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RESEARCH

Because plant nutrients have specific and essential roles in 
metabolism (Malavolta, 2006), the lack of any nutrient causes 

disturbance in plant metabolism (Epstein and Bloom, 2004). Rec-
ognizing symptoms of nutritional deficiency allows for correct-
ing them more efficiently and reducing the negative effects to 
the environment (Sarcinelli et al., 2004). Methods to measure the 
concentration of chemical elements in plant leaves are expensive 
and time consuming (Guimarães et al., 1999). In addition, if the 
recognition occurs during the later stages of plant development, 
such information is not useful to correct the deficiency that pro-
duction cycle (Wu et al., 2007). A rapid and inexpensive way to 
identify such deficiency is through visual diagnosis, but its preci-
sion is limited to the experience of the observer (Baesso et al., 
2007). Since both chemical analysis and visual diagnosis have 
disadvantages, this study presents an approach to assess the plant 
nutritional status for Mg through analysis of leaf images. In this 
approach, artificial vision methods are used to extract features 
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ABSTRACT
The nutritional status of maize (Zea mays L.) can 
be diagnosed by chemical analysis of leaves, 
which is very slow, or by visual diagnosis of 
deficiency symptoms, which is dependent on 
observer experience. The artificial visual sys-
tem (AVS) is a technology to identify nutritional 
deficiencies in maize, allowing correction for 
nutrient supply at earlier development stages 
in maize. our objective was to propose meth-
ods of artificial vision and pattern recognition to 
identify the concentration of magnesium (Mg) in 
maize plants grown in the greenhouse. Magne-
sium concentrations were 0.0, 0.65, 1.3, and 2.0 
mM Mg, with four replications. Leaf scans were 
collected at V4 (four leaves fully developed), V6 
(six leaves fully developed), and V8 (eight leaves 
fully developed) stages, and these leaves were 
samples for chemical assays. Such images 
were processed using AVS methods. Volumet-
ric fractal dimension (VFD), Gabor wavelet (GW), 
and VFD with canonical analysis (VFDCA) were 
techniques used by the AVS to extract defi-
ciency characteristics in the leaf images. The 
increase of Mg in the nutrient solution caused 
an increase in the Mg concentration in leaves, 
resulting in typical visual symptoms. The AVS 
method was able to identify all levels of defi-
ciency, scoring 75.5% of rights in images of the 
middle section of leaves in the VFDCA method, 
in color scans of V4 leaves. The AVS was effi-
cient at diagnosing Mg concentrations in leaves 
of maize during the V4 stage.
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from leaf images and pattern recognition methods are 
then used to classify the leaf images for nutrient disorder.

The AVS is a computer system in which a set of meth-
ods and techniques are able to interpret or assess images 
automatically or semiautomatically (Punam and Udupa, 
2001), and the artificial vision is an open area and devel-
oping (Niblack, 1985). The use of digital images in preci-
sion agriculture is not recent and many studies have shown 
promising results. Vooren and Heijden (1993) used digital 
image analysis techniques to determine the dimensions of 
plant organs. Karcher and Richardson (2003) determined 
lawn color using digital image analysis. Baesso et al. 
(2007) used digital image analysis to detect nitrogen lev-
els in bean (Phaseolus vulgaris L.) plants. Sena et al. (2008) 
evaluated the discrimination of three nitrogen levels on 
wheat (Triticum aestivum L.) plants using digital images and 
a portable chlorophyll meter (SPAD), and found that using 
the classification of artificial vision techniques were bet-
ter than the SPAD. Abraha et al. (2009) developed mul-
tivariate classifiers using spectral indices for the determi-
nation of four nitrogen levels in Tanzania grass (Panicum 
maximum Jacq.). Backes et al. (2010) used the digital image 
analysis compared with the chlorophyll meter to assess the 
nutritional status of nitrogen in zoysiagrass (Zoysia japonica 
Steud.) in area fertilized with five levels of sewage sludge.

Magnesium deficiency causes typical symptoms such 
as light green veins in older, more mature leaves, followed 
by yellow and possibly brown areas with necrosis (Mala-
volta, 2006). The AVS has potential to identify these char-
acteristics and relate them to one or more nutrient defi-
ciencies in the plant.

