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Abstract The compartmentalization of distinct templates in protocells and the ex-
change of templates between them (migration) are key elements of a modern sce-
nario for prebiotic evolution. Here we use the diffusion approximation of population
genetics to study analytically the steady-state properties of such a prebiotic scenario.
The coexistence of distinct template types inside a protocell is achieved by a selec-
tive pressure at the protocell level (group selection) favoring protocells with a mixed
template composition. In the degenerate case, where the templates have the same
replication rate, we find that a vanishingly small migration rate suffices to eliminate
the segregation effect of random drift and so to promote coexistence. In the nonde-
generate case, a small migration rate greatly boosts coexistence as compared with the
situation where there is no migration. However, increase of the migration rate beyond
a critical value leads to the complete dominance of the more efficient template type
(homogeneous regime). In this case, we find a continuous phase transition separating
the homogeneous and the coexistence regimes, with the order parameter vanishing
linearly with the distance to the transition point.
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1 Introduction

The coexistence of competing selfish individuals is an ubiquitous issue in the study
of systems described by the modern Darwinian paradigm, known as the “Evolu-
tionary Synthesis” (Maynard Smith and Szathmáry 1995; Mayr 2001, 2002, 2004;
Nowak and Sigmund 2004). In the context of prebiotic or chemical evolution, this
matter surfaced with the observation by Eigen (1971) that, due to the finite fidelity
of replication, the information content of a single self-replicating macromolecule
(a template for short) is far too few to permit the coding of macromolecules with
any functional complexity. A way out of this difficulty, the so-called the informa-
tion crisis of prebiotic evolution, is to assume that the information is distributed
among a number of distinct template types and enforce cyclic cooperative interactions
among them—the hypercycle—to guarantee coexistence (Eigen and Schuster 1978;
Eigen et al. 1980).

Alternatively, the coexistence between distinct template types can be achieved by
confining the templates in packages or protocells and requiring that the survival or
the reproduction chances of a protocell be dependent on its template composition
(Bresch et al. 1980; Niesert et al. 1981; Szathmáry and Demeter 1987). The study
of this two-level selection problem can be carried out by introducing minor changes
on the mathematical models developed to address the efficiency of group selection to
maintain an altruistic trait (Eshel 1972; Aoki 1982; Donato et al. 1997). In particular,
in a recent paper (Fontanari and Serva 2013) we have used a diffusion model of group
selection (Kimura 1983) to study analytically the conditions for the coexistence of
two template types that differ on their replication rates. However, that study left out
a crucial characteristic of the primitive protocell populations, namely, the elevated
exchange flux of templates among protocells, known as lateral or horizontal gene
transfer. In fact, the acceptance of the operation of this process in the early history of
microbial life has wiped out completely the familiar Darwinian notion of a universal
ancestor (Woese 1998; Doolittle 2000).

Here we model the process of template swapping among protocells by the classic
migration process of Wright’s island model (Wright 1951). We find that introduction
of migration renders the evolutionary process ergodic in the sense that the steady
state does not depend on the initial setup of the population. In addition, migration al-
lows a steady-state solution corresponding to protocells carrying both template types
(coexistence regime) or a solution where the more efficient template type is fixed
in all protocells (homogeneous regime). There is a smooth transition between these
two regimes, provided that the two template types exhibit distinct replication rates. In
the degenerate case, where the template types have identical replication efficiencies,
only the coexistence regime is stable. This contrasts with the results obtained in the
absence of migration, for which there is a nonergodic segregation regime character-
ized by a mixture of two types of protocells, each type carrying solely one of the
template types (Fontanari and Serva 2013).

The remainder of the paper is organized as follows. In Sect. 2 we describe
the three evolutionary processes—template competition, migration and intercell
competition—that comprise the dynamics of our two-level selection model and de-
rive the partial differential equation that governs the time evolution of the fraction of
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protocells carrying a given template composition. Section 3 is devoted to the numer-
ical and analytical study of the steady-state solutions of that equation. In particular,
our numerical approach relies on the interpretation of the steady-state ordinary differ-
ential equation as an eigenvalue problem whose eigenvalue corresponds to the mean
group selection pressure. Our concluding remarks are presented in Sect. 4. In Ap-
pendix A we present an analytical calculation of the probability that a template type
fixates in a given protocell in the nonergodic segregation regime for the case mi-
gration is not allowed. This calculation generalizes that presented in Fontanari and
Serva (2013) by taking into account the different replication efficiencies of the tem-
plate types.

2 The Model

Following Kimura (1983), we consider a hypothetical population divided into an infi-
nite number of competing protocells, each of which containing exactly N templates.
There are two types of templates, which differ only by their replication efficiency:
type 1 templates have a selective disadvantage s relative to type 2 templates, where
s ≥ 0 is a parameter on the order of 1/N . More pointedly, type 1 templates are as-
signed fitness 1 − s, and type 2 templates are assigned fitness 1. In addition, we
assume that N is large enough so that the frequency of type 1 templates within a
protocell, denoted by x, can be viewed as a continuous variable in the interval [0,1].
Of course, the frequency of type 2 templates within the same protocell is 1 − x. The
population is described by the fraction of protocells φ(x, t)�x whose frequency of
type 1 templates lies in the range (x, x + �x) at time t . Our goal is to determine
how the probability density φ(x, t) is affected by the three evolutionary processes:
individual template competition within a protocell, migration of templates between
protocells, and competition between protocells.

