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NIELSEN CLASSES OF NON SPLIT n-VALUED MAPS

DACIBERG LIMA GONÇALVES AND JOHN GUASCHI

We develop, using standard tecniques of fixed point theory and covering space,
a proceure how to compute the Nielsen number of a n-valued map which is not
split. We use coincidence theory for single values map to express our result. This
will extend the known formula given by Helga Schirmer which says that for a split
multivalued map the Nielsen number of a multivalued map ϕ : X ( X is the
sum of the Nielsen numbers of the coordinates. This might give some light how to
undertand Reidemeister classes on the context of multivalued maps.
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GROWTH OF HOMOLOGY IN FINITELY PRESENTED

SOLUBLE GROUPS

DESSISLAVA KOCHLOUKOVA

We discuss the growth of homology of subgroups of finite index in finitely pre-
sented soluble groups. I will discuss joint results with M. Bridson and F. Mokari.

(Dessislava Kochloukova) UNICAMP

E-mail address: desi@ime.unicamp.br
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REIDEMEISTER CLASSES FOR COINCIDENCES BETWEEN

SECTIONS OF A FIBER BUNDLE

D. PENTEADO AND T.F.V. PAIVA

Let s0, f0 be two sections of a fiber bundle q : E → B and Γ(s0, f0) the coin-
cidence set point. We consider the following question: Is s0 'B s1 or f0 'B f1
(homotopies over B) such that Γ(f0, s1) or Γ(s0, f1) = ∅? This situation is moti-
vated by the fixed point theory. Specifically: given f : B → B, we consider the fiber
bundle q : B × B → B and the sections s0, f0 : B → B × B given by s0(b) = (b, b)
and f0(b) = (b, f(b)). We can supposed that b0 ∈ Γ(s0, f0) and we also denoted
by s0, f0 : π1(B, b0) → π1(E, e0) where e0 = f0(b0) = s0(b0) and F0 = q−1(b0)
the typical fiber. So we have π1(E, e0) ' π1(F0, e0) o π1(B, b0). We defined the
Reidemeister equivalence classes relative to the subgroup π1(F0, e0): we said that
γ1, γ2 ∈ π1(F0, e0) are Reidemeister related if there is β ∈ π1(B, b0) such that
s0(β) ∗ γ1 = γ2 ∗ f0(β). We denoted by [γ1]A ∈ R(s0, f0;π1(F0, e0)) the class of γ1.
We constructed the covering spaces from the normal subgroups [b0]Cπ1(B, b0) [e0]C
π1(E, e0) and π1(F0, e0)Cπ1(E, e0), namely: pb0 : B̃(b0)→ B, pe0 : Ẽ(e0)→ E and

pF0 : Ẽ(F0)→ E so pe0 = pF0 ◦ pe0F0
, where pe0F0

: Ẽ(e0)→ Ẽ(F0). From this, we ex-

plicit the lifting maps s̃0, f̃0 : B̃(b0)→ Ẽ(e0) and sF0
, fF0

: B̃(b0)→ Ẽ(F0). In the

set L(s0; fF0
) of lifting s̃ : B̃(b0)→ Ẽ(e0) of the section s0 such that fF0

= pe0F0
◦ s̃,

we defined the equivalence relation RL. We denoted by [s̃]L ∈ RL(L(s0; fF0)) the
class of s̃ by the relation RL. Now we obtained the theorem as in [Ji-83] :

Let Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1) and Γ

B̃(b0)

Ẽ(e0)
(f̃0, s̃2) be the coincidence sets for s̃1, s̃2 ∈ L(s0; fF0

).

(i) There is a one to one correspondence Ψ : RL(L(s0; fF0
))→ RA(f0, s0;π1(F0, e0)).

(ii) If [s̃1]L = [s̃2]L then pb0
(

Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1)

)
= pb0

(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃2)

)
.

(iii) If pb0
(

Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1)

)
∩ pb0

(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃2)

)
6= ∅ then [s̃1]L = [s̃2]L.