The objective of this work was to propose methods of 
artificial vision and pattern recognition, based on image 
analysis of different leaf sections, that would best iden-
tify the concentration of Mg in maize (Zea mays L.) plants 
grown hydroponically in the greenhouse.

MATERIAlS ANd METHOdS
Greenhouse Experiment
The experiment was done in the Animal Science and Food Engi-
neering College of University of São Paulo at the Pirassununga-
São Paulo. The crop tested was maize, hybrid DKB 499, grown 
in a hydroponic system in a greenhouse. Seeding was done in 
plastic trays filled with washed sand. After emergence, two plants 
were transferred to each pot (3.6 L) and supported by a foam on 
top of the pot filled with Hoagland and Arnon (1950) nutrient 
solution (50% full volume) modified to achieve the target Mg 
concentration, during 5 d. After this time span, pots were com-
pletely filled with the nutrient solution, and completely replaced 
weekly. The pH was monitored between 5.0 and 6.0 pH units, 
and temperature averaged approximately 28°C. Each pot had air 
bubbling during 10 s at each 30-s interval.

Four concentrations of Mg were tested: 0.0 mM, 0.65 mM 
(33% of full dose), 1.3 mM (66% of full dose), and 2.0 mM (of 

full dose—100%) Mg. These concentrations were chosen arbi-
trarily to provide a range of leaf Mg to work with.

Plant and leaf images were sampled at three stages of maize 
development: V4 (plants with four leaves fully developed), V6 
(plants with six leaves fully developed), and V8 (plants with 
eight leaves fully developed). According to Fancelli (1986), at 
V4 plant occurs the definition of the productive potential, at V6 
the definition of the number of seeds in the ear, and at V8 the 
definition of the number and size of the ear.

Experimental design was fully random in a 4-by-3 factorial 
(four Mg concentrations and three sampling events) with four rep-
lications. In each collecting period established, 16 pots were sam-
pled (samples destructive). Sampled material was split into (i) index 
leaf (IL) of the growing stage (V4 = leaf 4, V6 = leaf 7, and V8), 
and (ii) old leaf (OL), both to image capture and chemical analysis.

For chemical analysis, all material was washed, dried in an 
oven with air circulation at 65°C, ground, and saved in plas-
tic bags for further nutrient analyses, according to methodology 
described in Bataglia et al. (1983). Samples were solubilized with 
nitric–perchloric acid for determination of Mg in OL and IL.

Statistical Analysis
Statistical data analysis was accomplished using variance analy-
sis and Tukey test at 5% probability. Such analysis was applied 
to data from Mg concentration in plants (g kg-1), dry mass in 
shoots, and dry mass in roots. The mathematical model used was:

Yijk = m + Ei + Nj + ENij + eijk

where Yijk is the value measured in the unit subjected to treat-
ment ij at replication k, m is the overall average of the experi-
ment; Ei is the effect of maize stage of development; Nj is the 
effect of Mg concentrations applied; and eijk is the effect of 
uncontrolled factors at the unit subjected to treatments ij at rep-
lication k. In cases where the F test was significant (P £ 0,05) 
only to Nj, only one polynomial regression was performed 
on all plant stages of development. In cases where the F test 
was significant (P £ 0,05) for NEij, that is, in which there was 
interaction between the Mg concentrations and stages of plant 
development, the unfolding had the objective to study the con-
centrations inside Ei. In such cases, one regression analysis was 
performed to each development stage (three in total).

Artificial visual System
The images were processed by artificial vision, using the tra-
ditional four-step approach: acquisition, image segmentation, 
feature extraction, and classification/identification (Bruno, 
2000; Gonzalez and Woods, 1993).

The acquisition step is responsible for the image digitaliza-
tion. Since the digitalization in the presented system is made 
by the operator using a conventional scanner, this step is not 
integrated into the proposed vision system. During the image 
segmentation step, the digitalized image is processed to be ana-
lyzed by the system. The image processing step consists of two 
parts. In the first part, the leaves’ images are split and segmented 
from the background, after which they are oriented (down 
to top). In the second part, windows (areas of interest on the 
image) are extracted from the leaves, which are used in the next 
step. The feature extraction step is responsible for the analysis 
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uncompressed format. The leaf texture window technique was 
proposed in Casanova et al. (2009) and Rossatto et al. (2011). 
The main idea of this approach is analyzing the leaf micro-
texture so that the 80-by-80-pixel windows can isolate the 
micro-texture features, allowing that the macro-texture does 
not interfere into the texture analysis. In addition, as shown by 
Casanova et al. (2009) and Rossatto et al. (2011), the window 
approach allows sample extraction for different positions of the 
leaf and allows discarding windows that are completely differ-
ent within homogeneous regions, that could contain outliers, 
such as leaf defects, insect-damaged areas, etc.