The template competition process within each protocell takes place according to
the rules of the standard Wright–Fisher model of population genetics (Crow and
Kimura 1970). In particular, assuming that a protocell contains j type 1 templates
and N − j type 2 templates, the probability that there will be exactly i type 1 tem-
plates after template competition is given by the Wright–Fisher process

rij =
(

N

i

)
wi

j (1 − wj)
N−i , (1)

where wj = j (1 − s)/(N − js) is the relative fitness of the subpopulation of type 1
templates in the protocell. To determine how this process affects the probability den-
sity φ(x, t) we resort to the diffusion approximation of population genetics (Crow
and Kimura 1970), which consists essentially on the calculation of the jump mo-
ments 〈(x′ − x)〉r and 〈(x′ − x)2〉r where x = j/N and x′ = i/N are the frequencies
of type 1 templates before and after template competition, respectively. Here 〈. . .〉r
stands for the average using the transition probability rij . These moments contribute
to the drift and diffusion terms of a forward Kolmogorov-like equation for φ(x, t).
More pointedly, direct evaluation of the jump moments to first order in 1/N using
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the transition probability (1) yields

〈(
x′ − x

)〉
r
= wj − x ≈ −sx(1 − x) (2)

and

〈(
x′ − x

)2〉
r
= 1

N
wj(1 − wj) + (wj − x)2 ≈ 1

N
x(1 − x), (3)

where we have used that the fitness disadvantage s of the type 1 templates is on the
order of 1/N .

Migration follows Wright’s island model (Wright 1951) that posits that J tem-
plates of each protocell are replaced by migrants in the time interval �t and that the
frequency of type 1 templates among the migrants is equal to the average frequency
of type 1 templates in the entire protocell population, i.e., x̄ = ∫ 1

0 xφ(x, t) dx. The
probability that a protocell with j type 1 templates (x = j/N ) becomes a protocell
with i type 1 templates (x′ = i/N ) due to the migration process is then (Aoki 1982)

mij =
ku∑

k=kl

(
j
k

)(
N−j
J−k

)
(
N
J

)
(

J

i − j + k

)
x̄i−j+k(1 − x̄)J−i+j−k, (4)

where kl = max(j − i,0, J − N + j) and ku = min(j, J − i + j, J ). Here the hyper-
geometric component yields the probability that exactly k type 1 templates and J − k

type 2 templates are eliminated from the protocell to make room for the J migrants,
whereas the binomial part yields the probability that there are exactly i − j +k type 1
templates among the J migrants. After migration the number of type 1 templates in
the protocell is given by the sum of the type 1 templates originally in the protocell
(j − k) and the number of type 1 templates among the migrants (i − j + k). The first
two jump moments are given by

〈(
x′ − x

)〉
m

= m(x̄ − x) (5)

and

〈(
x′ − x

)2〉
m

= m

N
x̄(1 − x̄) + m2(x̄ − x)2 + m(1 − m)

N − 1
x(1 − x), (6)

where 〈. . .〉m stands for the average using the transition probability mij , and m =
J/N is the fraction of the protocell population that is replaced by migrants. Assuming
that m is on the order of 1/N , i.e., that the number of migrants J remains finite and
limited when N grows large, we can neglect the second jump moment, which is
O(1/N2).

Finally, the competition between protocells is taken into account as follows. De-
noting by c(x) the selection coefficient of a protocell with a fraction x of type 1
templates, we have

φ(x, t + �t) = [
φ(x, t) + c(x)φ(x, t)�t

]
ζ, (7)
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where ζ is such that
∫ 1

0 φ(x, t + �t)dx = 1, i.e., ζ = 1/[1 + c̄(t)�t] with

c̄(t) =
∫ 1

0
c(x)φ(x, t) dx. (8)

Taking the limit as �t → 0, we obtain the change in the fraction of protocells due to
intercell selection, �φ = [c(x) − c̄(t)]φ(x, t)�t .

Combining the changes in φ due to the three processes described above and
introducing the rescaled variables τ = t/2N , S = 2Ns ≥ 0, M = 2Nm ≥ 0, and
C(x) = 2Nc(x) ≥ 0, we obtain (Kimura 1983)

∂

∂τ
φ(x, τ ) = ∂2

∂x2

[
x(1 − x)φ(x, τ )

] − ∂

∂x

[
b(x, τ )φ(x, τ )

]

+ [
C(x) − C̄(τ )

]
φ(x, τ ), (9)

where

b(x, τ ) = −Sx(1 − x) − M
[
x − x̄(τ )

]
(10)

is the drift term,

x̄(τ ) =
∫ 1

0
xφ(x, τ ) dx (11)

is the mean number of type 1 templates in the protocell population, and

C̄(τ ) =
∫ 1

0
C(x)φ(x, τ ) dx (12)

is the mean group selection pressure. The constraint
∫ 1

0 φ(x, τ ) dx = 1 holds for all
times τ .