(iv) If [s̃1]L 6= [s̃2]L then pb0
(

Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃1)

)
∩ pb0

(
Γ
B̃(b0)

Ẽ(e0)
(f̃0, s̃2)

)
= ∅.
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(1) REMARKS ON COBORDISM OF MAPS ON LOCALLY

ORIENTABLE WITT SPACES

(2) A LEFSCHETZ COINCIDENCE THEOREM FOR

INTERSECTION HOMOLOGY

JEAN-PAUL BRASSELET, ALICE K. M. LIBARDI, THAIS F. MENDES MONIS, ELIRIS C.
RIZZIOLLI AND MARCELO SAIA

Remarks on Cobordism of Maps on Locally Orientable Witt Spaces

Aim of this work is to present some remarks on cobordism of normally non-
singular maps between locally orientable Witt spaces. By using the Wu classes
defined by Goresky and Pardon we give also a definition of Stiefel–Whitney num-
bers in this situation. Following Stong’s construction, we construct a map in the
respective intersection homology groups and we show in several cases that null-
cobordism implies the vanishing of these Stiefel–Whitney numbers.

A Lefschetz coincidence theorem for intersection homology

Goresky and MacPherson proved the Lefschetz fixed point theorem in the con-
text of a class of “placid” self maps f of singular spaces X, by using intersection
homology. In fact they showed that both the graph of f and the diagonal carry
fundamental classes in the intersection homology of X ×X, and that the Lefschetz
number IL(f) is the intersection number of these two classes. This result leads us
naturally to the question of coincidence. Our main goal is to explicit the formula of
the Lefschetz coincidence number for placid maps f, g : X → Y between oriented
compact Q-Witt spaces of same dimension and prove the Lefschetz coincidence
theorem in this setting.

(Jean-Paul Brasselet) Institut de Mathématiques de Marseille

E-mail address: jean-paul.brasselet@univ-amu.fr
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CONFIGURATION SPACES, BRAID GROUPS AND HOMOTOPY

FIBRES

DACIBERG GONÇALVES AND JOHN GUASCHI

Let M be a surface. In order to understand better the nth configuration space
Fn(M) of M (whose fundamental group is the n-string pure braid group Pn(M)
of M), we may compare it with the n-fold Cartesian product Mn of M with itself
by studing their homotopy type, the inclusion ι : Fn(M) −→Mn, and the induced
homomorphism ι# : Pn(M) −→ (π1(M))n. One way to analyse this homomor-
phism (as well as those induced on the higher homotopy groups) is to determine
the homotopy fibre Iι of ι. In this talk, we discuss a conjecture of Birman regarding
ker(ι#) and prove it in the outstanding case where M = RP 2. We then compute
the homotopy fibre of ι when M = S2 or RP 2, and from this we obtain various
exact sequences involving the homotopy groups of Fn(M) and S2. In the case of
RP 2, the proofs bring into play the notion of orbit configuration spaces introduced
by F. Cohen and M. Xicoténcatl.

(Daciberg Gonçalves) IME-USP

E-mail address: dlgoncal@ime.usp.br

(John Guaschi) Laboratoire de Mathématiques Nicolas Oresme UMR 6139, Université

de Caen Normandie, France
E-mail address: john.guaschi@unicaen.fr
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DEFORMABILITY BY FIBREWISE HOMOTOPY OVER S1 OF

PAIRS (f, g); f, g : M(φ1)→M(φ2) TO A COINCIDENCE FREE

PAIRS (f ′, g′), WHERE M(φ1) AND M(φ2) ARE FIBRE BUNDLES

OVER S1 AND THE FIBRE IS A TORUS

LETÍCIA SANCHES SILVA AND JOÃO PERES VIEIRA

Let M(φ1) and M(φ2) be fibre bundles over the circle S1 and the fibre is the
torus T and f, g : M(φ1) → M(φ2) fibre preserving maps over S1. In this work
we investigate if the pair (f, g) can be deformed, by a fibrewise homotopy over S1,
to a coincidence free pair (f ′, g′). In general classify such pairs of maps consists
in finding solutions for an equation in the free group π2(T, T − 1), called the main
equation. In certain situations find these solutions is not an easy task and moreover
in the cases where it is not possible to obtain the desired deformability we have that
this equation has no solution. Thus, it is appropriate to study the main equation in
the abelianization of π2(T, T − 1) and on some quotients of this group, since if the
equation in one of these quotients not admit solution we can infer that the original
equation also does not admit solution.
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(Dep. Matemática -UNESP/IGCE-Rio Claro)