The segmentation process was used to discard the image 
background and artifacts (damage, holes, etc.) and also to isolate 
target areas that showed nutrient deficiency symptoms (Fig. 2). 
Image analysis was focused mainly on color and texture, which 
were the visual characteristics best related to nutrient content 
(Rossatto et al., 2011).

Different methods of feature extraction were evaluated: volu-
metric fractal dimension (VFD), Gabor wavelet (GW), and VFD 
with canonical analysis (VFDCA), to select a best method for the 

of the windows. For each window, a signature is extracted to 
characterize the leaf. Finally, the last part is the classification/
identification step, where the pattern recognition algorithms 
perform the classification of the leaves based on the feature vec-
tor extracted in the previous step.

The IL and OL leaves were cut at the base and then were 
scanned at 1200-dpi resolution using a conventional flatbed 
scanner (HP Scanjet 3800). Subsequently, the images were 
stored as TIFF extension for further processing and extraction 
of windows by the methods of artificial vision presented below 
and subsequently classified.

At each timing established for the study, one IL and OL 
were removed from each plant. Each experimental unit grew 
two plants, so they were removed by Treatment 8 IL and 8 OL 
in each collection for scanning.

Three sectors of each scanned leaf were used: bottom, 
middle, and top (Fig. 1), for IL and OL, summing up 50 color 
images and 50 grayscale images for each. In each part of the 
leaf were extracted windows of 80 by 80 pixels of the leaf sur-
face. Each window was oriented horizontally and stored in 

Figure 1. Separation of leaves for image analysis into three parts: bottom, middle, and top.

Figure 2. Segmentation process (Backes et al., 2009).
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unambiguous identification of the nutrient deficiency classes, con-
centrations of Mg in the three leaf segments. These methods were 
chosen based on the good results obtained in the leaf texture analy-
sis. In Bruno et al. (2008), Casanova et al. (2009), Backes et al. 
(2009), Rossatto et al. (2011), and Backes and Bruno (2013), the 
authors compared state-of-the-art texture methods for leaf identi-
fication and the best results were achieved by them.

The VFD method worked on binary images as proposed 
by Backes et al. (2009), in which the image signature is calcu-
lated for all values of reE, where E is the set of Euclidean dis-
tances for a maximum radius rmax. In this technique the radius 
ranges from 1 to 20:

max1, 2, 3, ,E r= 

rmax( )=
log V 1( ), log V 2( ),
log V 3( ),…, log V rmax( )

�

�

�� �

�

��

The transformed Gabor bidimensional is a Gaussian func-
tion modulated in a sine wave oriented with a frequency W and 
a direction q, and its bidimensional form in the space g(x,y) and 
frequency G(u,v) is given by the following equations:
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2 2
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The transformed Gabor can be adapted as a wavelet and in 
this case the equations are used as a mother wavelet. Next, a filter 
dictionary can be obtained by dilatations and rotations of gz(x,y) 
through the function proposed by Manjunath and Ma (1996):

( ) ( ), ,m
mng x y a g x y- ¢ ¢=

where a > 1 and m,n are the scale and orientation, respectively, 
with m = 0, 1, ..., M  -  1, and n = 0, 1, ..., N - 1; M is the 
total number of scales and N is the total number of orientations.

Figure 3 shows the process of implementing the use of 
extractants (adapted from Zuñiga and Bruno, 2010).

In all methods of extracting the AVS used the naive Bayes 
classification and the cross-validation learning method were 
used. Each image processing, 80% of the images were used for 
training and 20% for testing “blind.” The classification experi-
ment was performed considering the four concentrations of Mg 
deficiency. These concentrations were controlled and also vali-
dated with the chemistry analysis. The goal of the classification 
experiment is verifying the image analysis accuracy to detect 
the nutrient deficiency, classifying the groups according to both 
chemistry analysis and controlled concentrations of Mg.