We note that whereas the linear forward Kolmogorov equation is the standard
output in the case of random drift and individual selection (Crow and Kimura 1970),
Eq. (9) is nonlinear because of the presence of x̄(τ ) and C̄(τ ), which are associated
to migration and group selection. In addition, the singularities (if any) of the solution
of Eq. (9) must be integrable so as to guarantee that it is normalizable for all times.

Kimura’s choice for the intercell selection coefficient, C(x) ∝ x, aimed at explor-
ing the efficiency of group selection to maintain an altruistic character—the type 1
template in that case—which has a selective disadvantage s relative to its competi-
tor but whose presence would boost the protocell reproduction rate, which increases
linearly with the frequency of altruists inside it. We refer the reader to Ogura and
Shimakura (1987) for a rigorous analysis of the linear intercell selection model in-
troduced by Kimura (1983) and to Fontanari and Serva (2014) for the analysis of the
nonlinear variant of Kimura’s model. Here we consider the coexistence problem in-
stead, which is more burdensome to group selection than the altruistic version, since
the fixation of a template type through the effect of random drift, regardless of its
selective advantage or disadvantage, acts against coexistence (Fontanari et al. 2006).
According to the so-called metabolic model of template cooperation (Bresch et al.
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1980; Niesert et al. 1981; Szathmáry and Demeter 1987; Czárán and Szathmáry 2000;
Silvestre and Fontanari 2008), in order to favor coexistence, we choose the intercell
selection coefficient

C(x) = Cx(1 − x), (13)

which is maximum for well-balanced protocells at which x = 1/2. Here C is a pa-
rameter on the order of 1 that measures the intensity of the group selection pressure
toward coexistence. The idea behind Eq. (13) is that the two functional template types
coded for a small piece of a modular enzyme, which then promoted protocell replica-
tion (Manrubia and Briones 2007). Since the hookup of the replicase requires prod-
ucts from the two template types, its production rate is proportional to the concentra-
tion of the rare type, hence the requirement that c(x) is maximized by well-balanced
protocells.

The model has three parameters, namely, S that measures the selective disadvan-
tage of type 1 templates in the within cell competition process, M that measures
the strength of migration, and C that measures the strength of the group selection
pressure toward template coexistence. The scale of these parameters is given by the
coefficient of the diffusion term, which is set to 1 in Eq. (9).

3 The Steady-State Solutions

The steady-state protocell probability density φ = φ(x) = limτ→∞ φ(x, τ ) satisfies

d2

dx2

[
x(1 − x)φ

] + d

dx

[
Sx(1 − x)φ + M(x − x̄)φ

] + [
Cx(1 − x) − C̄

]
φ = 0

(14)

with x̄ = limτ→∞ x̄(τ ), C̄ = limτ→∞ C̄(τ ), and
∫ 1

0 φ(x)dx = 1.
For M > 0, Eq. (14) is satisfied both by φ = δ(x) and φ = δ(x − 1), and it may

also be satisfied by a regular function φ = φr(x). By a regular solution of Eq. (14) we
intend a nonvanishing continuous function φr in the interval [0,1], which is of class
C2 in (0,1) where it satisfies (14). Since φr is a probability density we additionally
restrict to normalizable functions, i.e., functions such that

∫ 1
0 φr(x) dx is finite. We

note that in the absence of the coexistence pressure C = 0, the regular solution is
missing (Crow and Kimura 1970). However, one can easily verify that the migra-
tion term prohibits solutions that are combinations of the three possibilities (i.e., the
deltas at x = 0 and x = 1 and the regular solution) since in that case Eq. (14) would
be violated in one of the two extremes, x = 0 or x = 1. Clearly, each possibility cor-
responds to protocell populations with distinct characteristics. In particular, φ = δ(x)

describes a population composed of type 2 templates only, φ = δ(x − 1) a population
of type 1 templates only, and φ = φr(x) describes the desired situation where the
different templates cohabit a same protocell.

It is instructive to note that if a regular solution exists, then integration of Eq. (14)
over the interval [0,1] yields

d

dx
(xφr) − Mx̄φr

∣∣
x=0 = 0 (15)
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and
d

dx

[
(1 − x)φr

] − M(1 − x̄)φr

∣∣
x=1 = 0, (16)

which imply that for x close to 0, one has φr ∼ xMx̄−1, whereas for x close to 1, one
has φr ∼ (1 − x)M(1−x̄)−1. Hence, in spite of the fact that φr describes a regime of
coexistence, this coexistence can be very unbalanced in the sense that the majority of
the protocells may be populated by essentially a single template type. This unbalance
is typical in the case M < 1.

3.1 Numerical Analysis

The steady-state solutions of a diffusion model of intergroup selection for the mainte-
nance of an altruistic trait were obtained numerically by Kimura (1983) in the simple
case of a linear group selection pressure c(x) ∝ x, i.e., C̄ ∝ x̄. In that case Eq. (14)
exhibits only one nonlocal term, and a straightforward self-consistent iterative ap-
proach yields the correct solution. In our case such a direct approach is doomed to
failure, as it will become clear below.

