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Abstract—Fish oocyte counting and measuring is an important
step for estimating fecundity, which is normally done by analyzing
oocytes’s diameters frequency distribution, taking a long time to
be done manually and is a laborious task. Oocytes digital images
segmentation can make the process faster and more precise.
However, proposed methods to address this problem do not deal
with overlapped oocyte or tissues and need image processing
techniques knowledge to be used. In this paper, we propose a
new pipeline to deal with overlapped oocytes so that no image
processing knowledge is required for the user. We have used
well-known image processing techniques, such as Otsu’s method,
Watershed transform, mathematical morphology and regional
minimum. Experiments using fish samples from Madeira river
show that the proposed pipeline has a huge potential to aid in
the task of counting and measuring oocytes. The time spent in
this task using the pipeline is twice faster than manual analysis.

Keywords—Fish oocytes, computer vision, image segmentation,
Otsu’s method, watershed transform.

I. INTRODUCTION

Fish oocyte counting and measuring is a very laborious
task, which consists of looking at oocytes in a stereoscopic
and measuring them. It is used to estimate natural fisheries
stocks, which leads to information about the fecundity [20].

Over hundreds studies use the fish fecundity analysis to
describe the reproductive strategies and the assessment of
fecundity [7], [11], [20], it can not only elucidate the basic
biology of the fishes but also help in their management and
conservation [7]. It is a fundamental topic in the study of the
biology and population dynamics of fish species [6]. Therefore,
it plays a really important role in fishing biology [11].

Fecundity is generally estimated using the gravimeter
method, in which fecundity is the product of the weight of
ovary and fish oocytes per gram of ovary tissue [18]. Another
way is to measure each oocyte diameter and analyze its fre-
quency distribution [11]. If the frequency distribution has two
peaks, i.e., two population of oocytes at different development
stage, we have a total spawning specie. If there are more than
2 peaks, we have a batch spawing [11], which can be seen as a
reproductive strategy that increases the survival probability [9].

In this paper, we have used samples (fishes) acquired from
Madeira river (Amazon river biggest tributary), where a Hydro-

electric power station1 is being built and therefore it is needed
to analyze the biology and ecology icthyofauna before and
after the dam implementation to promote conservation actions.

A pipeline to count and measure oocytes in microscopic
images is proposed in this paper. We have used well-known
techniques, such as Otsu’s method, Watershed transform, math-
ematical morphology and regional minimum to address the
issue of overlapped eggs and tissues. It is made in an automatic
way so that biologists specialists do not need any image
processing knowledge. Moreover, the process is standardized,
so that subjective analysis made by specialist are discharged.

The remainder of this paper is organized as follows. In
Section II, we describe related works. In Section III, we
describe our proposed pipeline. In Section IV, we describe the
experimental results. In Section IV we present the conclusion.

II. RELATED WORK

Only a few methods for automatic counting and measuring
oocytes have been described previously [2], [19], [18], [4].
Most of them do not deal with overlapped oocyte or tissues
in the images. They normally ignore this issue by using the
roundness value of segmented oocytes.

In 1967 was proposed a machine which only counts oocytes
with diameter between 200 − 2500µm [2]. An automatic
particle counter is proposed in [19], which seems to be precise
and accurate. However, a particle counter is expensive, needs
extensive calibration and it is not a standard equipment in
most biology labs. Moreover, the oocytes have to be perfectly
separated, which is laborious and takes a long time [19].

Image processing techniques are used in [18] to measure
oocytes. However, they ignore overlapped oocytes using the
roundness value [18]. In [4] is used mathematical morphology
for segmenting touching oocytes in the image, which in most
cases does not segment properly [4]. In [8] is proposed a low-
cost laboratory setup. They use ImageJ R© [1] to automatic
count particle (oocytes) in the image. However, they only
uses Watershed transform to separete overlapping particles,
which does not always gives appropriated results. Besides,

1Santo Antônio Dam, located in Porto Velho in the state of Rondônia, will
contribute to Brazil’s growth. http://www.santoantonioenergia.com.br/en/
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Fig. 1. Proposed pipeline for oocyte counting and measuring in digital images.

to use ImageJ it is necessary some knowledge about image
processing, which most biologists do not have.