A confusion matrix was produced to measure the number of 
1 (one) windows correctly identified. And it is important to know 
if the classes were difficult to classify. In addition, the following 
indices were generated: percentage of images correctly classified 
or Global Percentage of Rights, which is the most important 
information. And Kappa index (K, trust index) was fit into the 
following classes: 0–0.2: not trust; 0.21–0.4: low; 0.41–0.6: mod-
erate; 0.61–0.8: trust; 0.81–1.0: trustworthy. The Kappa index 
is a statistical measure of agreement or accuracy well known in 
Pattern Recognition (Congalton, 1991). The Kappa index is used 
in this work to measure the confidence of the classification.

Figure 3. Process of feature extraction (adapted from Zuñiga and Bruno, 2010).



742 www.crops.org crop science, vol. 54, march–april 2014

symptoms were also observed by other authors (Malavolta 
et al., 1997; Monteiro et al., 1995). According to Sarcinelli 
et al. (2004), interveinal chlorosis in plants with complete 
lack of Mg supply is a typical symptom of that deficiency.

The Mg deficiency symptoms were markedly related to 
the diminishing plant growth. The lack of Mg in nutrition 
solution halted the dry mass production in shoots (p < 0.01) 
and roots (p < 0.01) at the three stages (Fig. 6). A quadratic 
increase (p < 0.01) was observed in dry mass in shoots and 
roots along the increase in Mg concentration in solution 
(Fig. 6) in all stages. The highest dry mass production in 
shoots estimated by the regression equation was 5.4 (V4), 
31.2 (V6), and 57.8 g kg-1 (V8), for concentrations 1.7, 1.5, 
and 1.4 mM. For roots, the highest production of dry mass 
was 1.5 (V4), 9.4 (V6), and 17.5 g kg-1 (V8), for concentra-
tions 1.8 (V4–V6) and 1.4 mM (V8). Magnesium was essen-
tial to the photosynthesis process and to the cell activity, 
and therefore strongly associated with plant growth rate. 
As a consequence, Mg availability is indispensable to good 
crop performance of maize (Fancelli, 2010).

Artificial vision System
Considering the images of all treatments in grayscale (with-
out color information) to maize plants with levels of Mg 
deficiency in the greenhouse, the best results were found in 
50% of middle section and 63% at the bottom of IL using 
the GW technique at the V4 and V8 stages. The VFDCA 
technique reached 57% of rights in the IL at the V6 stage 
(Table 1). Such results suggest that the amount of informa-
tion in grayscale images is not enough to distinguish the 
levels of deficiency in maize leaves, grown in the green-
house, because the number of right diagnoses was too small.

To verify the importance of the information in color 
in the image processing and classification, the analyses 
were run again using the color images (Table 2). The per-
centage of rights in color images was greater than in gray-
scale images in stages V6 and V8 but mostly in stage V4.

RESulTS ANd dISCuSSION
Concentration of Magnesium in leaves
The Mg concentration both in IL and OL increased signifi-
cantly (p < 0.05) in all stages with the increase of Mg in the 
solution. This relationship is expressed by the polynomial 
equation (Fig. 4). As Mg concentration increased, the con-
centration in leaves reached up to 2.08 g kg-1 in IL (Fig. 4a) 
and 0.60 g kg-1 in OL (Fig. 4b) at the V4 stage. As expected, 
leaf Mg concentration was lowest for plants at all stages of 
growth when grown in the 0 mM Mg nutrient solution.

The concentration of Mg in IL was greater when 
compared to the OL, highlighting the Mg mobil-
ity within the plant, which is rapidly translocated from 
mature towards the new tissues. As a consequence, the 
deficiency symptoms appear first in the old leaves (Epstein 
and Bloom, 2004). Malavolta (2006) suggests that con-
centration between 2.5 to 4.0 g kg-1 Mg is sufficient for 
leaf blades in corn that are located below and opposite to 
the corncobs and at the R1 stage. In the present study, the 
leaves evaluated were at stages V4, V6, and V8 (previous 
to the R1 stage). Therefore, the concentrations suggested 
by Malavolta (2006) can be used as a reference to evaluate 
the present results.