Following Kimura (1983), we write the regular solution of Eq. (14) in the form
φr(x) = κφ0(x)ψ(x), where φ0 is the solution in the absence of group selection
(C = 0) and for fixed x̄ �= 0,1, namely,

φ0 = exp(−Sx)xMx̄−1(1 − x)M(1−x̄)−1, (17)

and κ is the normalization constant. Hence, the equation for ψ reads

x(1 − x)
d2ψ

dx2
− [

Sx(1 − x) + M(x − x̄)
]dψ

dx
+ Cx(1 − x)ψ = C̄ψ, (18)

which, as already pointed out, for fixed x̄ can be viewed as an eigenvalue problem
without boundary conditions that can be solved by requiring the regularity of ψ(x) in
[0,1] only (Chalub and Souza 2009). In addition, according to the expected behavior
of φr in the vicinities of x = 0 and x = 1, we can guarantee that ψ is bounded at
these extreme values. Of course, the attempt to solve Eq. (18) numerically for an
arbitrary value of C̄ using, say the Runge–Kutta algorithm, results in divergences at
the extremes, which ruins any self-consistent iterative approach to solve this equation.

Next, we define ψ = exp(y) and get the following nonlinear equation:

x(1 − x)
[
y′′ + (

y′)2] − [
Sx(1 − x) + M(x − x̄)

]
y′ + Cx(1 − x) = C̄, (19)

where the primes indicate derivatives with respect to x. This is indeed a first-order
equation for z ≡ y′,

x(1 − x)
[
z′ + z2] − [

Sx(1 − x) + M(x − x̄)
]
z + Cx(1 − x) = C̄, (20)

with

z(0) = C̄

Mx̄
(21)
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Fig. 1 Eigenvalue C̄ of the
eigenvalue problem (18) as a
function of the coexistence
pressure C for the degenerate
case S = 0 and migration
parameter M as indicated in the
figure. A phase transition takes
place at Cc = π2 in the case
M = 0

and

z(1) = − C̄

M(1 − x̄)
. (22)

At this stage the problem is ready for a numerical approach. For fixed x̄ and C̄,
we solve Eq. (20) by propagating the Runge–Kutta algorithm from x = 0 to x = 1
using the initial condition (21). Of course, the choice of an arbitrary value of C̄ will
not satisfy the boundary condition (22), so we adjust C̄ in order the condition to be
satisfied. This is essentially an application of the well-known shooting method to
solve boundary values problems (Press et al. 1992). Once this is achieved, we have
solved the problem for a fixed x̄. Explicitly, y is obtained from

y =
∫ x

0
z(ξ) dξ, (23)

where we have defined y(0) = 0 (hence ψ(0) = 1). This choice is inconsequential
since the physical quantities are given by ratios of integrals involving ψ = ey . In fact,
we can then calculate x̄,

x̄ =
∫ 1

0 xφ0(x)ey dx∫ 1
0 φ0(x)ey dx

, (24)

return to Eq. (20), and repeat the process until we reach the convergence for x̄. In par-
ticular, we assume that the convergence occurs whenever the change in x̄ is less than
10−6 in two consecutive iteration steps. This iterative scheme is extremely efficient
since it involves the numerical solution of a single first-order ordinary differential
equation and the iteration over a single quantity only, namely x̄.

In Fig. 1 we show the dependence of the eigenvalue C̄ on the coexistence pressure
parameter C in the degenerate case S = 0 and for a variety of values of the migration
parameter. In this case, the symmetry of Eqs. (14) and (18) with respect to the inter-
change of x and 1 − x yields x̄ = 1/2 regardless of the values of M and C. This is
illustrated in Fig. 2, where the regular solution φr is shown for representative values
of the migration parameter. Interestingly, the phase transition between the coexistence
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Fig. 2 Regular normalized
steady-state solution φr giving
the proportion of protocells that
contain a fraction x of type 1
templates for the degenerate
case S = 0, coexistence pressure
C = 5, and migration rates
M = 3,2,1 as indicated in the
figure

Fig. 3 Eigenvalue C̄ of the
eigenvalue problem (18) as
function of the coexistence
pressure C for a non-degenerate
template competition scenario
with S = 1 and values of the
migration parameter M as
indicated in the figure. The
transition point jumps from
Cc = π2 + 1/4 for M = 0 to
Cc ≈ 2 for M → 0

(C̄ > 0) and the segregation (C̄ = 0) phases that takes place at C = π2 for M = 0 and
S = 0 (Fontanari and Serva 2013) disappears altogether when the process of migra-
tion is included in the model. The segregation phase, which is characterized by a
well-balanced mixture of protocells composed of either type 1 or type 2 templates,
is eliminated in this case. Hence, in the degenerate case where there is no selective
advantage at the template level (S = 0), migration promotes coexistence (see Fig. 2).

