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Physiological and transcriptional analyses of
developmental stages along sugarcane leaf
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Denis Bassi1, Paulo Eduardo Ribeiro Marchiori2, Rafael Vasconcelos Ribeiro3, Mônica T. Veneziano Labate4,
Carlos Alberto Labate4 and Marcelo Menossi5

Abstract

Background: Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha.
The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the
adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the
development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on
photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the
first molecular and physiological characterization of events taking place along a leaf developmental gradient in
sugarcane.

Results: Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase
activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon
discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of
chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially
expressed along the leaf. Some transcription factors families were enriched on each segment and their putative
functions corroborate with the distinct developmental stages. Several genes with higher expression in the
middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane
productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to
previously published data from maize.

Conclusion: This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another
source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used
in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some
aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily
extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific
and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and
senescence.
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Background
Sugarcane is a tropical crop with C4 photosynthetic me-
tabolism and Brazil is its main producer. World’s interest
in bioethanol and sugarcane with high sucrose and bio-
mass yield has increased continuously over the years. In
fact, sugarcane is one of the most important crops used
as sustainable feedstock for renewable energy, such as
bio-electricity and bioethanol, in tropical and subtropical
regions (International Energy Agency - http://www.
iea.org). Worldwide, sugarcane is cultivated in 22 million
ha and its average yield is 70.9 Tonnes/ha [1]. This crop
is very efficient in intercepting solar energy and assimi-
lating carbon into carbohydrates, which results in high
sucrose accumulation (around 0.7 M) in its mature
culms and high biomass production [2]. However, the
current average yield is less than 20 % of the theoretical
maximum estimated from mathematical models of plant
growth and physiological processes [3]. Photosynthesis
plays a key role on biomass production and crop yield,
however, our understanding about this important
physiological process in sugarcane is more limited when
compared to maize, another C4 species. This highlights
the need for detailed sugarcane physiology studies, par-
ticularly on leaf photosynthesis. Such efforts would aid
bridging the gap between the average yield in the field
and the theoretical maximum yield of sugarcane.
Modern sugarcane originated from inter-specific

hybridization between the parental species Saccharum offi-
cinarum L. (2n = 80) and S. spontaneum L. (2n = 40–128).
Despite its economic importance, the complexity of
the sugarcane genome [4–6] with its haploid genome
size estimated of 930 Mbp and high ploidy, aneu-
ploidy and polymorphism, [4, 7, 8] have limited the
advances on the development of new varieties via
molecular breeding approaches. Classical breeding has
been the only responsible for sugarcane varieties re-
leased in the last decades [1], although some efforts
exploiting genetic modification have been carried out
[9–13]. It is worth noting that, to the best of our
knowledge, no transgenic line has been commercially
released yet [14, 15].
Sugarcane was brought to Brazil in 1531 and despite

the enormous agronomic work to generate more pro-
ductive lines, the understanding of the sugarcane physi-
ology, especially in relation to its photosynthetic
performance, is still lacking [16]. Modern cultivars have
been selected mainly for characteristics based on nutri-
tional demand and resistance to biotic and abiotic
stresses, and not for photosynthetic activity, as has being
done for the wheat and rice breeding programs [17]. Re-
cent studies indicate a positive correlation among photo-
synthesis, crop yield and biomass production, suggesting
that increasing photosynthesis is a potential way to en-
hance sugarcane productivity [16, 18–20].

In order to increase and/or manipulate sugarcane photo-
synthesis we must first understand the regulatory processes
involved in C4 biochemistry [21]. C4-type photosynthetic
metabolism is more efficient than the C3-type due to some
physiological, biochemical and anatomical specific features
[18, 22]. Species with C4 metabolism appeared independ-
ently at least 45 times during land plant evolution [23] in a
minimum of 62 monocot and dicot plant species around 30
and 15 million years ago, suggesting that relatively simple
genetic and regulatory mechanisms can drive the conversion
of a C3 phenotype into C4 [24]. Nevertheless, the mecha-
nisms and regulatory players are not yet fully understood.
Besides environmental factors, photosynthesis is also

controlled by the sink strength balancing source supply
and sink demand [25–29]. In this context, the activity of
enzymes and the expression of genes related to photo-
synthesis follow the source-sink relationship in sugar-
cane [26, 30–35]. Consequently, many studies evaluating
gene expression have focused mainly on the sink, i.e.,
sugarcane culm development, providing insights into
culm maturation and sucrose accumulation [36–40]. In
contrast, only few studies have explored the physio-
logical and biochemical causes of photosynthesis vari-
ation among cultivars and leaf types [16, 20, 41, 42].
Leaves of grasses are excellent systems to study the es-

tablishment of C4 photosynthesis because there is a cel-
lular developmental gradient along the leaf blade, with
the basal cells being undifferentiated and immature and
the cells towards the tip becoming more mature and
specialized [43–49]. The most studied C4 species is
maize, with several works describing transcriptomic,
proteomic and metabolomic differentiation along the
leaf blade [43–48]. Leaf development has been studied
in rice and compared to maize leaves in order to identify
key regulatory components and metabolite profiles for
C4 phenotype [48]. So far, there is no similar report on
C4 species other than maize.
The molecular mechanisms for C4 leaf development

are complex and this process in polyploid and aneuploid
plants such as sugarcane remain largely unknown. In
order to fill this gap, we have carried out a detailed study
of sugarcane leaf to investigate molecular and physio-
logical changes along the leaf blade segments represent-
ing different developmental stages. The approaches used
in this work allowed us to identify differences in com-
pounds and enzymes responsible for the variable photo-
synthetic capacity among leaf segments, and several
relevant genes that might be subjected to further studies
in order to increase photosynthesis and productivity.

Results and discussion
Leaf sampling
Despite being clonally propagated, sugarcane has a het-
erogeneous germination rate and initial vegetative
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growth. In order to standardize our experiment, we con-
ducted a pilot study to evaluate the plant age at which
the highest number of leaves would have the same
length and also guarantee that all stalk reserves have
been consumed in a way that the plants were solely
dependent on photosynthesis for growth. The length dis-
tribution of leaf +1 (the first with the dewlap fully ex-
posed) of 60 day-old plants is depicted on Figure S1
(Additional file 1). Leaves with length between 52.3 and
57 cm had the highest frequency (20 %) and this group
was considered nearly homogenous and harvested for
further analysis. The plant phenotype is shown in
Figure S2 (Additional file 1). Additionally, to overcome
the length difference, even in the homogeneous popula-
tion, we collected leaf segments taking into account the
proportion of each segment on each length and not a
fixed distance from the base of the leaf. The segments
were named Base “zero” (B0); Base (B); Middle (M) and
Tip (T) (see Materials and Methods and Figure S3 –
Additional file 1).

Physiological and biochemical evaluations
In order to characterize sugarcane leaf segments, several
physiological and biochemical evaluations were per-
formed. We used intact leaves and were able to evaluate
gas exchange and photochemistry only on the B and M
segments. Due to technical limitations, it was not pos-
sible to carry out those measurements on the B0 and T
(inability to fit the measuring chamber on the B0 seg-
ment without damaging the structure of the leaf basis
and to cover the whole chamber area on the T seg-
ments). Full details on the methods are available on
Additional file 1 and the results are shown in Figures S4
and S5 (Additional file 1).
The photosynthetic response to light revealed significant

differences between leaf segments. The leaf B segment
showed light saturation under lower light intensities as
compared to the M (Figure S4A – Additional file 1), indi-
cating differential photosynthetic capacity among these
segments. On the other hand, the initial slope of the
light response curve and the PSII yield (Figure S4B –
Additional file 1) suggested that the photochemistry is
similar between the B and M segments. Together, these
data revealed a possible metabolic rather than photo-
chemical limitation in carbon fixation among leaf seg-
ments. The apparent electron transport rate - ETR -
(Figure S4C – Additional file 1) also supports this idea.
The relation between ETR and photosynthesis -A -
(Figure S4D – Additional file 1) represents the amount
of electron transport through PSII per CO2 fixed and
increased values suggest an activation of alternative
electron sinks such as the Mehler reaction and nitrogen
(N) metabolism [50].