E-mail address: jpvieira@rc.unesp.br

1

6



ON THE INDEX AT AN ISOLATED SINGULAR POINT OF

PRINCIPAL FOLIATIONS OF SURFACES IN R3

LUCIANA F. MARTINS, J.C.F. COSTA, AND J.J. NUNO-BALLESTEROS

We study the index of an isolated singular point of the binary differential equa-
tion which represents the equation of the principal directions of a corank 1 map
germ f : (R2, 0) → (R3, 0). We suppose that f or is a simple map germ either is a
map germ of codimension less or equal to 3. We show that the index, under certain
condition, is always 0 or 1.

(Luciana F. Martins) IBILCE-UNESP-São José do Rio Preto
E-mail address: lmartins@ibilce.unesp.br

(J.C.F. Costa) IBILCE-UNESP-São José do Rio Preto
E-mail address: jcosta@ibilce.unesp.br

(J.J. Nuno-Ballesteros) Universidade de Valência
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UM ALGORITMO PARA CLASSIFICAR O CONJUNTO

ASSINTÓTICO ASSOCIADO A UMA APLICAÇÃO POLINOMIAL

NGUYEN THI BICH THUY

Nós demos um algoritmo para classificar o conjunto assintótico associado a uma
aplicação polinomial dominante F : Cn → Cn.

(Nguyen Thi Bich Thuy) IBILCE - UNESP

E-mail address: bichthuy@ibilce.unesp.br
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SPECIAL MAPS FROM SURFACES TO S2 ∨ S1

NORTHON CANEVARI LEME PENTEADO AND OZIRIDE MANZOLI NETO

In this work we are interested in describing a certain special type of element in
each homotopy class of the set [S;S2 ∨ S1] = {[f ]; f : S → S2 ∨ S1 is continuous},
where S is some closed connected orientable surface. We associate to each homotopy
class [f ] a polynomial in Z[Z], and that polynomial characterize a special map. This
special representative has good properties and realize a certain minimal set of roots
for all points in S2 ∨ S1.
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CENTER OF BRAID GROUPS QUOTIENTS AND THE

HOMOTOPY GROUPS OF THE 2-SPHERE

OSCAR OCAMPO

One of the fundamental problems in algebraic topology is to study the homotopy
groups of spheres, and in general they are unknown. Let Pn(M) denote the pure
braid group with n strings over a surface M . Let Z(G) denote the center of a given
group G. In this work we will show that, for n ≥ 3 and M being the disk D2 or
the 2-sphere S2, there exists a normal subgroup Gn(M) of Pn(M) such that

Z

(
Pn(D2)

Gn(D2)

)
∼= πn(S2) × Z

and

Z

(
Pn+1(S2)

Gn+1(S2)

)
∼= πn(S2) × Z2.

The group Gn(M) can be explicitly described by iterated commutators using the
standard Artin generators for pure braids.

For M = D2 this result is due to J.Y.Li and J.Wu [Proc. London Math. Soc. -
2009], however we give a different proof for this case. The case M = S2 is new.
Moreover, this type of result may be extended to any surface.

(Oscar Ocampo) Universidade Federal da Bahia

E-mail address: oscaro@ufba.br
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OBSTRUCTION THEORY FOR COINCIDENCES OF MULTIPLE

MAPS

THAIS MONIS AND PETER WONG

Let f1, ..., fk : X → N be maps between two manifolds X,N where k ≥ 3. In
[1], the authors introduced, for orientable N , a Lefschetz type coincidence class
L(f1, ..., fk) which has been recently generalized in [5] for N non-orientable. In this
work, we study the converse problem, that is, the problem whether f1, ..., fk are
deformable to be coincidence free when L(f1, ..., fk) = 0. We further generalize the
notion of the Lefschetz class of [5] using [4] and obtain the converse under some
conditions on N using obstruction theory and the work of [3] and [2].
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PERSISTENT HOMOLOGY OF FINITE METRIC SPACES AND