The scenario becomes more interesting when the replication rates of the tem-
plate types are allowed to differ, as illustrated in Figs. 3 and 4 for S = 1. The first
noteworthy result exhibited in these figures is the appearance of a phase transition
separating the homogeneous regime dominated by the more efficient template type
and characterized by x̄ = C̄ = 0, from the coexistence regime, C̄ > 0. We note that
x̄ > 0 does not imply the coexistence since this condition holds true in the segre-
gating phase that exists for M = 0 and is characterized by an unbalanced mixture
of delta functions at the extremes x = 0 and x = 1. Hence, the eigenvalue C̄ is
the order parameter of our group selection diffusion model. Figure 4 offers a bet-
ter view of the transition and highlights the singular nature of the segregation phase
for M = 0. Overall, the effect of migration for S > 0 is to hamper the coexistence,
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Fig. 4 Mean frequency of
type 1 templates x̄ as a function
of the coexistence pressure C

for S = 1 and M as indicated in
the figure. For M = 0, the
segregating phase for
C < π2 + S2/4 ≈ 10.12 is
nonergodic, and the result
exhibited was obtained with the
initial probability density
φ(x,0) = δ(x − 1/2) (see
Appendix A)

as indicated by the need of a larger coexistence pressure to establish the coexis-
tence regime as M increases. However, the transition from M = 0 to an arbitrarily
small migration value M → 0 results in a discontinuous jump on the value of the
minimal coexistence pressure needed to stabilize the coexistence phase (e.g., from
C ≈ 10.12 to C ≈ 2 for S = 1). As pointed out in Sect. 3, this is so because the
M = 0 nonergodic segregating phase, characterized by the combination of delta func-
tions φ = A0δ(x) + A1δ(x − 1), with A0 + A1 = 1, is unstable to the effect of mi-
gration M > 0. In this phase, x̄ = A1 depends on the initial probability density (see
Appendix A), and for φ(x,0) = δ(x − 1/2), we find A1 = 1/[1 + exp(S/2)], which
is depicted in Fig. 4. In the ergodic phase (i.e., C ≥ π2 + S2/4), however, the value
of x̄ at M = 0 is approached smoothly in the limit M → 0. The same is true for the
order parameter C̄ (see Fig. 3), except that in this case the behavior is continuous for
all values of C.

3.2 The Critical Line

The critical line separates the homogeneous from the coexistence regime. Since at
this line x̄ = C̄ = 0, Eq. (20) reduces to

(1 − x)
[
z′
c + z2

c

] − [
S(1 − x) + M

]
zc + C(1 − x) = 0 (25)

with

zc(0) ≡ z0 = lim
C̄, x̄→0

C̄

Mx̄
(26)

and

zc(1) = 0. (27)

For fixed values of the model parameters S, C, and M , Eq. (25) can be solved nu-
merically by propagating the solution from x = 1 to x = 0 using the Runge–Kutta
algorithm. Thus, given an arbitrary set of model parameters, Eq. (25) has a unique
solution under condition (27), which then determines z0 univocally. However, since
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Fig. 5 Critical coexistence
pressure Cc as a function of the
selective advantage S of type 2
templates. For fixed M , the lines
separate the homogeneous
regime (C ≤ Cc), where the
population is dominated by
type 2 templates, from the
coexistence regime (C > Cc),
where both template types
cohabit the same protocell

Eq. (25) is valid at the critical line only, we need another condition to constraint the
values of the model parameters. Of course, this supplementary condition is provided
by Eq. (26), which reads

z0 = C

M

∫ 1
0 dx exp(−Sx + yc)(1 − x)M∫ 1

0 dx exp(−Sx + yc)(1 − x)M−1

= C
∫ 1

0 dx exp(−Sx + yc)(1 − x)M

1 + ∫ 1
0 dx exp(−Sx + yc)(1 − x)M(−S + zc)

, (28)

where yc = ∫ x

0 zc(ξ)dξ . The second line of this equation is derived from the first
line by integration by parts, and its sole purpose is to emphasize the fact that z0 is
finite as M → 0. The limits as x̄ → 0 and C̄ → 0 were omitted in Eq. (28), so it
is left implicit that this expression must be evaluated for values of S, C, and M at
the critical line. The critical line is then obtained by fixing S and M and adjusting
C so that the value of zc at the x = 0 boundary of Eq. (25) coincides with the value
obtained using expression (28). This procedure is illustrated in Appendix B for the
limit as M → 0, where we can obtain the analytical solution of Eq. (25) and carry out
explicitly the integrals in Eq. (28).

The final outcome of the self-consistent iterative procedure described above is
summarized in Fig. 5. On the one hand, these results support the conclusion that
for fixed S > 0, increasing the migration rate M hinders coexistence since it is then
necessary to increase the coexistence pressure C to guarantee the onset of the coex-
istence phase. On the other hand, a vanishingly small migration rate, represented by
the curve M → 0 in Fig. 5, constitutes a huge benefit to coexistence, as compared
with the no-migration situation M = 0 where the onset of the coexistence phase hap-
pens for C > Cc = π2 + S2/4 only (Fontanari and Serva 2013). The reason is that
for M = 0, both template types are present in the population but reside in distinct
protocells, and so a vanishingly small migration rate allows their meeting in a same
protocell.
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3.3 Analytical Approximation

In the case C and S are small, we can easily derive explicit expressions for the order
parameter C̄ and for x̄ and so obtain an analytical expression for the critical lines
shown in Fig. 5. As pointed out, the assumption that C � 1 and S � 1 amounts
to saying that these two selective pressures are small with respect to random drift
and migration. Considering the regular solution φ = φr(x) of Eq. (14), we begin by
multiplying that equation by x and then integrating over the interval [0,1], yielding

−S

∫ 1

0
φr(x)x(1−x)dx+C

∫ 1

0
φr(x)x2(1−x)dx− x̄ C

∫ 1

0
φr(x)x(1−x)dx = 0.