Photosynthetic response to CO2 was used to estimate
some biochemical traits and indicated that the previ-
ously mentioned metabolic limitation was caused by dif-
ferences in PEPcase activity and not RubisCO (Figure
S5B and S5C – Additional file 1). Although total carbon
content was similar between leaf segments (Fig. 1a),
there were significant differences in carbon isotope dis-
crimination among them (Fig. 1b). Carbon isotope dis-
crimination has been used to characterize C4

photosynthetic responses in plants growing under di-
verse environments and stresses [51–56]. C3 plants have
lower Δ13C than C4 plants, mainly because PEPcase has
lower discrimination for 13C as compared to RubisCO
[57]. Carbon isotope discrimination showed that the B0
and B segments presented higher Δ13C than M and T.
The Δ13C variation in C4 plants is related to radiation
intensity in maize, Miscanthus giganthus and Flaveria
bidentis, which displayed higher Δ13C when cultivated
under low light when compared to leaves exposed to
high light [58–61]. This difference has been usually
interpreted as a result of the leakiness or due to an inef-
ficient C4 photosynthetic pathway. Nevertheless, the
metabolic difference between leaf segments in sugarcane
cannot be associated with leakiness that varied from
0.034 ± 0.013 to 0.031 ± 0.009 at B and M, respectively.
In addition, the B segment presented a lower k when
compared to the M segment (Figure S5C – Additional
file 1), corroborating to the fact that the B has a less

Fig. 1 Total carbon quantification (a) and carbon isotope discrimination
(b) in sugarcane leaf segments: Base “zero” (B0), Base (B), middle (M) and
tip (T) sugarcane leaf segments. Letters indicate statistical significance
using ANOVA followed by post hoc Student t-test (n= 5; p≤ 0.05)
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efficient C4 biochemistry than the M and T segments.
Interestingly, while B0 and B had higher Δ13C than the
rest of the leaf, the B segment showed lower photosyn-
thetic rate (Figure S4A – Additional file 1) but similar
PSII yield as compared to the M segment (Figure S4B –
Additional file 1). This reinforces our interpretation that
the C4 biochemical inefficiency in basal portions is
higher than in the other parts of the leaf.
In order to investigate possible changes in PEPcase

and RubisCO among the segments, immunoblotting and
enzyme activity assays were performed. Although im-
munoblotting of leaf extracts showed some variation be-
tween biological replicates from the same segment,
differences in PEPcase protein abundance were observed
(Fig. 2a) with the highest amount being detected at the
M segment. In addition, in vitro PEPcase activity was
significantly higher at the M in comparison to the other
segments (Fig. 2a), validating the in vivo k estimation

(Figure S5C – Additional file 1). For RubisCO, the B0
segment was identified as the one with the lowest
amount of both protein and activity (Fig. 2b). There was
a tendency of increasing RubisCO activity along the leaf
blade, but statistical significance was only detected be-
tween the B0 and T segments. The RubisCO activation
state was also calculated as the ratio of initial activity to
total activity but no substantial differences were detected
among segments (0.63 ± 0.18, 0.70 ± 0.25, 0.75 ± 0.30,
0.54 ± 0.16 at B0, B, M and T, respectively), corroborat-
ing also with in vivo Vmax estimation (Figure S5B –
Additional file 1).
The number of stomata between leaf segments was

similar when considering the adaxial and abaxial sur-
faces (Figure S6 – Additional file 1). This indicates that
stomata density does not contribute to the variations ob-
served at photosynthetic rates (Figure S5A). Although
some studies reveal that stomatal density has a positive
correlation with photosynthesis [62], differences in
photosynthesis along leaf blades of several C3 and C4

grasses were not explained by stomata density [63].
N content increased along the leaf length and was

higher at the M and T segments (Fig. 3a). These results
are very similar to those found in the plant canopy,
where the bottom leaves have lower N concentration
than upper ones due to variations in light availability
[16, 64]. However, N investment on photosynthetic ma-
chinery was similar, with photosynthetic nitrogen-use ef-
ficiency (PNUE) varying between 1.08 ± 0.17 mol mol-1 h-1

Fig. 2 Changes in activity and protein amount of carboxylation
enzymes in sugarcane leaf segments: Base “zero” (B0), Base (B),
middle (M) and tip (T). (a) Phosphoenolpyruvate carboxylase
(PEPcase). Letters indicate statistical significance using ANOVA
followed by post hoc Student t-test (n = 4; p≤ 0.05); (b) Ribulose-1,5-
bisphosphate carboxylase/oxygenase (RubisCO). White bars represent
initial activity and black bars total activity. Lower case letters and capital
letters indicate statistical significance using ANOVA followed by
post hoc Student t-test (n = 4; p ≤ 0.05) on initial and total activity,
respectively. For the immunoblots the same amount of protein
(100 μg) was loaded for each sample. Three independent biological
replicates are shown for each segment

Fig. 3 Total nitrogen quantification (a) and chlorophyll content (b)
in sugarcane leaf segments: Base “zero” (B0), Base (B), middle (M) and
tip (T). Letters indicate statistical significance using ANOVA followed by
post hoc Student t-test (n = 5; p≤ 0.05)
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at the B segment and 1.09 ± 0.14 mol mol-1 h-1 at the
M segment. Chlorophyll concentration was also higher
on the M and T segments in comparison to the B0 and
B (Fig. 3b), but those differences were not sufficient to
bring about changes in photochemical activity among
the leaf segments (Figure S4B and S4C – Additional
file 1).
The quantification of soluble sugars revealed a clear

tendency of higher glucose, fructose and sucrose con-
centrations at the T when compared to the other
segments (Table 1). Although the evaluated photosyn-
thetic parameters showed significant differences be-
tween the B and M segments, they were not
contrasting in terms of sugar content, the end prod-
ucts of photosynthesis. However, one should consider
that sugar concentration in leaves is affected not only
by current photosynthesis but also by its dynamic of
consumption and exportation. Interestingly, metabol-
ite profiling in fifteen 1 cm-long maize leaf segments
showed that glucose and fructose levels were higher in
regions close to the base and decreased along the leaf
blade towards the tip. Sucrose, in contrast, presented a
distinct behavior, with higher levels in segments close
to the base and tip and lower levels in the middle re-
gions [48]. Myo-inositol showed a clear gradient of
accumulation from B0 to the T segment (Table 1).
Myo-inositol has a central role in plant metabolism
and can be used as precursor for the synthesis of
phosphatidylinositol, compatible solutes (such as
raffinose-family oligosaccharides) and cell wall poly-
saccharides [65]. In maize leaves, myo-inositol levels
present the same trend observed in sugarcane leaves
[48]. Together, our results suggest that the distribution
of sugars along the sugarcane leaf is distinct from
maize. However, any comparison between the two
plant species must be regarded with caution. First, the
age of the plants in the two studies are very different:
while Wang et al. [48] have analyzed nine days-old
maize leaves, the sugarcane plants in this study were
two-months old. Second, the authors used the third
leaf (from bottom to top) for maize, while for sugar-
cane we used the first leaf (from top to bottom) with
the dewlap fully exposed.

Transcriptional profiling
RNA-seq de novo transcript assembly and annotation
The mRNAs from the segments (B0, B, M and T) of four
individuals were sequenced and on average 33.8 million
paired-end 100-bp strand-specific reads were obtained
per segment and per individual (after quality trimming
of the reads), with a total of 380 million high quality
reads (after removal of contaminants, ribosomal RNA,
mitochondrial and plastid reads). High quality reads
were assembled with Trinity (version r20140717) as de-
scribed in Methods. These data comprise 250,035 cor-
rectly oriented transcripts or contigs that were kept for
further analysis, as they appear to originate from viridi-
plantae or did not had any hits to nucleotide sequences
in the NCBI databases (Additional file 2). These 250,035
contigs were grouped into 135,481 loosely defined genes
that could represent paralogous copies of the genes or
copies from the homologous genomes. The average con-
tig length was 878 bp with approximately 28 % of the
contigs over 1Kbp long, and the smallest contig with
283 bp; 27.3 % (68,367) of the assembled contigs appear
to code for proteins. 132,665 (53 %) contigs were anno-
tated with Trinotate and 64,813 of these had Gene
Ontology (GO) terms assigned (Additional file 3). The
full set of de novo assembled contigs was compared to
the full set of Sorghum bicolor proteins and transcripts
(v2.1 Phytozome), using transrate (v1.0.1). On one hand,
around 31 % of the sugarcane contigs had a high confi-
dence predicted homologue (Conditional Reciprocal Best
BLAST, CRBB) in S. bicolor, when compared to the sor-
ghum proteins, and 40 % when compared to the sor-
ghum transcripts. On the other hand, 60 % of the
sorghum proteins and 65 % of the sorghum transcripts
have CRBBs in sugarcane. We further inspected our
transcriptome assembly using CEGMA, which has a set
of 248 highly conserved eukaryotic genes that are usually
present as single copy genes in many species. We were
able to detect 72.18 % of these genes as complete pro-
teins or 77.82 % when considering partial hits, with 3.63
copies of each gene on average. We have assigned 7,270
contigs into 333 KEGG pathways (Additional file 4) and
identified 2,889 contigs belonging to 72 transcription as-
sociated families, i.e., transcription factors or other