ITS STABILITY

ROBERTO FACUNDO MÉMOLI TECHERA

Given a finite metric space (X, dX) for each non negative real number t it is
possible to give rise to a simplicial complex, called the Vietoris–Rips simplicial
complex Rt(X), with the property that for s greater than t, Rt(X) is a subcomplex
of Rs(X). If 0 = t0 < t1 < t2 < · · · < tk denote the set of values realized by the
distance function dX, then one obtains a directed system of simplicial complexes
and simplicial maps

Rt0(X)→ Rt1(X)→ · · · → Rtk(X)

When one applies the homology functor (with field coefficients) to the above
diagram one obtains a directed system of vector spaces and linear maps. This
system admits a classification up to isomorphism in terms of finite collections of
intervals, called barcodes. We’ll discuss the stability of these barcodes in terms of
the Gromov–Hausdorff distance.

(Roberto Facundo Mémoli Techera) OHIO UNIVERSITY - USA

E-mail address: facundo.memoli@gmail.com
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GENERALIZED WHITEHEAD PRODUCT

THIAGO DE MELO AND MAREK GOLASIŃSKI

In this talk we introduce the basic concepts on higher order Whitehead product
for maps fi : ΣAi → X, i = 1, . . . , r. Also we present some computations for the
triple spherical product to show that [η4, η

2
4 , 2ι4] is trivial.

(Thiago de Melo) IGCE–Unesp Rio Claro
E-mail address: tmelo@rc.unesp.br

(Marek Golasiński) Institute of Mathematics Casimir the Great University, Poland
E-mail address: marek@ukw.edu.pl
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LOCAL PERSISTENT HOMOLOGY AND BARCODE FIELDS

WASHINGTON MIO

(to be announced)

(Washington Mio) Florida State University - USA
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NIELSEN NUMBER AND ONE-PARAMETER LEFSCHETZ

CLASS OF HOMOTOPIES ON TORUS

WESLEM LIBERATO SILVA

Let F : T×I → T be a homotopy on torus and G = π1(T, x0). R.Geoghegan and
A. Nicas in [1] developed an one-parameter theory and defined the one-parameter
trace R(F ) of F . The element R(F ) is a 1-chain in HH1(ZG, (ZG)φ)). This 1-
chain gives information about the fixed points of F , that is, using R(F ) is possible
to define the one-parameter Nielsen number N(F ) of F and the one-parameter
Lefschetz class L(F ). N(F) is the number of non-zero C-components in R(F ) and
L(F ) is the image of R(F ) in H1(G) by homomorfism j̄C : H1(Z(gC)) → H1(G),
induced by inclusion jC : Z(gC) → G, where Z(gC) is the semicentralizer of an
element gC which represents the semiconjugacy class C. The precise definition is
given in [1]. In this work we will show that for each homotopy on torus N(F ) and
L(F ) are related by;

L(F ) = ±N(F )α

where α is one of the two generators of H1(G,Z). The calculation of N(F ) for some
homotopies on torus can be found in [2].
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A PROOF OF THE UNIVERSAL COEFFICIENT THEOREM FOR

HOMOLOGY GROUPS

BRUNO CALDEIRA CARLOTTI DE SOUZA MARIA GORETE CARREIRA ANDRADE

In this work we present, based in [3], a construction of the homology group of a
pair (X,A) of topological spaces with coefficients in an arbitrary abelian group G,
denoted by H∗(X,A;G), which is a natural generalization of the relative homology
groups H∗(X,A). Also based in [3], we present a proof of “The Universal Coeffi-
cient Theorem” for homology groups, which connect those two concepts, and some
computations of homology groups of surfaces.
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ON TOPOLOGICAL VERSION OF THE TVERBERG THEOREM

CARLOS H. F. PONCIO AND EDIVALDO L. DOS SANTOS

Helge Tverberg showed that any set of (d+ 1)(q − 1) + 1 points in Rd admits a
partition into q subsets such that the intersection of their convex hulls is non-empty.
Such partitions are called Tverberg partitions; the result is the best possible: for less
than (d+1)(q− 1)+1 points in Rd the implication of the statement does not hold.
In this work, we will use topological methods in combinatorics and geometry to
prove a topological version of Tverberg theorem and a result about many Tverberg
partitions.
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CONFIGURATION SPACES