(29)
Next, to obtain results that are correct to first order in S and C, we need only to replace
φr by its expression for S = C = 0 (see Eq. (17)), namely, the Beta distribution

φ̂0 = xMx̄−1(1 − x)M(1−x̄)−1

B[Mx̄,M(1 − x̄)] , (30)

where B(x, y) is the standard Beta function (Abramowitz and Stegun 1972). The final
result is simply

x̄ = 1

2

[
1 − (M + 2)

S

C

]
, (31)

from which we get Cc = (M + 2)S, which agrees with the curves shown in Fig. 5 for
small S. For S = 0, Eq. (31) yields x̄ = 1/2, which is actually valid for all C since
φr(x) = φr(1 − x) in this case.

Finally, to first order in S and C, the order parameter C̄ is given by

C̄ = C

∫ 1

0
φ̂0(x)x(1 − x)dx = CM

M + 1
x̄(1 − x̄) = CM

4(M + 1)

[
1 − (M + 2)2 S2

C2

]
,

(32)

which fits very well the curves of Fig. 1 in the small C regime but fails to describe the
results of Fig. 3 for S = 1 since in that case the condition of small S is not satisfied.

3.4 Discussion

Here we address two issues that were somewhat glossed over in the previous sections.
The first issue is the difference between the limit as M → 0 and the case M = 0. From
the physical perspective, that difference is clear: in the absence of migration (M = 0)
there appears a segregation phase for C < π2 + S2/4, which is unstable to the effect
of a vanishingly small migration rate (M → 0). However, from the mathematical
perspective that difference is blurred by the fact that the limit as M → 0 is obtained
simply by setting M = 0 in our equations. The key point here is that by writing the
regular solution of Eq. (14) in the form φr(x) ∝ φ0(x)ψ(x) with φ0 and ψ given
by Eqs. (17) and (18), respectively, we constrained the subsequent analysis to the
region M > 0 only, since in that form φr is not normalizable for M = 0. We note
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that for M = 0, the regular solution of Eq. (14), which exists for C ≥ π2 + S2/4, is
finite at the extremes x = 0 and x = 1, and so it is always normalizable, as expected
(Fontanari and Serva 2013). Thus, setting M = 0 in Eqs. (25) and (28) actually means
taking the limit as M → 0 of Eq. (14).

The second issue concerns the uniqueness of the eigenvalue C̄ of the second-order
differential equation for ψ , Eq. (18). In fact, if there were no constraints on ψ , then
there would be infinitely many admissible values for the eigenvalue C̄ and the eigen-
functions ψ . It is the condition that ψ be positive and normalizable that reduces the
acceptable solutions to a single one. We note that by writing ψ = ey and solving nu-
merically for y (see Eq. (19)) we have automatically restricted the numerical analysis
to the valid regime ψ > 0 only.

4 Conclusion

Contrary to the acrimony that has accompanied the group selection accounts of
altruism and eusociality since the 1960s (Wynne-Edwards 1962; Williams 1966;
Nowak et al. 2010; Rousset and Lion 2011), group selection ideas have been main-
stream in the prebiotic evolution context (Michod 1983; Alves et al. 2001) since
there is a consensus that the compartmentalization of templates was an essential
stage in the process of molecular evolution (Bresch et al. 1980; Eigen et al. 1980).
In addition, compartmentalization offers a solution to the problem of the coexis-
tence between different templates (Niesert et al. 1981; Silvestre and Fontanari 2008),
which is the topic we address in this paper. We should mention, however, that within
the context of the maintenance of cooperation, the group selection or, more gen-
erally, the multilevel selection approach has been applied to the study of the dy-
namics of cancer, which may be viewed as a result of the breakdown of cooper-
ation between cells in the body (Michor et al. 2004; Bellomo and Delitala 2008;
Bellouquid et al. 2013).

In this contribution we build on the seminal paper by Kimura (1983), which pre-
sented a diffusion model incorporating group selection, and study a group selection
pressure toward the coexistence of two types of templates that are differentiated by
their replication rates. Our focus is on the effect of template swapping (migration)
among protocells. This is a key process within the modern prebiotic scenario, which is
based on the radical notion of an ancestral community of cell lines lacking long-term
genetic history and individuality, rather than of a single ancestral organism (Woese
1998).

We find that the progression of the template type that exhibits the selective advan-
tage at the individual level is greatly promoted by migration, in the same manner that
an antibiotic resistant gene spreads among a population comprising different bacte-
rial species. In that sense, migration hinders coexistence. Nevertheless, migration is
very effective to counterweight the homogenizing effect of random drift (i.e., the fix-
ation of a template type) so that in the degenerate case, where there is no selective
advantage at the individual level, the coexistence is the only possible outcome of the
evolutionary process. In addition, even in the nondegenerate case, a small amount of
template swapping increases greatly the parameter range for which the coexistence is
stable in comparison with the case where there is no migration at all.
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An interesting aspect of the diffusion model of group selection is the existence
of a continuous transition between a homogeneous regime dominated by the more
efficient template type and a coexistence regime where the two template types co-
habit a same protocell. The order parameter that characterizes these regimes is the
eigenvalue C̄ of the eigenvalue problem (14), whose eigenfunction is the fraction
of protocells with a given template composition at the steady state. In particular,
we find C̄ > 0 in the coexistence regime and C̄ = 0 in the homogeneous regime
with C̄ vanishing linearly with the distance to the critical line that separates those
regimes.