Table 1 Quantification of soluble sugars

Segment/Sugar sucrose glucose fructose myo-inositol

Base “0” 15.05 ± 2.01a 0.53 ± 0.21a 0.25 ± 0.06a 165.93 ± 18.28a

Base 16.93 ± 6.15a 0.78 ± 0.09a 0.11 ± 0.05a 258.76 ± 25.69b

Middle 24.03 ± 7.63ab 1.69 ± 0.66a 0.37 ± 0.18a 439.48 ± 37.87c

Tip 29.99 ± 6.84b 4.50 ± 1.13b 2.69 ± 0.95b 953.45 ± 62.33d

Values shown are mean ± SD (n = 5) and referred to μmol g-1 FW, except for myo-inositol (nmol g-1 FW). Letters indicate statistical significant difference between
leaf segments using ANOVA followed by post hoc Student t-test (p ≤ 0.05)
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transcriptional regulators, by applying the procedure
described in Perez-Rodriguez et al. [66] (Additional
file 5). We also identified 38,399 groups of orthologous
genes between the grasses Saccharum spp. (de novo as-
sembled transcriptome), Oryza sativa, Zea mays, Sorghum
bicolor and Setaria italica (all protein datasets were down-
loaded from Phytozome) using OrthoMCL (inflation value
1.5); 10,288 groups of orthologous genes are shared be-
tween the five species, more importantly 15,840 groups of
orthologues are shared between sugarcane and any of the
other grasses representing 36,629 sugarcane transcripts,
with 7,339 groups of orthologues present exclusively in
sugarcane (Figure S7- Additional file 1). These results
show the overlap in protein space between these species,
and highlights that our de novo sugarcane transcriptome
assembly recovered a large proportion of the genes that
are present in grasses (Additional file 6).

Analysis of transcript abundance and differential
expression analyses
In this study, we aimed to generate a transcriptome re-
source to evaluate the developmental dynamics along
the sugarcane leaf. For that, we estimated transcript
abundances using eXpress, read counts were analyzed in
edgeR and normalized using the “trimmed mean of M
values” (TMM) method [67]. Comparisons between seg-
ments were performed subtracting distal from basal seg-
ments originating the three orthogonal contrasts: Base
vs. Base "zero" (B-B0 ); Middle vs. Base (M-B); Tip vs.
Middle (T-M) (Tables S1–S3 – Additional file 7). For
this analysis we have summarized the read counts at the
level of genes as defined above (R code and read counts
per gene per sample are available as Additional file 8).
The representation of the contrasts and the number of
differentially expressed (DE) genes are depicted on Fig. 4.
The Venn diagram shows that the leaf undergoes a dras-
tic transcriptional rearrangement along the developmen-
tal gradient (Fig. 5). This is even more evident when
considering the number of DE genes shared among the
contrasts (Fig. 5). Only 14 genes were present in all con-
trasts (Fig. 5 and Table 2) and almost 72 % of all DE
genes were present only in the T-M contrast (Fig. 5).
This is in agreement with Majeran et al. [45] and Pick et
al. [49], who found higher the amount of transcripts and
proteins toward the tip of maize leaves. We observed the
same pattern on sugarcane, not only on transcripts num-
ber, but also by extracting and quantifying protein con-
tent (Figure S8 – Additional file 1).
Considering the 14 differentially expressed genes that

are present in all contrasts, we were able to identify four
expression patterns along the leaf developmental gradi-
ent (Figure S9 – Additional file 1). The first pattern
(Figure S9A – Additional file 1) is composed by the

transcriptional factor TCP5 (SP803280_c109776_g3) that
monotonically increased its expression from B0 to T seg-
ments. Members of this family are involved with leaf
morphogenesis and differentiation [68–70], arrest of cell
division [71], leaf elongation [72] and auxin response
[73]. To date, there is no information on the role of
TCP5 in C4 plants and its expression profile in our data-
set suggests that this gene can be an important player
during leaf development.
Ten genes from the second pattern (Figure S9B –

Additional file 1) presented an opposite behavior, with

Fig. 4 Representation of the RNA-seq contrasts between segments.
Each segment was compared against the previous one (basal/distal
length) originating three contrast: Base - Base "zero" (B-B0); Middle –
Base (M-B); Tip – Middle (T-M). The number of differentially expressed
genes (DEG) is depicted under the arrows representing the contrasts.
Number of genes overexpressed on each segment considering
different contrasts is shown above the graphic bars

Fig. 5 Venn diagram showing the overlap and exclusiveness of
genes from each contrast: Base - Base "zero" (B-B0); Middle – Base
(M-B); Tip – Middle (T-M)
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high expression at B0 segment and decreasing expression
towards the T segment. Among them, we can point out
the trichrome birefringence gene (SP803280_c108434_g2),
which is important for o-acetylation of cell walls required
for cellulose biosynthesis [74–76], and the gene encoding
a 4-hydroxyphenylacetaldehyde oxime monooxygenase
(SP803280_c113688_g1) involved in the production of a
cyanogenic glycoside called dhurrin [77, 78]. This com-
pound has been related to drought tolerance in sorghum
[79] and to biotic stress response [80]. Interestingly, dhur-
rin can also be regarded as an N storage molecule that
peaks on early development stages in sorghum [81]. Genes
involved in carbohydrate and sterol metabolism were also
classified into this pattern: the cell wall and vacuolar in-
hibitor of fructosidase 2 (SP802180_c81421_g1) respon-
sible for post-transcriptional silencing of fructosidase
activity and important in the development of photo-
synthetic apparatus, stress response and sugar signaling
[82, 83]; and the cycloartenol-C-24-methyltranferase 1
(SP803280_c114207_g1- also known as SMT1) that cata-
lyzes the initial step in biosynthesis of sterol, a class of
compound with several regulatory roles in plant devel-
opment [84]. SP803280_c87779_g1 code for an invert-
ase/pectin methylesterase inhibitor ortholog of
LOC_Os08g01670.1 and LOC_Os12g18560.1 in rice
[85], and thus might be involved in the remodeling of
the plant cell wall. SP803280_c100769_g2, coding for
a dirigent protein ortholog to LOC_Os01g24960.1 and
LOC_Os01g25030.1 in rice, involved in lignin biosyn-
thesis [86]. An additional gene SP803280_c103567_g1
with orthologues in setaria, maize and sorghum, but not in
rice is of unknown function, while SP803280_c88088_g1

and SP803280_c99583_g1 do not appear to code for pro-
teins. In summary, genes that presented the second pattern
are involved in early developmental processes and cell wall
modification, corroborating with their expression on the
most basal segment.
The pattern 3 was comprised by genes with lower expres-

sion at the M segment (Figure S9C – Additional file 1),
like those encoding methylsterol monooxygenase 1–2
(SP803280_c109581_g5) and cysteine-rich repeat
secretory protein 38 (SP803280_c110116_g1). Methyl-
sterol monooxygenase is involved in sterol metabolism
[87], important for membrane fluidity and membrane
interaction with proteins and lipids [88, 89]. Arabidop-
sis has more than 100 genes coding for cysteine-rich
repeat proteins making them one of the largest gene
families. However, their role on plant metabolism is still
to revealed [90].
Pattern 4 (Figure S9D – Additional file 1) is charac-

terized by lower expression at B segment and had only
one gene, encoding a naringenin, 2-oxoglutarate 3-
dioxygenase (SP803280_c116667_g1). This protein
participates in the flavonoids biosynthesis [91], im-
portant for UV protection, defense against pathogens
and pests, regulation of auxin transport and pigmenta-
tion [92].
All those 14 genes were also used to validate RNA-

seq data by qRT-PCR using three biological replicates
(different from those used for the RNA-seq experi-
ment). The average coefficient of determination (R2)
between logCPM and logΔCt was 0.70 (Table 2). Genes
with low expression values (SP803280_c103567_g1,
SP803280_c108434_g2, SP803280_c110116_g1, SP803280_