III. PROPOSED PIPELINE

In Figure 1 is shown the pipeline proposed our work.
First, the image is converted to gray-scale (Section III-A),
then morphological and Gaussian filters to remove noise
(Section III-B). Aftwards, the image is segmented using Otsu’s
threshold (Section III-C) and Watershed transform is applied to
separate overlapping and touching oocyte (Section III-D). Fi-
nally, irrelevant Watershed lines are removed based on central
oocytes points, which are estimated using regional minimum
and local thresholds (Section III-E).

A. Converting original image to gray-scale

The oocyte images are in RGB format, as color components
are not relevant in this work, the image is converted to gray-
scale using Equation 1 [13]:

Ig = 0.2989 ∗R+ 0.5870 ∗G+ 0.1140 ∗B (1)

where R is the red channel, G is the green channel, B is the
blue channel and Ig is the resulting image in gray-scale.

B. Morphological opening and Gaussian filter

The oocytes images presents noise introduced by the cam-
era and gonadal tissues [21], which are removed applying an
average filter (size 5 × 5) and a morphological opening (in a
shape of a disk with size of 15 pixels). These filters were used
for noise removal in images from blood cells [17], [14] and,
as shown in Fig. 2, presented suitable results for our work.

C. Otsu’s method

Otsu’s method exhaustively searches for the threshold that
minimizes the intra-class variance, defined as a weighted sum
of variances of two classes [12]:

σ2

w(t) = ω1(t)σ
2

1
(t) + ω2(t)σ

2

2
(t), (2)

(a) (b)

Fig. 2. Otsu method: (a) without applying any previous filter; (b) Gaussian
and morphological opening previously applied.

weights ωi are the probabilities of the two classes separated by
a threshold t and σ2

i are variances of these classes. In Fig. 2
is shown the results of Equation 2 applied to two images.

D. Watershed transform

Watershed transform correctly separates overlapping oocyte
after applying Otsu’s method. However, it also over-segments
a few oocytes, as is shown in Fig. 3. It is highly sensitive to
local noise in Euclidean Distance Map - EDM [16].

To detect Watershed over-segmented lines, central region of
oocytes are estimate [16], [15], as presented in Section III-E.

E. Calculating fish oocytes central points

To estimate central oocytes regions, local threshold and
regional minimum are used. Local thresholds do not detect
all the central oocyte regions, on the other hand, regional
minimum can detect all of them, but in smaller size.

Watershed over-segmented lines do not always pass exactly
through the center of the oocytes. Therefore, regional minimum
works as a complement to the local threshold, giving the
central regions that were not detected.

1) Local threshold: To get all the regions in the image, an
Euclidean Distance Map (EDM) is calculated [3], and then a
local threshold is calculated in a each region using Equation 3;
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Fig. 3. Watershed transform applied on Fig. 2(b) to separate overlapping
oocytes (a morphological erosion was applied for better visualization).

t = µ+ x× σ (3)

where t is the threshold to be applied on that region, µ and σ
are, respectively, the mean and the standard deviation different
of zero on that region, and x is a constant.

We have empirically set x as 1.5. In Fig. 4 is shown the
results for distinct values of x applied over Fig. 3. In Fig. 5
is shown the results for different images with x = 1.5.

(a) x = 0.5 (b) x = 1

(c) x = 1.5 (d) x = 2

Fig. 4. Result of Equation 3 applied on the same image with distinct x

values. The red rectangles show oocytes overlapped.

As shown in Fig. 4, as the value of x increases, the central
regions size decrease and vice-versa. However, if the value
of x is lower than 1, it is likely that a few oocytes remain
overlapped. Therefore, based on these results, the x value in
Equation 3 is set to 1.5.

In Fig. 5 is shown Equation 3 applied on different images
and with the same x value. None of the fish oocyte is left
overlapped. However, the central regions of a few oocytes are
not detected. Thus, in order to detect these undetected oocytes,
we used the regional minimum technique [5].