A simplifying feature of the model with migration is that the evolutionary dynam-
ics is ergodic, i.e., the steady-state solution does not depend on the details of the
initial distribution of templates among the protocells, provided that the two template
types are present in the population at the initial time. In fact, in the homogeneous
phase the more efficient template type fixates in all protocells with probability one,
whereas in the coexistence phase the distribution of template compositions inside the
protocells is described univocally by the regular solution of Eq. (14). The dynamics
is nonergodic only in the segregating phase that appears for low coexistence pressure
values in the case migration is not allowed (Fontanari and Serva 2013). For that case,
we derive in Appendix A exact analytical expressions for the probability that one of
the two template types fixates in a given protocell. Most interestingly, this kind of
local fixation occurs both in the ergodic and in the nonergodic phases of the model in
the absence of migration, and so this model offers a rare instance of subdivided popu-
lation where the (local) fixation probabilities can be calculated exactly (Slatkin 1981;
Blythe 2007).

To conclude, a word is in order about the stability of the steady-state solutions
of the nonlinear (and nonlocal) partial differential equation that determines the time
evolution of the protocell population, Eq. (9). On physical grounds one expects the
existence of a coexistence regime for large values of the coexistence group selection
pressure C and so the stability of the steady-state regular solution φ = φr(x), which
satisfies Eq. (14). In addition, in the absence of the coexistence pressure (C = 0), the
only steady-state solution is the homogeneous one, i.e., φ = δ(x − 1). Whereas the
regular solution exists for C > Cc ≈ (M +2)S only, the homogeneous solution exists
for all C ≥ 0, and so a possible instability of the regular solution at a finite value
of C > Cc would shift the transition point and turn the transition from continuous
to discontinuous, in the sense that the eigenvalue C̄ would jump to zero at the new
hypothetical transition point. The analysis of the stability of the steady-state solutions
by techniques such as the spectral theory in infinite dimensions (Engel and Nagel
2000) is a most interesting and challenging enterprise that could reveal the influence
of the parameters S, C, and M on the relaxation time to equilibrium ad confirm
the steady-state prediction of the critical point Cc separating the homogeneous and
coexistence regimes. We hope that our paper will motivate further studies on this
research line.
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Appendix A: Local Fixation Probability for the M = 0 Nonergodic Segregation
Regime

As shown by Fontanari and Serva (2013), setting M = 0 in Eq. (14) yields two
possible steady-state solutions: the solution corresponding to the ergodic coexis-
tence phase, which is a combination of two Delta functions and a regular function,
φ(x) = A0δ(x)+A1δ(x − 1)+Bφr(x) with A0 +A1 +B = 1, and the solution cor-
responding to the nonergodic segregation phase, which is a combination of two Delta
functions, φ(x) = A0δ(x) + A1δ(x − 1) with A0 + A1 = 1. The nonergodic regime,
which is our focus here, occurs for C < π2 + S2/4. Note that in both regimes, A1
may be interpreted as the probability that the type 1 template fixates in a given pro-
tocell and a similar interpretation holds for A0 as well. However, the result x̄ = A1,
which we used to draw the curve for M = 0 in Fig. 4, holds in the segregation regime
only. In Fontanari and Serva (2013) we have calculated the dependence of the weight
A1 on the initial probability density φ(x,0) for S = 0 only, and in this appendix we
generalize that calculation for S ≥ 0.

We begin by rewriting Eq. (9) for M = 0,

∂

∂τ
φ(x, τ ) = ∂2

∂x2

[
x(1 − x)φ(x, τ )

] + S
∂

∂x

[
x(1 − x)φ(x, τ )

]

+ [
Cx(1 − x) − C̄(τ )

]
φ(x, τ ), (33)

and introducing the abbreviation 〈f (x)〉τ = ∫ 1
0 f (x)φ(x, τ ) dx for the expected value

of a regular function f (x) at time τ . Hence,

d

dτ

〈
f (x)

〉
τ

=
〈
x(1 − x)

∂2f (x)

∂x2

〉
τ

− S

〈
x(1 − x)

∂f (x)

∂x

〉
τ

+ C
〈
x(1 − x)f (x)

〉
τ
− C̄(τ )

〈
f (x)

〉
τ

(34)

with C̄(τ ) = C〈x(1 − x)〉τ . The idea is to choose a function f (x) such that the first
three terms of the right-hand side of Eq. (34) cancel out. This choice depends on the
value of the parameter Γ ≡ C − S2/4, as discussed next. We note that Γ < π2 in the
nonergodic regime.