CÉSAR ZAPATA AND DENISE DE MATTOS

Abstract. The purpose of this work is to introduce the theory of configura-

tion spaces, some classical and new results in this field [1] ,[2] . It will also
address the numerous applications of these results in real life [3], [4]. Config-

uration spaces are useful for addressing questions about collisions and linking

starting with the archetypal Borsuk-Ulam theorem [5].
Let X be a space. The configuration space of ordered k−tuplas of distinct

points in the space X is given by

Conf(X, k) := {(x1, · · · , xk) ∈ Xk : xi 6= xj if i 6= j}.
The symmetric group on k−letters

∑
k acts naturally on Conf(X, k) by

permutation coordinates. The orbit space

Conf(X, k)∑
k

is the unordered configuration space.
As a example, in [6] the authors study the configuration space Conf(X, k)

of k−distinct points in a smooth compact m−manifold X, possibly with bound-

ary. The paper determines the additive structure of the homology H?(Conf(X, k);F)
where F is any field if m is odd, and F2 otherwise.
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THE UNIVERSAL SPACE THEOREM FOR DIMENSION 0

GIVANILDO DONIZETI DE MELO AND THAIS FERNANDA MENDES MONIS

In topological dimension theory there are three different definitions of dimension:
the small inductive dimension, the large inductive dimension and the covering di-
mension. The three dimension functions coincide in the class of separable metric
spaces. In this work, we will consider the small inductive dimension for separable
metric spaces and the goal is to prove the universal space theorem for dimension
0: the Cantor set and the space of irrational numbers are universal spaces for the
class of all zero dimensional separable metric spaces. This result was established
by W. Sierpiński im 1921.
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ON GOTTLIEB GROUPS

GUILHERME VITURI FERNANDES PINTO AND THIAGO DE MELO

In this work we study the Gottlieb group G(X,x0), which is a subgroup of
π1(X,x0), for a CW-complex X.

We present some elementary results, for example, we show that G(X,x0) =
π1(X,x0) if X is a H-space. Also, we compute G(P 2n) for n ≥ 1 and G(T ) for T
a wedge of k circles, with k > 1.

Finally, we follow Varadarajan and generalize G(X,x0) as a subgroup of [A,X]
where A is a co-H-space.
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E-mail address: vituri vituri@hotmail.com

(Thiago de Melo) Unesp Rio Claro

E-mail address: tmelo@rc.unesp.br

1

21



AN OBSTRUCTION FOR VIRTUAL DUALITY GROUPS

JESSICA CRISTINA ROSSINATI RODRIGUES DA COSTA AND MARIA GORETE
CARREIRA ANDRADE

The cohomology group theory arose from studies in topology and algebra. In
the mid-1940’s a purely algebraic definition of group homology and cohomology,
from which it became clear that the subject was of interest to algebraists as well
as topologists, offered a great possibilities for interaction between areas. One such
possibility is duality groups theory due Bieri and Eckmann([2]). The main theme
of this work is the study Farrell’s cohomology theory. In [1], Farrell extend Tate’s
cohomology theory for finite groups to a certain class of infinite groups: for groups
of virtually finite cohomological dimension. Besides, through Farrell cohomology,
will be present an obstruction for virtual duality groups satisfying the duality iso-
morphism of the theory due to Bieri and Eckmann.

References

[1] Farrell, F. T.An extension of Tate cohomology to a class of infinite groups, Journal of Pure

and Applied Math. 10, 153-161 1977.
[2] Bieri, R., Eckmann, B. Groups with homological duality generalizing Poincar duality., In-

vent.Math.20, 103-124 1973.

(Jessica Cristina Rossinati Rodrigues da Costa) Mestranda em Matemática -
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THE ARTIN PRESENTATION THEOREM

LETÍCIA MELOCRO (STUDENT) AND DENISE DE MATTOS (ADVISOR)

Braid groups first appeared, although in a disguised form, in an article by Adolf
Hurwitz published in 1891 and devoted to ramified coverings of surfaces. The
notion of a braid was explicitly introduced by Emil Artin in the 1920’s to formalize
topological objects that model the intertwining of several strings in the Euclidean
3-space. Artin pointed out that braids with a fixed number n of strings form a
group, called the Artin braid group of braids on n-strands, denoted by B(n). Since
this early result, the theory of braids and the braid groups have been extensively
studied by topologists and algebraists. This has led to a rich theory with numerous
ramifications.