Fig. 5. Result of Equation 3 applied on different images with x = 1.5.

2) Regional minimum: The regional minimum is also cal-
culated on the EDM (Euclidean Distance Map). In order to
get bigger central points, morphological dilation previously is
applied to the EDM, as shown in Fig. 6(b). In Fig. 6(a) is
shown the results of regional minimum over the EDM without
applying the dilation filter.

(a) (b)

Fig. 6. Central points calculated using regional minimum over the EDM: (a)
without applying any filter; (b) morphological dilation previously applied.

F. Removing irrelevant Watershed lines

We join the results from local threshold and regional min-
imum to remove irrelevant Watershed lines using Equation 4:

Icp(x, y) =

{

1 if A(x, y) = 1 or B(x, y) = 1,
0 , otherwise

(4)

where A is the resulting binary image of local threshold, B is
the resulting image of regional minimum and Ipc is the result
of a logic OR function between A and B. Therefore, all the
central points are detected as is shown in Fig. 7(b).

As shown in Fig. 7(b), local threshold does not detect
all the central points; regional minimum detects all central
regions. However, a few central regions are too small. The
central regions have to be as big as possible, since irrelevant
Watershed lines do not always cuts the oocytes exactly in the
middle. To better illustrate the problem, in Fig. 8(a) is shown
the results of the regional minimum and the Watershed lines.
In Fig. 8(b) is shown the final result.
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(a) (b)

Fig. 7. Logic OR function applied on two binary images: (a) in yellow,
central points detected by local threshold; in red, central points detected by
regional minimum (b) final result obtained by logic OR.

(a) (b)

Fig. 8. For both images red lines represents Watershed lines, green lines
represent irrelevant lines detected and yellow lines represents central points;
(a) Regional minimum: blue circles indicate irrelevant lines not detected. (b)
final result using the local threshold and regional minimum, all irrelevant
Watershed lines are detected.

When irrelevant Watershed lines are removed, we get the
result shown in Fig. 9.

Fig. 9. Final oocyte segmentation result.

IV. EXPERIMENTS

We have used a 1,3 megapixels (AxioCam - ICc1 Zeeiss)
stereomicroscope for the image acquisition. The magnification
varied to suit the range of oocytes in the image. The images
are in RGB format and has resolution of 1388× 1038 pixels.

The oocytes were taken from Madeira river’s fishes. Four
different species with different reproductive strategies were
analyzed: H. incognitum and P. nattereri with batch spawing;
P. latior and P. nigricans with total spawing. Total spawning
is defined when a specie presents two populations of oocytes

diameters, i.e., when there are two peaks in the oocytes
diameter frequency distribution. On the other side, a specie
with batch spawning presents three or more well-defined peaks.

In total, 20 samples (fishes) were used and 147 distinct
images were taken. In Table I is shown the amount of images
per sample taken. For each sample it was taken a representative
percentage of its ovary, and then kept for a month in Gilson’s
solution [10], which breaks the ovarian tissue and make
possible to analyze the oocytes, in a Petri dish, through a
stereomicroscope.

TABLE I. FOR EACH ONE OF THE FOUR SPECIES WERE USED 5
SAMPLES (FISHES) (A, B, C, D, E), SUMMING UP TO 20 SAMPLES.

Specie
Sample

Sum (images)
A B C D E

H. incognituns 4 7 15 14 10 50

P. latior 6 3 10 13 10 42

P. nattereri 4 7 7 10 7 35

P. nigricans 3 4 6 3 4 20

Total 147

As shown in Table I, there is not a fixed number of images
for each sample. The amount of images per sample depends
on its gonadal sample size, which is empirically defined by
the specialist for each sample.

Counting results are presented in Section IV-A, where we
used only the images taken. Measuring results are presented
in Section IV-B, where we compare automatic and manual
measuring.

