; 2012. p. 353–78.

[183] Kolano C, Helbing J, Kozinski M, Sander W, Hamm P. Watching hydrogen-bond
dynamics in a beta-turn by transient two-dimensional infrared spectroscopy.
Nature 2006;444:469–72.

[184] Li JJ, Yip CM. Super-resolved FT-IR spectroscopy: strategies, challenges, and opportuni-
ties for membrane biophysics. Biochim Biophys Acta Biomembr 1828;2013:2272–82.

[185] Aoki PHB, Carreon EGE, Volpati D, Shimabukuro MH, Constantino CJL, Aroca RF,
et al. SERS mapping in Langmuir–Blodgett films and single-molecule detection.
Appl Spectrosc 2013;67:563–9.

215D. Volpati et al. / Advances in Colloid and Interface Science 207 (2014) 199–215

http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0810
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0810
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0810
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0810
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0815
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0815
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0815
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0820
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0820
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0820
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0825
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0825
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0825
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0830
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0830
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0830
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0835
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0835
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0840
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0840
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0845
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0845
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0845
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0845
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0850
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0850
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0855
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0855
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0950
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0950
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0950
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0860
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0860
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0860
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0865
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0865
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0870
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0870
http://refhub.elsevier.com/S0001-8686(14)00026-8/rf0870