visual Symptoms, Shoot dry Mass,  
and Roots dry Mass
The increase in Mg concentration in the solution resulted in 
an increase in its concentration in leaves. Visual symptoms 
in leaves, characteristic of situations with absent or under-
supply of Mg, was easily observed. Plants with Mg defi-
ciency had leaf blades with chlorosis in the interveinal area, 
green veins, leaf margins, and tops deformed toward the 
underside. These symptoms appeared first in the old leaves 
(Fig. 5a and 5b). The chlorosis evolved towards the tip of 
the leaf blade, and turned to tan and necrosed in plants with 
lack of Mg and those with the smallest weekly treatment 
solution concentration of 0.64 mM (Fig. 5c and 5d). Similar 

Figure 4. Magnesium concentration in the (a) index leaf and (b) old leaf of maize at the V4, V6, and V8 stages as a function of Mg concen-
tration in nutrient solution. **Significant at 0.01 probability level.
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The best result was 75.5% of rights at the V4 stage with 
the VFDCA technique run in color images, showing good 
potential for use in identification of Mg deficiency in green-
house-grown maize plants, through images in V4 stage.

Therefore, the middle region of the IL of maize plants 
in greenhouse is the best section to observe in order to 
identify Mg deficiency in stage V4 (75.5%), with the 
fraction of rights sufficient to be considered trustworthy 
through the Kappa index (Table 2).

In Table 3, the confusion matrix is shown for the mid-
dle section of the IL, classified using the VFDCA tech-
nique run on color images taken at stage V4. From the 50 

images used, all with 0.0 mM Mg, were correctly clas-
sified by this technique. Among the images from plants 
with 0.65 mM Mg, 82% of images were correctly identi-
fied, 2% as 0.0 mM Mg, 10% of images as 1.3 mM Mg, 
and 6% as 2.0 mM Mg. These results suggest maize leaves 
at stage V4 with Mg deficiency were those most easily 
classified by the AVS, and that the leaf images from the 
plants grown with 1.3 mM were those more difficult to 
be classified. In the confusion matrix presented (Table 3), 
the largest number of errors occurred for the classification 
of the class of plants that received 1.3 mM. This is because 
the image windows analyzed by the AVS for the 1.3 mM 

Figure 6. Dry mass in (a) shoot and (b) roots of maize at the V4, V6, and V8 stages as a function of Mg concentration in nutrient solution. 
**Significant at 0.01 probability level.

Figure 5. Symptoms of Mg deficiency in maize plants (a, b) at 22 d after plant emergence and (c, d) at the V6 stage, growing without Mg 
supply in the solution.
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Mg concentration are very similar to those for 0.65 mM 
and 2.0 mM Mg concentrations (Fig. 4a). However, the 
system was able to identify a reasonable amount of images.

The Mg concentration in IL at stage V4 grown in 1.3 
mM Mg was 1.75 g kg-1 Mg (Fig. 4a) and very close to those 
grown in 0.65 mM and 2.0 mM Mg, showing 1.40 and 2.08 
g kg-1 Mg (Fig. 4a), respectively, which may have hindered 
the identification of nutritional status of plants at AVS.

These results show that it is possible to obtain a good 
separation of images for plants in the greenhouse grown 
at 0.0 mM from those grown at 0.65 mM Mg, which are 
severe and moderate levels of Mg deficiency, respectively. 

This reasoning is supported by the Mg concentration in 
IL of plants at stage V4 (Fig. 4a) in which plants grown in 
0.0 mM Mg solution had 0.68 g kg-1 Mg and those grown 
in 0.65 mM Mg solution had 1.40 g kg-1 Mg. Such dif-
ference allowed a better identification through the AVS.

CONCluSIONS
The Mg concentration in solution had a quadratic response 
for Mg concentration in leaves (showing typical deficiency 
symptoms in case of undersupply) and therefore a qua-
dratic response for shoot and root dry mass.

The AVS was able to identify the levels of induced 
Mg deficiency in maize plants conducted in a green-
house. The middle section of the index leaf (IL) at the 
V4 stage was the best to evaluate the Mg deficiency in 
greenhouse-grown maize plants, considered trustworthy 
through the Kappa index (K = 0.9). The analysis of color 
images scored higher than grayscale images in all stages 
of development of the plant.

The AVS developed in this study identified the images 
of the leaves of maize, conducted in a greenhouse at the V4 
stage with 75.5% rights using the middle section of the IL by 
the VFDCA technique, based on color images in V4 stage.