The main objetive of this work is to present a geometric description of the braid
groups of the disk and show that the group B(n) admits a presentation in terms of
generators and relations in the famous theorem of Artin presentation. Emil Artin,
in the 1920’s, pointed out that braids with a fixed number n of strings form a group,
called the Artin braid group of braids on n-strands, denoted by B(n).

Continuing this work, later we will define a total ordering of the braid groups,
which is invariant under multiplication on both sides. The ordering will be defined
using a combination of Artin’s combing technique and the Magnus expansion of
free groups.

Recently, Rolfsen, Dynnikov, Dehornoy and Wiest, demonstrated topological
reasons for the existence of a left-ordering of the braid groups over the disk, i.e.,
there is a strict total ordering of the braids that is invariant under multiplication
from the left. They also showed the pure braid groups over the unit disk are bi-
orderable, i.e., there is a left and right invariant strict total ordering for this group.
In our master’s project, we will study the results related with this topic, developed
in [5].
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CALCULATING THE SINGULAR HOMOLOGY GROUPS OF

SOME SPACES

RODRIGO DOS SANTOS BONONI AND ERMINIA DE L. CAMPELLO FANTI

The Homology Singular Theory provides us an interesting connection between
Geometry and Algebra. For a topological space X, the homology groups associ-
ated Hn(X) reflect the geometrical structure of X, the way the “holes” of X are
arranged. However, calculate the singular homology groups of a space in general
is not easy. If X is the union of two subspaces U and V , under suitable hypothe-
ses there is an exact sequence relating the homology of X with that of U , V and
U ∩ V . It is called the Mayer-Vietoris sequence of the pair U and V . In this work
we calculate the singular homology groups of some spaces using the Mayer-Vietoris
sequence.
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EQUISINGULARITY OF MAP GERMS FROM C4, 0 TO C3, 0

A. J. MIRANDA, M. J. SAIA, E. C. RIZZIOLLI, AND V. H. JORGE-PÉREZ

In this work we study the geometry of finitely determined map germs f in O4,3.
First we study the critical locus of the germ and the discriminant (image of the
critical locus by f). Last, we investigate the inverse image by f of the discriminant
that is an hypersurface in the source with nonisolated singularity at the origin.
From this, we show some relationship among the invariants needed to describe the
Whitney equisingularity of families in these dimensions.
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SOME EXAMPLE OF INVOLUTION FIXING RP j ∪ CP k WITH j

AND k EVEN

AMANDA FERREIRA DE LIMA AND PEDRO LUIZ QUEIROZ PERGHER

The classification up to equivariant cobordism of smooth involutions having fixed
set RP j ∪CP k, with j, k even, is a classical problem in cobordism theory. In the di-
rection of finding a solution for this problem we study some examples of involutions
with the fixed point in question. Certain examples are trivial or well-known. In this
work we present a new example, specifically the involution Γ(CP k, conjugation),
and show that this example is effectively new.
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STRONG SURJECTIVITY OF MAPPINGS OF SOME

3-COMPLEXES WITH TWO 3-CELLS INTO MQ16

CLAUDEMIR ANIZ

Given a map f : K → M between topology spaces, and an arbitrary point
a ∈ M , MR[f, a] = min{#(g−1(a)) | g ∈ [f ]}, where [−] means a homotopy class.
We say that a map f : K → M is strongly surjective, if any map homotopic to
it is surjective or, equivalently, if MR[f, a] 6= 0 for some a ∈ M . Let K be a
three dimension CW -complex with m cells of dimension 3, 1 ≤ m ≤ 2, such that
H3(K;Z) = 0 and MQ16

the orbit space of the 3-sphere S3 with respect to the
action of the quaternion group Q16 determined by inclusion Q16 ⊆ S3. Given a
point a ∈ MQ16 , we show that there is no map f : K → MQ16 which is strongly
surjective.
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ON THE DISCRIMINANTS OF MAP GERMS FROM Cn+1 TO

Cn, n = 3, 4.