Table 2 Genes identified in all contrasts [Base - Base "zero" (B - B0); Middle – Base (M-B); Tip – Middle (T-M)]

Contrast

Gene ID B-B0 M-B P-M Annotation Validation

SP803280_c109776_g3 2.48 1.70 2.07 Transcription factor TCP5 0.98

SP803280_c88088_g1 -1.10 -2.11 -1.71 N/I 0.26

SP803280_c108434_g2 -1.50 -1.60 -1.90 Protein trichome birefringence 0.27

SP803280_c113688_g1 -1.51 -2.24 -1.49 4-hydroxyphenylacetaldehyde oxime monooxygenase 0.96

SP803280_c103567_g1 -1.58 -1.89 -1.54 N/I 0.62

SP803280_c110116_g1 -1.62 -2.01 2.11 Cysteine-rich repeat secretory protein 38 0.56

SP803280_c99583_g1 -1.92 -2.74 -3.89 N/I 0.94

SP803280_c109581_g5 -2.01 -2.96 2.13 Methylsterol monooxygenase 1-2 0.71

SP803280_c87779_g1 -2.33 -2.12 -2.12 N/I 0.42

SP803280_c81421_g1 -2.37 -1.81 -2.87 Cell wall / vacuolar inhibitor of fructosidase 2 0.56

SP803280_c114207_g1 -2.56 -2.83 -2.88 Cycloartenol-C-24-methyltransferase 1 0.79

SP803280_c100769_g2 -2.66 -3.24 -3.62 N/I 0.99

SP803280_c70793_g2 -2.74 -2.01 -1.97 N/I 0.87

SP803280_c116667_g1 -3.61 5.54 2.25 Naringenin,2-oxoglutarate 3-dioxygenase 0.69

The number bellow each contrast indicates the log Fold Change in the respective contrast
Validation column indicates the average coefficient of determination (R2) between logCPM (from RNA-seq data) and logΔCt (qRT-PCR data)
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c116667_g1, SP803280_c70793_g2) had the lowest R2 cor-
relation as reported before for genes with similar expression
levels [93–95]. However, it is worthwhile mentioning that
despite these low R2 values, the general expression profile
obtained by qRT-PCR resembled those obtained by RNA-
Seq. We cannot ignore the pitfalls and artefacts of each
technique, but one possible explanation might be the fact
that we have a de novo transcriptome assembly of a crop
with a complex polyploid genome that has not been se-
quenced yet. This represents an extra layer of difficulty
when designing primers for qRT-PCR, as it is not possible
to distinguish between all the alleles and paralogues, in-
creasing the variability of qRT-PCR data.
We were also interested in comparing the transcrip-

tional profile of sugarcane (this study) to the one ob-
served in another C4 species, maize (recently published
by Wang et al [48]). We compared the expression of
over 2,390 one-to-one orthologous genes between sugar-
cane and maize, identified by OrthoMCL (Fig. 6), in a
similar fashion as described by Wang et al. [48] (Data
matrices and R code are available as Additional file 9).
The expression profiles during leaf development be-
tween these two species were substantially different as
the whole developmental gradient of the sugarcane leaf
fits better into the distal half of the maize leaf (Spearman
correlation coefficient higher than 0.6 – Fig. 6).

Enrichment of gene ontology terms
A GO enrichment analysis was performed by categoriz-
ing differentially regulated genes into GO biological pro-
cesses (Tables S4-S9 – Additional file 10). Each contrast

was divided into two gene lists in order to evaluate the
enrichment of biological processes. For instance, the
contrast B-B0 was separated into positive log FC – genes
more expressed at the B segment – and negative log
FC – genes more expressed at the B0 segment). Con-
sidering the contrast B-B0, the most significant bio-
logical processes in B0 segment were those involved
with cell wall organization and biosynthesis (e.g. GO
IDs 71669, 71554, 9664, 9832 and 42546). It is note-
worthy that wax metabolic processes (GO ID 10166),
anatomical structure development (GO ID 48856), de-
velopmental process (GO ID 32502) and leaf forma-
tion (GO ID 10338) were also enriched terms in this
segment (Table S4 – Additional file 10). In the B seg-
ment, the most significant GO terms were flavonoid
biosynthetic and metabolic processes (GO ID 9813
and 9812), redox process (GO ID 55114), cellular response
to high light (GO ID 71486) and lipid metabolic process
(GO ID 6629) (Table S5 – Additional file 10).
The GO enrichment analysis indicated that in the con-

trast M-B, genes related to DNA modification (GO IDs
6334, 34728, 31497, 71824, 65004, 6333, 16126, 6323)
and N metabolism (GO ID 10243 and 1901698) were
more expressed in the B segment (Table S6 – Additional
file 10). In the M segment, only two GO IDs were
enriched (9813, 9812), both related to flavonoid metab-
olism (Table S7 – Additional file 10).
Interestingly, the largest amount of DE genes was

found between the M and T, the segments that demon-
strated the most similar behavior according to the
physiological data. On the other hand, the M and B

Fig. 6 Spearman correlation between fifteen segments along developmental gradient of maize leaves (M1 to M15 - published by [48]) and the
four sugarcane leaf segments (B0, B, M and T - this study)
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showed the smallest amount of DE genes in spite of
their differences in physiological behavior, especially
photosynthetic capacity, carbon isotope discrimination
and N content. Considering the T-M contrast, the most
overrepresented GO IDs in the M were those related to
photosynthesis and redox processes (15979, 55114,
19684) (Table S8 – Additional file 10). The T segment
presented the highest number of enriched terms related
to amino sugar catabolic process (GO ID 46348), ion
transport (GO ID 6811), transmembrane transport (GO
ID 55085), zinc ion transport (GO ID 6829), cation
transport (GO ID 6812) and anion transport (GO ID
6820) (Table S9 – Additional file 10).

Biochemical pathways
Photosynthesis-related genes
It is already known that the C4 biochemical pathway is
transcriptionally regulated [96, 97] under developmental
[98] and light [99] control. In our study, only one
NADP-dependent malic enzyme (SP803280_c89172_g1)
was differentially expressed in the B0-B contrast (Table
S1 – Additional file 7). This indicates that CO2 concen-
trating mechanism is still under development in the B0
segment, which is less exposed to light than the other
ones. Two phosphoenolpyruvate carboxykinases (PEPCK
- SP803280_c92961_g1 and SP803280_c92945_g1) were
more expressed at the B segment (contrast M-B, Table
S2 – Additional file 7). This enzyme has been reported
as an important regulator of the aspartate metabolism in
bundle sheath cells where aspartate is decarboxylated to
PEP by PEPCK and CO2 supplied to the Calvin-Benson-
Brassham cycle [100].
Nevertheless, the contrast T-M showed the highest

amount of photosynthesis related genes (Table 3), and
the majority of them was more expressed at the M seg-
ment such as enzymes of the Calvin-Benson-Brassham
cycle and proteins associated with chlorophyll and pho-
tosystems. Interestingly, the expression of four PEPcase
genes was higher at the T segment in comparison to the
M segment. This finding corroborates with the qPCR
data reported by Li et al. [44], in which the transcript
level of one PEPcase increasing towards the tip of maize
leaves. However, our immunoblotting and enzymatic as-
says revealed greater content and activity at the M seg-
ment (Fig. 2) and decrease in both activity and content
at the T. Additionally, PEPcase is known to undergo
post-transcriptional and post-translational modifications
[98, 101, 102] and a recent study demonstrated that the
Spearman rank correlation (RS) between mRNA and
protein abundance for genes related to photosynthesis
on different sections of maize leaf was 0.581 on average
[103], indicating that PEPcase expression profile may
not be an indication of more photosynthetically active
tissue. One NADP-dependent malic enzyme was also

more expressed at the T segment (SP803280_c89172_g1),
corroborating with other reports that indicated its increase
towards the tip [104, 105].
The gene encoding a glyceraldehyde-3-phosphate de-

hydrogenase (SP803280_c104535_g4) was expressed at
the T segment and the expression of the Arabidopsis
homologue is increased under several stress conditions
such as heat, anoxia and high sucrose concentration
[106]. In fact, the T segment has lower leaf water content
(Figure S10 - Additional file 1), which may lead to stress
responses similar to oxidative stress in a similar fashion
described by Pick et al. [49] for maize leaf tips. Accord-
ingly, many genes related to oxidative stress were
expressed at the T segment.