Region 0 < Γ < π2 In this region we choose f (x) = eSx/2 sin(
√

Γ x + θ), where θ

is an arbitrary constant. Then Eq. (34) rewrites

d

dτ

〈
eSx/2 sin(

√
Γ x + θ)

〉
τ

= −C̄(τ )
〈
eSx/2 sin(

√
Γ x + θ)

〉
τ
, (35)

which has the formal solution

〈eSx/2 sin(
√

Γ x + θ)〉τ
〈eSx/2 sin(

√
Γ x + θ)〉0

= exp

[
−

∫ τ

0
C̄(η)dη

]
. (36)

As the right-hand side of this equation does not depend on θ , neither does the ratio in
its left-hand side. Hence, equating the ratios evaluated at θ = 0 and θ = π/2−√

Γ /2
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yields

〈eSx/2 sin(
√

Γ x)〉τ
〈eSx/2 cos[√Γ (x − 1/2)]〉τ

= 〈eSx/2 sin(
√

Γ x)〉0

〈eSx/2 cos[√Γ (x − 1/2)]〉0
. (37)

In the limit as τ → ∞ we have

〈
eSx/2 sin(

√
Γ x)

〉
∞ = A1e

S/2 sin(
√

Γ ) (38)

and

〈
eSx/2 cos

[√
Γ (x − 1/2)

]〉
∞ = (

A0 + A1e
S/2) cos(

√
Γ /2)

= [
1 + A1

(
eS/2 − 1

)]
cos(

√
Γ /2), (39)

which leads to

A1 = 1

1 + eS/2(Ξ0 − 1)
, (40)

where

Ξ0 = 2 sin(
√

Γ /2)
〈eSx/2 cos[√Γ (x − 1/2)]〉0

〈eSx/2 sin(
√

Γ x)〉0
. (41)

In the limit as Γ → π2, we have Ξ0 → 2 regardless of the initial probability density
φ(x,0), and so A1 → Ac

1 = 1/(1 + eS/2). In addition, for the initial probability den-
sity φ(x,0) = δ(x − 1/2) used to calculate x̄ at M = 0 in Fig. 4, the dependence on
Γ (and hence on C) disappears, and so A1 = Ac

1.

Region −S2/4 < Γ < 0 In this region the choice f (x) = eSx/2(eux + θe−ux) with
u = √−Γ and θ arbitrary leads to the canceling of the first three terms of the right-
hand side of Eq. (34), yielding

〈eSx/2(eux + θe−ux)〉τ
〈eSx/2(eux + θe−ux)〉0

= exp

[
−

∫ τ

0
C̄(η) dη

]
. (42)

The same argument used in the analysis of the Γ > 0 region allows us to equate the
ratio that appear in the left-hand side of this equation for θ = −1 and θ = 0,

〈eSx/2 sinh(ux)〉τ
〈eSx/2+ux〉τ = 〈eSx/2 sinh(ux)〉0

〈eSx/2+ux〉0
. (43)

Finally, taking the limit as τ → ∞ yields

A1 = 1

1 + eS/2[Ω0 sinh(u) − eu] , (44)

where

Ω0 = 〈eSx/2+ux〉0

〈eSx/2 sinh(ux)〉0
. (45)
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By taking the limit as u → 0 we can easily verify that A1 is continuous at the bound-
ary of the two regions. In addition, in the limit as C → 0, i.e., u → S/2, we recover
the classical formula for the fixation of an allele with selective disadvantage S (Crow
and Kimura 1970),

A1 = 〈eSx〉0 − 1

eS − 1
. (46)

Similarly to our finding in the analysis of the previous region, the initial probability
density φ(x,0) = δ(x − 1/2) yields A1 = 1/(1 + eS/2) regardless of the value of C,
as shown in Fig. 4.

Appendix B: Critical Line for the Limit as M → 0

Setting M = 0 in Eq. (25) yields

z′
c + z2

c − Szc + C = 0 (47)

with the condition

zc(1) = 0. (48)

In the region C − S2/4 > 0 its solution is

zc(x) = S

2
− γ tan(γ x + θ), (49)

where γ = √
C − S2/4, and θ = θ(γ,S) is fixed by condition (48) as

S

2
− γ tan(γ + θ) = 0. (50)

We note that the critical value Cc(S) is in the region C − S2/4 > 0 (see Fig. 5). To
evaluate Eq. (28), we use the equality

exp(−Sx + yc) = cos(γ x + θ)

cos(θ)
exp(−Sx/2), (51)

which follows directly from the definition yc(x) = ∫ x

0 zc(ξ)dξ with zc given by (49).
Now the integrals in Eq. (28) can be readily evaluated, yielding

S

2
− γ tan(θ) = γ [e− S

2 sin(γ + θ) − sin(θ)] − S
2 [e− S

2 cos(γ + θ) − cos(θ)]
e− S

2 cos(γ + θ)
. (52)

This equation can be further simplified using the equalities sin(γ + θ) = S/(2
√

C)

and cos(γ + θ) = γ /
√

C, which follow from Eq. (50). The final result is simply

γ = √
Ce

S
2 cos(θ). (53)
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Finally, we rewrite Eq. (50) as

θ = arctan

(
S

2γ

)
− γ (54)

in order to make clear that Eq. (53) yields a relation C = Cc(S), which is the critical
line M → 0 depicted in Fig. 5.
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