Table 1. Global Percentage of Rights (GPR) of grayscale images using the volumetric fractal dimension (VFD), volumetric fractal 
dimension with canonical analysis (VFDCA), and Gabor wavelets (GW) to assess leaf Mg, and corresponding Kappa Index (K), 
for the top, middle, and bottom sections of the index leaf and for the same sections in an older leaf from maize plants at the 
V4, V6, and V8 stages, under four levels of Mg in nutrient solution in greenhouse.

 
Leaf 

section

V4 V6 V8

VFD VFDCA GW VFD VFDCA GW VFD VFDCA GW

GPR K GPR K GPR K GPR K GPR K GPR K GPR K GPR K GPR K

Index leaf

Top 32.0 0.5 47.0 0.7 38.0 0.6 26.0 0.5 53.0 0.7 35.0 0.6 37.5 0.6 52.5 0.7 56.0 0.8

Bottom 35.5 0.6 49.5 0.7 42.0 0.7 38.5 0.6 57.0 0.8 45.0 0.6 39.5 0.6 58.0 0.8 63.0 0.8

Middle 32.5 0.6 47.0 0.7 50.0 0.7 39.5 0.6 46.0 0.7 46.0 0.7 40.5 0.6 56.5 0.8 57.5 0.8

Old leaf

Top 36.5 0.6 48.0 0.7 46.0 0.7 51.5 0.7 53.0 0.8 53.5 0.7 35.0 0.6 49.0 0.7 49.0 0.7

Bottom 32.5 0.6 42.5 0.7 44.5 0.7 47.5 0.7 53.0 0.8 49.5 0.7 38.5 0.6 52.5 0.7 55.0 0.7

Middle 34.5 0.6 48.0 0.7 41.5 0.7 49.0 0.7 56.5 0.8 48.0 0.7 34.5 0.6 47.5 0.7 45.0 0.7

Table 2. Global Percentage of Rights (GPR) of colors images using the volumetric fractal dimension (VFD), volumetric fractal 
dimension with canonical analysis (VFDCA), and Gabor wavelets (GW) to assess leaf Mg, and corresponding Kappa Index (K), 
for the top, middle, and bottom sections of the index leaf and for the same sections in an older leaf from maize plants at the 
V4, V6, and V8 stages, under four levels of Mg in nutrient solution in greenhouse.

 
 

Leaf 
section

V4 V6 V8

VFD VFDCA GW VFD VFDCA GW VFD VFDCA GW

GPR K GPR K GPR K GPR K GPR K GPR K GPR K GPR K GPR K

Index leaf

Top 47.5 0.7 57.0 0.8 57.0 0.8 57.5 0.8 49.5 0.7 49.5 0.7 53.0 0.7 53.5 0.7 48.5 0.7

Bottom 57.5 0.8 67.5 0.9 58.5 0.8 53.0 0.8 61.0 0.8 57.0 0.8 54.5 0.7 56.5 0.7 63.0 0.8

Middle 64.0 .08 75.5 0.9 66.0 0.8 55.0 0.8 57.5 0.8 54.0 0.7 57.0 0.7 54.0 0.7 61.5 0.8

Old leaf

Top 44.0 0.6 46.5 0.7 63.5 0.8 50.5 0.7 43.5 0.7 59.0 0.8 51.5 0.7 58.5 0.7 57.0 0.8

Bottom 48.5 0.7 58.5 0.8 60.5 0.8 57.0 0.7 57.5 0.8 55.0 0.7 53.5 0.7 57.0 0.7 64.5 0.8

Middle 48.5 0.8 55.0 0.8 55.5 0.8 53.5 0.7 50.5 0.7 57.0 0.7 48.0 0.7 55.0 0.7 56.5 0.8

Table 3. Confusion matrix by the volumetric fractal dimension 
with canonical analysis (VFDCA) of the middle of the index 
leaf (IL) of maize at stage V4 with Mg subjected to levels of 
Mg deficiency in the greenhouse.

Correct 
classification

% rights of VFDCA to the middle of the IL

0 mM 0.65 mM 1.3 mM 2 mM

 ——————————————— % ——————————————— 

0 mM 100 0 0 0

0.65 mM 2 82 10 6

1.3 mM 0 8 58 34

2 mM 0 14 24 62
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