Sugars
Genes related to carbohydrate metabolism are depicted on
Table 4. Analysis of the B-B0 contrast revealed that two
genes (SP803280_c111302_g1 and SP803280_c117830_g1)
more expressed at the B0 segments encoded proteins in-
volved in the synthesis of trehalose-6-phosphate (Tre6P),
the phosphorylated intermediate of the non-reducing
sugar trehalose. Tre6P is considered a signal of sucrose
availability and acts to maintain sucrose concentration
within a proper range [107, 108]. We have not quantified
the levels of Tre6P in our experiments, but sucrose
content was similar at B0, B and M segments (Table 1).
The above-mentioned genes encode Tre6P synthase
class II proteins (Figure S11 – Additional file 1), which
in Arabidopsis thaliana do not have catalytic activity
and are of unknown function [109]. In addition, a tran-
script related to sucrose metabolism (sucrose synthase
2 - SP803280_c114621_g2) was also induced in the B0
segment.
In the M-B contrast only one gene encoding an invert-

ase (SP803280_c100721_g1) was more expressed in the
M segment. The vast majority of DE genes related to
sugars was observed in the contrast T-M (Table 4). Sev-
eral genes involved in starch and sucrose metabolism
and interconversion of hexoses-phosphate were upregu-
lated in the T segment. In addition, a gene coding for an
inositol-3-phosphate synthase (SP803280_c101982_g1), a
key enzyme in the conversion of glucose to myo-inositol
[110], was 2-fold more expressed in the T relative to M.
Such finding is in agreement with the concentration of
this sugar alcohol at the T segment (Table 1). Two pur-
ple acid phosphatase 2 genes (SP803280_c99372_g1 and
SP803280_c94862_g2), responsible for the dephosphory-
lation of myo-inositol hexakisphosphate (a phosphorus
storage molecule) have been upregulated in the T seg-
ment whereas only one gene (SP803280_c96835_g1) was
more expressed in the M segment. Furthermore, phos-
phoinositide phospholipase C4 (SP803280_c115744_g2)
and phospholipase D (SP803280_c113920_g1) which
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participate on inositol signaling [111] were more
expressed in the M segment.
Although many changes in transcripts related to en-

zymes of the sugar metabolism have been noticed, we
could not directly link transcript abundance to the
quantified sugars in most cases. A possible explanation
is that other factors are influencing protein activity

such as translation efficiency, protein assembly and
degradation [112].

Cell wall biosynthesis and cell growth
Several cell wall related genes were DE in the tested con-
trasts (Table S10 – Additional file 11), indicating cell
wall modification along the leaf developmental gradient.

Table 3 Photosynthesis related genes identified on each contrast

GeneID Annotation LogFC

Contrast B-B0

SP803280_c89172_g1 NADP-dependent malic enzyme -1.28

SP803280_c102133_g1 Fructose-bisphosphate aldolase, chloroplastic 1.36

Contrast M-B

SP803280_c92945_g1 Phosphoenolpyruvate carboxylase kinase 1 -1.70

SP803280_c92961_g1 Phosphoenolpyruvate carboxylase kinase 1 -2.16

Contrast T-M

SP803280_c110449_g1 Ribose-5-phosphate isomerase 4, chloroplastic -3.87

SP803280_c67360_g1 Photosystem II reaction center W protein, chloroplastic -3.62

SP803280_c95106_g1 Chlorophyll a-b binding protein, chloroplastic -3.37

SP803280_c92288_g1 NADP-dependent malic enzyme, chloroplastic -2.87

SP803280_c102650_g1 Magnesium-chelatase subunit ChlI, chloroplastic -2.38

SP803280_c99238_g1 Chlorophyll a-b binding protein CP24 10B, chloroplastic -2.33

SP803280_c104535_g4 Glyceraldehyde-3-phosphate dehydrogenase GAPB, chloroplastic -2.32

SP803280_c103134_g1 Phosphoenolpyruvate carboxylase 3 -2.28

SP803280_c80781_g1 Photosystem I reaction center subunit VI, chloroplastic -2.27

SP803280_c97299_g1 Carbonic anhydrase, chloroplastic -2.19

SP803280_c92767_g1 Ribulose bisphosphate carboxylase small chain, chloroplastic -2.17

SP803280_c92767_g1 Ribulose bisphosphate carboxylase small chain, chloroplastic -2.17

SP803280_c96992_g1 Photosystem I reaction center subunit XI, chloroplastic -2.04

SP803280_c94064_g1 Photosystem II reaction center PSB28 protein, chloroplastic -2.03

SP803280_c86157_g1 Chlorophyll a-b binding protein 7, chloroplastic -1.99

SP803280_c104447_g1 Photosystem II core complex proteins psbY, chloroplastic -1.99

SP803280_c88331_g1 Ferredoxin-thioredoxin reductase, variable chain -1.74

SP803280_c87990_g4 ATP synthase delta chain, chloroplastic -1.73

SP803280_c100740_g1 Photosystem II repair protein PSB27-H1, chloroplastic -1.65

SP803280_c89062_g1 Photosystem I reaction center subunit III, chloroplastic -1.52

SP803280_c95984_g2 Photosystem II core complex proteins psbY, chloroplastic -0.98

SP803280_c97299_g2 Carbonic anhydrase, chloroplastic -0.73

SP803280_c20755_g1 Ferredoxin–NADP reductase, leaf isozyme, chloroplastic -0.63

SP803280_c89172_g1 NADP-dependent malic enzyme 1.18

SP803280_c108467_g2 Phosphoenolpyruvate carboxylase 1 1.26

SP803280_c57883_g1 Phosphoenolpyruvate carboxylase 1 1.29

SP803280_c25925_g1 Phosphoenolpyruvate carboxylase 1 1.54

SP803280_c89145_g1 Phosphoenolpyruvate carboxylase 1 1.88

LogFC: Log Fold Change. Positive LogFC indicates more expression at the more basal segment of the contrast; negative LogFC indicates more expression at the
most distal segment of the contrast
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Among all identified genes, the pH-dependent cell wall
loosening proteins known as expansins [113] were more
expressed in the B0 (contrast B-B0) and T (contrast T-M)
segments, indicating that the extreme opposite sides of
the sugarcane leaf are under cell wall modification when
compared to the other adjacent segments (Figure S12 –
Additional file 1). COBRA genes have an important role
in cellulose synthesis [114], and, together with cellulose
synthase genes, were more expressed in the B0 and T seg-
ments. In the most basal segment (i.e. B0), cellulose syn-
thesis is expected to be part of secondary cell walls and
structure of vascular system, whereas in the T segment we
assume cell wall modifications due to senescence.
Suberin is a heteropolymer formed by lipid and phenolic

compounds [115, 116] deposited in the bundle sheath cells
[117] and may serve as a physical barrier to avoid CO2

leakiness to the mesophyll cells [118, 119]. Although su-
berin biosynthetic and regulatory pathways have not been

defined for monocots yet [48], some reports identified few
genes putatively involved in those processes [48, 117, 120].
Suberin genes identified in all contrasts are listed at Table
S11 (Additional file 11). NAC and MYB transcriptional
family members might be involved in regulating secondary
cell wall and suberin biosynthesis [121–123]. Most of
these genes were up regulated in the B0 (contrast B-B0 –
Table S1 – Additional file 10) and in B (contrast M-B -
Table S2 – Additional file 7) segments and the contrast
T-M (Table S3 – Additional file 7) presented different
expression patterns, indicating that suberization started
at the basal portions of leaves before they become fully
photosynthetically active.