A. Counting results

To validate our segmentation pipeline we counted the
amount of oocytes in each image (ground-truth). We defined
which segmented oocytes may or may not be used for analysis.
Bad segmented oocytes, tissues or occyte cut by the image
boundary are not relevant for measuring analysis. In Fig. 10 it
is shown the counting results for each specie.

P. nigricans

T
o
ta

l

0

500

1000

1500

2000

2500

3000

Oocytes counting (ground−truth).
Automatically Segmented.
Correctly Segmented.

Fig. 10. Oocytes counting for H. incognitum, P. latior, P. nattereri and P.

nigricans manually counted, i.e., ground-truth (red), automatically segmented
(blue) and correctly segmented (green).

As shown in Fig. 10, in species H. incognitum and P.
nattereri it is segmented less oocytes than there really are. This
is caused due to diversity of oocytes sizes in the same image
(batch spawing), as shown in Fig. 11, too small oocytes are
not detected among bigger oocytes. Also, a few oocytes were
bad segmented and, consequently, should not be considered
for further analysis. On the other hand, for species P. latior
and P. nigricans, slightly more oocytes were segmented than
there really were. This is due to tissues in the image (Fig. 12).

For all species, even though a oocyte is correctly seg-
mented, it might not be relevant, since the oocyte is deformed
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Fig. 11. Considered (blue) and not-considered oocytes (red). Non-considered;
deformed, bad segmented or cut by image border. The roundness value are
shown in the middle of each oocyte.

from its original shape, which means it is not useful for
measuring analysis. Moreover, oocytes cut by the image border
are also not relevant, as can be seen in Fig. 11.

Fig. 12. Image with tissues from specie P. nigricans.

B. Measuring results

Manual measuring is done by eye-sight through a stereo-
scopic using a melimetric rule. Automatic measuring is done
on segmented oocytes in previous step (Section IV-A). In
Fig. 13 we compare the amount of oocytes measured in each
method. Automatic measuring allows to measure, in average,
more oocytes, since it is easier and faster. Besides, automatic
measuring is more precise. In manual measuring, oocytes
sizes are rounded, e.g., 0.1 mm, 0.2 mm, and so on, while
automatically it is properly measured.

To compare automatic and manual measuring frequency
distributions, samples from the same specie are grouped, since
they work as a replica to the analysis. In Fig. 14 are compared
the measuring results for species with batch spawning and in
Fig. 15 species with total spawning.

In Fig. 14(a), manual measuring has the expected result
(batch spawning) for both specie. For automatic measuring,
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Fig. 13. Amount of manually and automatically measured oocytes diameters.

the frequency distribution does not match the expected result,
it shows only 2 peaks. Too little oocytes bigger than 1 mm
were automatically measured, leading to different results. In
Fig. 14(b) there are three peaks, which matches the expected
result. For automatic measuring, too little oocytes bigger than
1.4 were measured, leading to different results.

In Fig. 15 is shown comparison of automatic and manual
frequency distributions for total spawning species. In Fig. 15(a)
the frequency distribution for automatic measuring does not
agree to the expected spawning type (total), which normally
presents two peaks in the distribution. However, in Fig. 15(b),
the same happens to the manual measuring. Probably, for both
methods, ovary tissues fragments were counted as oocytes.

Automatic measuring is estimated to be twice faster than
manual measuring.

V. CONCLUSION

In this paper, we introduced a new pipeline for fish oocytes
digital images segmentation, in which we have used well-
known techniques, such as Otsu’s method, Watershed trans-
form, mathematical morphology and regional minimum. These
methods well combined deal with overlapped oocytes or tissues
in the image with promising results.

In automatic measuring the error is standardized, meaning
that the results is always the same for any specialist who
measures. This does not hold for manual measuring, the results
is affected, subjectively, by who is measuring.

The proposed pipeline makes the process faster than the
manual analysis. Experiments made by biologists specialists,
using fish samples from Madeira river, show that the proposed
pipeline has got a huge potential to aid in the task of counting
and measuring oocytes. The time spent in this task using the
pipeline is twice faster than manual approach. Besides, it is a
lot more precise than manual measuring.
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