ELIRIS CRISTINA RIZZIOLLI

In this work we show some calculations involving Lê numbers and Euler char-
acteristic of the Milnor fibre on discriminants of map germs from Cn+1 to Cn,
n = 3, 4. In particular, we show that the Lê numbers are not invariant to the class
of weight homogeneous map germs with same degree of homogeneity.

(Eliris Cristina Rizziolli) IGCE-UNESP, Rio Claro, S.P. Brasil.

E-mail address: eliris@rc.unesp.br

1

28



ON ROOTS FOR MAPS GOING FROM RP (3) TO S2

GUSTAVO DE LIMA PRADO

In this work, first we classify up to homotopy the maps going from RP (3) to S2.
In order to do that, we first construct some maps and we enumerate them. Then we
prove they are representatives for each homotopy class of maps going from RP (3) to
S2. Second we calculate the minimum number of coincidence components and the
Nielsen number of (y0, f) (as in [1] and [2]) for each of these homotopy classes and
we find that they are both equal: or to 0 if f is nullhomotopic; or to 1 otherwise.
We conclude in particular that f is deformable to be root free if and only if f is
nullhomotopic. This work is part of the author’s thesis, [3], under the advisory of
Daciberg Lima Gonçalves and Ulrich Koschorke.
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BORSUK–ULAM AND BOURGIN–YANG THEOREMS FOR

mod p-COHOMOLOGY SPHERES

NELSON A. SILVA, DENISE DE MATTOS, AND EDIVALDO L. DOS SANTOS

Bartsch [1] introduced a numerical cohomological index theory, known as the
length, for G-spaces, where G is a compact Lie group. We present the length of
G-spaces which are cohomology spheres and G = (Z2)k, (Zp)k or (S1)k, k ≥ 1.
As consequences, we obtain a Borsuk–Ulam theorem in this context and give a
sufficient condition for the existence of G-map between a cohomological sphere and
a representation sphere when G = (Zp)k. Also, a Bourgin–Yang version of the
Borsuk–Ulam theorem is presented.
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DICHOTOMY BETWEEN DENSITY FOLIATIONS AND

SUSPENSIONS FOR ANOSOV ACTIONS

RODRIGO RIBEIRO LOPES AND CARLOS ALBERTO MAQUERA APAZA

We will talk about of certain properties of an Anosov action φ : Rk ×M → M .
In particular, we are interested to solve the Verjosky’s conjectured for actions.
The conjectured says “Every irreducible codimension-one Anosov action of Rk on
a manifold M , dimM ≥ k + 3, is topologically conjugate to the suspension of an
Anosov action of Zk on a closed manifold.”

In order to solve this problem for k = 1, Plante[1] proved a lot of results about
Anosov flows. In particular, he exhibited a criterion for Anosov flow to be a sus-
pension of homeomorphism. The criterion is the following dichotomy, either each
strong unstable leaf and strong stable leaf is dense on M or the flow φt is a suspen-
sion of an Anosov diffeomorphism. In this work, we will show the same dichotomy
for irreducible codimension-one Anosov action.
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(H,G)-COINCIDENCE THEOREMS FOR MANIFOLDS

TACIANA O. SOUZA AND DENISE DE MATTOS

Let G be a finite group which acts freely on a space X and let f : X → M be
a continuous map from X into another space M . If H is a subgroup of G, then H
acts on the right on each orbit Gx of G as follows: if y ∈ Gx and y = gx, g ∈ G,
then hy = ghx. A point x ∈ X is said to be a (H,G)- coincidence point of f if
f sends every orbit of the action of H on the G-orbit of x to a single point (See
[1]). The set of all (H,G)-coincidence points is denoted by A(f,H,G) . Let X
be a paracompact space and let H a cyclic subgroup of G of prime order p. Let
f : X →M be a continuous map where M is a connected m-manifold (orientable if
p > 2) and f∗(Vk) = 0, for k ≥ 1, where Vk are the Wu classes of M . Suppose that
indX ≥ n > (|G|− r)m, where indX denotes the index of the free Zp-space X and

r =
|G|
p

. In this work we estimate, using results in [2] and [3], the cohomological

dimension of the set A(f,H,G) of (H,G)-coincidence points of f .
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