Transcription factors
Our analysis identified 1,057 genes belonging to 72 tran-
scription factors or other transcriptional regulator

Table 4 Sugar-related genes identified on the contrast Tip - Middle (T-M)

GeneID Annotation LogFC

SP803280_c96835_g1 Purple acid phosphatase 2 -3.23

SP803280_c109484_g1 Alkaline/neutral invertase CINV1 -2.91

SP803280_c115744_g2 Phosphoinositide phospholipase C 4 -2.67

SP803280_c106015_g1 Fructose-bisphosphate aldolase, cytoplasmic isozyme -2.36

SP803280_c111302_g1 Alpha,alpha-trehalose-phosphate synthase [UDP-forming] 8 -1.48

SP803280_c114621_g2 Sucrose synthase 2 -1.29

SP803280_c117830_g1 Alpha,alpha-trehalose-phosphate synthase [UDP-forming] 5 -1.17

SP803280_c113920_g1 Phospholipase D delta -0.93

SP803280_c117255_g1 Glucose-6-phosphate isomerase, cytosolic -0.64

SP803280_c95757_g2 Pyrophosphate-fructose 6-phosphate 1-phosphotransferase subunit alpha 0.57

SP803280_c118055_g1 Alpha-glucosidase 0.59

SP803280_c85603_g1 Phosphoglycerate kinase, cytosolic 0.59

SP803280_c107723_g2 Beta-fructofuranosidase, insoluble isoenzyme 4 0.61

SP803280_c111639_g5 Phosphoglycerate mutase GpmB 0.68

SP803280_c114046_g3 Fructokinase-1 0.72

SP803280_c87942_g1 Alkaline/neutral invertase CINV2 0.79

SP803280_c98160_g1 Sucrose synthase 1 0.85

SP803280_c94862_g2 Purple acid phosphatase 2 0.94

SP803280_c105243_g1 UDP-glucose 6-dehydrogenase 4 1.02

SP803280_c101982_g1 Inositol-3-phosphate synthase 1.09

SP803280_c99372_g1 Purple acid phosphatase 2 1.15

SP803280_c94306_g1 Plastidial pyruvate kinase 2 1.16

SP803280_c100721_g1 Alkaline/neutral invertase CINV2 1.26

SP803280_c114269_g1 Soluble starch synthase 3, chloroplastic/amyloplastic 1.29

SP803280_c107054_g1 Beta-fructofuranosidase 1 1.38

SP803280_c101458_g2 Aldose 1-epimerase 1.39

SP803280_c109150_g1 Beta-fructofuranosidase 1 2.63

LogFC: Log Fold Change. Positive LogFC indicates more expression at the T segment; negative LogFC indicates more expression at the M segment
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families. Enrichment analysis of each contrast (same as
described previously in GO analysis) indicated that very
few families, if any, were enriched in each segment.
However, we could identify several transcriptional fac-
tors differentially expressed among segments (Tables
S1–S3 – Additional file 7).
The ARF transcriptional factor family and the AUX/

IAA family of other transcriptional regulators are
enriched at the B0 segment (Table S12 – Additional
file 12). They are involved in the regulation of auxin
responsive genes and have several roles in plant devel-
opment [124], including leaf vascular differentiation
[125]. Several AUX/IAA and ARF genes are more
expressed at the B0 (SP803280_c113162_g1, SP8032
80_c111058_g1, SP803280_c94112_g1, SP803280_
c114984_g4) when considering the contrast B-B0.
AUX/IAA and ARF are also associated with stomatal
development [126]. In maize, 31 members of this fam-
ily have been identified [127]. We have identified 29
genes belonging to these two families in our RNA-seq
dataset, but we are not able to state how many more
members there are in sugarcane due the lack of a
complete sugarcane genome sequence.
Members of bHLH and MYB families, involved in

leaf development, were also more expressed in the B0
segment (Table S12 – Additional file 12). Even though
MYB transcriptional factors are already known to
regulate leaf development in tobacco [128] and tomato
[129], bHLH might play a role in controlling the
abaxial-adaxial polarity [130] and stomatal develop-
ment [131].
In the leaf basis, the TCP family was enriched (Table

S13 – Additional file 12) and more expressed at the con-
trast B-B0 (SP803280_c109776_g3). This family has an
important role in developmental processes by regulating
cell division in vegetative and reproductive structures. In
Arabidopsis, TCP15 modulates cell cycle genes [132]
and is involved in leaf development and regulation of
auxin and cytokinin homeostasis [133–135].
No transcription factor family was enriched in the B

(M-B contrast) and M (both M-B and T-M contrasts)
segments (Tables S14–S16 - Additional file 12). On the
other hand, the T segment was enriched in genes from
the NAC family (Table S17 – Additional file 12), which
has been associated with senescence in some plant spe-
cies [136–139].

Nitrogen assimilation and metabolism
N assimilation genes were up-regulated at the B0 seg-
ment (Table S1 – Additional file 7). Accordingly, Wang
et al. [48] have reported that the leaf basal portions are
responsible for N assimilation. The nitrate transporter
gene (SP803280_c104238_g2), characterized in the classes
of membrane proteins and involved in nitrate transport

[140], was upregulated in the B region. Furthermore,
the N concentration at B0 was lower than the others.
The main genes associated to N metabolism and as-
similation were more expressed in the M and T seg-
ments (Table S3 – Additional file 7). The genes
glutamate synthase (GOGAT; SP803280_c109031_g1)
and glutamate dehydrogenase 2 (GDH; SP803280_
c111059_g2), involved in glutamate biosynthesis from am-
monium ions [141, 142] were upregulated in the M and T
segments, respectively. The genes which participate in N
metabolism from nitrate source, such as nitrate reductase
(SP803280_c104238_g2; [143] and ferredoxin-nitrite reduc-
tase (SP803280_c107711_g3; [144] were upregulated in the
T segment. These data suggest that N metabolism and its
assimilation are modulated along sugarcane leaf and that
these processes are concentrated in more mature regions of
sugarcane leaves.

Leaf senescence
Leaf senescence occurs naturally in the quiescent cells
and its onset and progression are controlled by external
and internal factors. Factors like age, hormone levels and
reproductive growth cause differential gene expression,
resulting in macromolecule degradation, such as pro-
teins, lipids, pigments (chlorophyll a and b; carotenoids)
and nucleic acids [145–147] followed by recycling and
mobilization of nutrients [147]. According to the tran-
scriptional profile of different leaf segments, some genes
and transcription factors (WRKY and NAC family) asso-
ciated positively with the senescence pathway [136–139,
148] were overexpressed in the T segment (Family:
NAC, SP803280_c104996_g2) as revealed in the contrast
T-M (Table S3 – Additional file 7). The gene for the
blue copper-binding protein (SP803280_c94951_g1),
considered a senescence associated gene - SAG - [149],
had a significant increase in expression level in the T
segment.
In the immature B0 segment, no differential expression

of SAGs was noticed (Table S1 – Additional file 7). How-
ever, we found a significant expression of gene encodig E3
ubiquitin-protein ligase ATL41 (SP803280_c95253_g2) and
E3 ubiquitin-protein ligase UPL5 (SP803280_c109558_g1).
These enzymes catalyze polyubiquitination and regulate leaf
senescence negatively through ubiquitination and subse-
quent degradation of WRKY53, a key transcription factor
of leaf senescence [150, 151]. This result suggests that the
basal segment is functional and mechanisms of senecence
avoidence are active, as expected for a young and immature
leaf portion.
There are several genes involved in the chlorophyll

degradation pathway [152], and some of them were
identified as more expressed in the T (contrast T-M,
Table S3 – Additional file 7). A first step to chlorophyll
degradation is the change of chlorophyll–apoprotein
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complex structure and subsequent enzymatic breakdown
of complex constituents by stay green proteins [153,
154]. The gene that encodes the protein STAY GREEN
(SP803280_c105792_g2) was more expressed in the T
compared to the M segment, suggesting a possible be-
ginning of senescence mechanism.
Other pigments, such as carotenoids, are also de-

graded during leaf senescence. The gene encoding the
enzyme carotenoid 9,10(9’,10’)-cleavage dioxygenase
(SP803280_c114734_g1) responsible for the cleavage of
carotenoids [155] was also upregulated in the T segment.
These results indicate that the leaf senescence process
begins at the leaf tip and that chlorophyll and caroten-
oids degradation are associated [136]. Although our ana-
lysis did not indicate chlorophyll degradation (Fig. 3), it
seems that the leaf tip, at the molecular level, presents
indications of the onset of senescence.
The GO enrichment analysis also revealed GO terms

associated with “aging” and “cell killing” overrepresented
at the T segment (Table S9 – Additional file 10). Three
1-aminocyclopropane-1-carboxylate oxidase are on this
list, responsible for an important step on ethylene pro-
duction [156]. Ethylene is a gaseous phytohormone and
has an important role on the onset and progression of
senescence [157]. The inhibition of its perception or bio-
synthesis in tobacco and tomato caused delayed onset of
leaf senescence and lower expression of SAGs, which
was also found in Arabidopsis ethylene-insensitive mu-
tants [158–161].

Gene expression peaking at the middle section of the leaf
Besides describing the physiological and transcriptional
variation in sugarcane leaves, we also aimed to identify
genes associated with high photosynthetic activity. To
achieve this goal, we evaluated, amongst all genes
expressed on our transcriptome, those that peaked their
expression at the M segment, region with the highest
photosynthetic capacity (Fig. 2 and Figures S4 and S5 –
Additional file 1). For that, we utilized the software
TimeSearcher [162] using the Z-values based on FPKM
(Figure S13 - Additional file 1). We then looked for
genes that had a normalized expression value (Z-value)
at the B0, B and T segments lower than the average
normalized expression for the M segment (Z-value < 0).
In such a way, we identified 986 genes with expression
values higher at the M segment and 26 % of which hav-
ing functional annotation (Table S18 - Additional file
13).
GO enrichment analysis indicated that some pathways

were enriched in the M segment (Table S19 - Additional
file 13), even though the number of genes on each pathway
is small. Some of them are related to starch and sucrose
metabolism (SP803280_c92108_g1; SP803280_c109193_g3;

SP803280_c102083_g2; SP803280_c90189_g1), amino
sugar and nucleotide sugar metabolism (SP803280_
c102083_g2; SP803280_c90189_g1; SP803280_c110680_g1;
SP803280_c106685_g3); N metabolism (SP803280_c45
945_g1; SP803280_c93257_g1) and plant hormone signal
transduction (SP803280_c82109_g1; SP803280_c99047_g1).
From the genes directly related to photosynthesis, only

two RubisCO transcripts (SP803280_c90358_g1 and
SP803280_c102172_g2) presented higher expression at
the M segment. However, our in vivo (Figure S5A –
Additional file 1) and in vitro activities (Fig. 2b), and im-
munoblotting analysis (Fig. 2b) indicated no differences
between segments (except B0 that always had the lowest
values). Intriguingly, none PEPcase transcript was identi-
fied in this analysis, contrasting with the physiological
and biochemical assays (Fig. 2a and Figure S5A- Add-
itional file 1). As mentioned before, PEPcase gene is
known to suffer both post-transcriptional and post-
translational modifications [98, 101, 102], which could
justify such inconsistence between gene expression and
protein activity and amount.
An aquaporin belonging to SIP1 family (SP803280_

c107872_g1) and the Myb-related protein Zm38
(SP803280_c114598_g1) were also identified. The silen-
cing of the aquaporin homolog in Arabidopsis has
shown to decrease osmotic water permeability in meso-
phyll and bundle sheath cells, mesophyll CO2 conduct-
ance, photosynthesis, transpiration, and shoot biomass
in Arabidopsis [163]. This indicates that aquaporins can
contribute to the establishment of high photosynthetic
rates on the middle of the leaf blade. MYB transcription
factors are related to leaf development in tobacco [128]
and to leaf and shoot architecture in tomato [129]. In
addition, the myb-related protein Zm38 regulates nega-
tively genes involved in anthocyanin biosynthesis [164]
and also epidermal cell development [165, 166].
A protein that has strong similarity to the C-terminal re-

gion of the Mid domain of the Argonaute (AGO) protein
MEL1 (SP803280_c113083_g2) was also present at the M.
MEL1 is associated with small RNA-directed regulatory
pathways [167] and some studies have already indicated
the importance of small RNAs on abiotic stress response
[168–170]. Even though it is not clear how many AGO
genes there are in sugarcane genome, we were able to
identify all the Rice AGO genes in four groups of ortholo-
gues (LeafDev_mcl15_5, LeafDev_mcl15_83, LeafDev_
mcl15_342 and LeafDev_mcl15_6159; Additional file 6)
and in each of them there is at least one sugarcane repre-
sentative. However, the protein SP803280_c113083_g2 is
not present in any of these groups of orthologous genes
and may represent a novelty in sugarcane.
Developmental studies indicate the importance of

AGO on rice sporogenesis [171], Arabidopsis female
gamete formation [172], leaf, shoot and apical meristem
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development [173–175], stomata development [176],
control of meiosis and DNA repair [177] and shoot
meristem initiation in rice [178]. In Arabidopsis, the role
of small RNAs on leaf development is well studied [179]
and there is also evidence of the importance of miRNA
in on leaf development of other species such as celery
[180] and potato [181]. Although there is no direct evi-
dence, our study in sugarcane and the work from Li et
al. [44] in maize suggest that miRNAs must play an im-
portant role on leaf development of grasses, but it is still
a topic to be explored.

Conclusions
This is the first report evaluating sugarcane leaf seg-
ments representing different developmental stages and it
has proven to be a valuable tool for investigating the
genes that might be regulators of C4 syndrome. In our
study we describe detailed physiological and biochemical
analyses among leaf segments. We also have made use
of the next generation sequencing technology RNA-seq
to identify molecular differences along the leaf blade of
sugarcane. In addition, we compared our data with pre-
vious work recently published for maize [48]. This ana-
lysis revealed that leaf development differs significantly
between sugarcane and maize based on their transcrip-
tional profile. Although this comparison was limited in
some aspects, it indicates large differences between these
two species pointed out the importance of studying
other crops in order to acquire substantial novel know-
ledge to enable improvement of the photosynthetic
capacity followed by increase in productivity.

Methods
Plant material and growth conditions
Sugarcane stalks from genotype SP80-3280 (Saccharum
spp.) were kindly provided by Centro de Tecnologia
Canavieira (CTC), Piracicaba SP, Brazil. Stalks were sec-
tioned in order to have only one bud per section and
germinated in trays containing vermiculite. After one
month, plants with the same height were transferred to
pots (3.5 L) containing pine-bark substrate and vermicu-
lite (1:1). Plants were fertilized with N:P:K (10:10:10)
every 15 days. The pots were watered daily and every
week their distribution inside the greenhouse was ran-
domized. After 60 days, leaf segments were collected be-
tween 10:00 h and 14:00 h. The first 2 cm of the base of
the first leaf with exposed dewlap (leaf +1 following the
system by van Dillewijn [182]) were collected. For the
other segments, each leaf was measured and was divided
into three equal thirds. Samples were taken considering
1 cm of each side of the middle of each third, except for
the tip, according to Figure S3 – Additional file 1. The
segments were named Base “zero” (B0); Base (B); Middle
(M) and Tip (T). Samples were frozen in liquid nitrogen,

ground to a fine powder and stored at -80 °C until fur-
ther processing. Additionally, in order to improve the
gene space coverage of the de novo transcriptome as-
sembly we included a sample resulting from pooling dif-
ferent developmental stages and tissues from an
additional plant of the same genotype, and the collected
tissues were: leaf +1, shoot, and root; each after one and
two months of growth under the same conditions de-
scribed above.

PEPcase and RubisCO activity and quantification
For determining the catalytic activity of the enzymes, ali-
quots of 50 mg FW were extracted by vigorous shaking
with extraction buffer containing 10 % (v/v) glycerol,
0.25 % (w/v) BSA, 0.1 % (v/v) Triton X-100, 50 mM
Hepes/KOH, pH 7.5, 10 mM MgCl2, 1 mM EDTA, 1 mM
EGTA, 1 mM benzamidine, 1 mM ε-aminocapronic acid,
1 mM phenylmethylsulfonyl fluoride, 10 mM leupeptin,
and 1 mM DTT [183]. PEPcase was measured spectro-
photometrically at 340 nm by coupling the reduction of
oxaloacetate by NADH in the presence of malate dehydro-
genase (MDH) [184]. The reaction mixture contained en-
zyme extract, 25 mM Tris-HCl, pH 8, 5 mM MgCl2,
4 mM DTT, 5 mM NaHCO3, 5 mM glucose-6-phosphate,
5 mM PEP, 0.2 mM NADH and 2 U MDH. RubisCO ac-
tivity was assayed by coupling RuBP carboxylation to
NADH oxidation [185]. The reaction mixture contained
enzyme extract, 100 mM bicine/NaOH pH 8, 20 mM
MgCl2, 25 mM NaHCO3, 5 mM phosphocreatine, 3.5 mM
ATP, 0.25 mM NADH, 4.8 U G3PDH, 4.8 U creatine
phosphofructokinase, 4.8 U G3P kinase and 0.5 mM
RuBP. For initial activity, the assay was performed directly
after protein extraction. For total activity, leaf extracts
were incubated in the assay mix without RuBP for 5 min
to fully carbamylate RubisCO [186].
The abundances of PEPcase and RubisCO were esti-

mated by Western Blot [187].

Total nitrogen, carbon, carbon isotope discrimination and
chlorophyll quantification
Powdered dried leaves (3 to 4 mg) were encapsulated in
tin capsules and total N, total C and carbon isotope dis-
crimination were evaluated at the UC Davis Stable
Isotope Facility. Carbon isotope discrimination was cal-
culated as Δ13C according to Farquhar [188]. Chloro-
phyll was quantified in ethanolic extracts of each leaf
segment according to Cross et al. [189].

Carbohydrates
Soluble sugars were extracted three times with 80 % (v/v)
ethanol at 80 °C for 20 min. The supernatants were pooled,
dried using a centrifugal vacuum concentrator, resuspended
in pure water and filtered. Sugars were separated by high
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performance anion exchange chromatography with pulsed
amperometric detection (HPAEC-PAD, ICS 3000, Thermo
Scientific Dionex) on a CarboPac PA-1 4 × 250 mm column
set (Thermo Scientific Dionex) using a gradient of eluent A
(water) and eluent B (200 mM NaOH), and a flow rate
0.8 mL min-1 during 22 min as follows: 0–12 min, 50 % B/
50 % A; 12.1–17 min, 100 % B; and 17.1–22 min, 50 % B/
50 % A. Myo-inositol, glucose, sucrose and fructose were
identified and quantified by comparison with original stan-
dards using Chromeleon software (version 6.8, Thermo
Scientific Dionex).

Statistical analysis
All the physiological and biochemical data was subjected
analyses of variance (ANOVA) and mean values were
compared by the Tukey test (p < 0.05) using the software
Origin (OriginLab, USA).

RNA-Seq
RNA extraction, library construction, sequencing and
qRT-PCR validation
Total RNA of four independent replicates for each sam-
ple was extracted using Trizol (Invitrogen, USA) accord-
ing to manufacturer’s instructions with an additional
sodium acetate/ethanol precipitation step. RNA quality
and concentration was assessed by gel electrophoresis,
NanoDrop (Thermo Fisher Scientific) and Bioanalyzer
(Agilent Technologies). Only RNA samples with a mini-
mum RNA Integrity Number (RIN) of 7 were further
processed. Libraries were produced using TruSeq
Stranded mRNA Sample Prep Kit (Illumina), which en-
riches the sample for mRNAs (poly-A containing tran-
scripts) and maintains the information about the strand
that was transcribed, according to the manufacturer’s in-
structions. Clusters were made on c-Bot (Illumina) and
paired-end sequencing was carried out on a Hi-Seq 2500
(Illumina) using TruSeq SBS Kit v3 – HS (Illumina).
Samples from plants 234, 138 and 163 and DP3 (pool)
were sequenced in the LACTAD Facility (University of
Campinas, Campinas, Brazil) and samples from an add-
itional biological replicate (plant 235) were sequenced in
our institute (CTBE, Campinas, Brazil).
To validate the RNA-seq results, RNA from two add-

itional independent biological replicates were extracted
using Trizol (Invitrogen, USA) as mentioned above, and
then treated with DNase I Amplification Grade (Invitro-
gen, USA). cDNA was produced with SuperScript® III
(Invitrogen). qRT-PCR was conducted using Sybr Green
Master Mix (Applied Biosystems) on an ABI 7500 (Ap-
plied Biosystems) real-time PCR system. Primers for 14
selected genes (Table S20 - Additional file 14) were de-
signed using Primer Express 2.0 software and the effi-
ciency of each pair tested using LinRegPCR software
[190].

Transcript assembly and annotation
Short read pre-processing and de novo transcript assembly
Short-reads were pre-processed using Trimmomatic
v0.32 in order to remove remaining adaptor sequences
and to carry out quality trimming, using a sliding win-
dow of size 1 bp and a minimum Q value of 20 [191]. In
a first iteration, clean reads were de novo assembled with
Trinity (version r20140413p1) [192, 193], except for
reads coming from plant 235, which had not been se-
quenced at this stage. Possible contaminants were iden-
tified using MEGAN5 (http://ab.inf.uni-tuebingen.de/
software/megan5/). In a second iteration, reads were
mapped against the genomes of representative con-
taminants, also against mitochondrial (GenBank ACC:
NC_008360.1) and plastid (GenBank ACC: NC_005878.2)
sequences, and unmapped reads were re-assembled using
Trinity. Elimination of contaminating sequences was
assessed with MEGAN5 and contigs assigned to Viridi-
plantae were retained for further analyses, as well as those
that did not have any hits against the NCBI nucleotide
database, because we can not exclude that these originate
from sugarcane.
The quality and completeness of the transcript assem-

bly was evaluated using Transrate [194] by comparing it
to the transcripts and proteins in the Sorghum bicolor
genome [195], and with CEGMA [196], which identifies
a set of 248 highly conserved, usually single-copy,
eukaryotic genes.

Transcriptome annotation
Transcript contigs likely originating from sugarcane
were annotated with the Trinotate pipeline (http://trino
tate.sourceforge.net/), which includes sequence similarity
searches against the UniProt and UniRef databases, pre-
diction of signal peptides using SignalP [197], prediction
of transmembrane regions using THMM [198] and iden-
tification of ribosomal genes with RNAmmer [199]. The
KEGG Automatic Annotation Server was used to assign
transcripts into KEGG orthologous groups and in house
perl scripts were used to retrieve the associated meta-
bolic pathways using KEGG web services [200].
OrthoMCL was employed to identify groups of ortholo-
gous genes among sugarcane, Sorghum bicolor, Zea
mays, Setaria italica, Oryza sativa, and Arabidopsis
thaliana, using an inflation value of 1.5. The full set of
proteins of these species was downloaded from Phyto-
zome [201]. Genes encoding transcription factors and
other transcriptional regulators were identified following
the approach described in Perez-Rodriguez et al. [66].

Transcript abundance estimation and differential
expression analyses
During the de novo assembly by Trinity, the software parti-
tions the input data into many individual de Bruijn graphs,
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each one representing a single “putative” locus or gene, and
then process to split the alternatively spliced forms of that
gene [193]. The estimation of transcript abundances was
carried out with eXpress [202], summarizing the read
counts at the level of gene as defined by Trinity. Differential
expression analyses for the leaf +1 developmental stages
were carried out with edgeR, controlling for individual/
plant variation, i.e., a paired statistical design [203]. Gene
counts per sample were normalized using the Trimmed
Mean of M-values method – TMM -[204] as implemented
in edgeR, in order to account for inter-sample RNA popu-
lation variation. Only transcripts that achieved 1 count per
million, after TMM normalization, in at least three samples
were considered as expressed and thus retained for further
analysis. Multiple testing was controlled allowing a False
Discovery Rate (FDR) of 0.05. Comparisons between seg-
ments were performed subtracting distal from basal seg-
ments originating the three orthogonal contrasts: Base
“zero” vs. Base (B0-B); Middle vs. Base (M-B); Tip vs. Mid-
dle (T-M). R code used for differential gene expression ana-
lyses is available as Additional file 8.

Comparison of transcript profiles of orthologous genes
between sugarcane and maize along the leaf
developmental gradient
We used the expression data (read counts) reported in
Wang et al. [48], and processed it in the same way as
our sugarcane data (see above). Transcription expression
values were reported as FPKM, and in the case of sugar-
cane we reported the averaged, among replicates, FPKM.
We used the list of 30,530 maize and rice orthologous
genes from Wang et al. [48] and extracted their ortholo-
gous genes in sugarcane for the cases where the orthol-
ogy relationship was still 1:1 between maize and
sugarcane. Finally, the Spearman correlation coefficient
between each sugarcane leaf +1 segment and each maize
leaf segment was calculated.

Availability of supporting data
The data sets supporting the results of this article are
available in the NCBI’s Short Read Archive (SRA)
under the accession numbers: SRR1979656 to
SRR1979669 and SRR1974519; the assembled transcrip-
tome is available at NCBI’s Transcriptome Shotgun Assem-
bly (TSA) under accession number: GCZX00000000 and
datasets are also available at http://bce.bioetanol.cnpem.br/
sugarcanetranscriptome.

Additional files

Additional file 1: It is comprised by 13 Additional figures and
methodologies that complement the data presented in the
manuscript. Figure S1. Distribution of leaf length. Figure S2. Phenotype
of 60 days-old plants. Figure S3. Planning for sample collection.

Additional Methodology of leaf gas exchange and photochemistry
evaluation on the B and M segments: on this supplemental topic we
described the methodology used to produce Additional Fig. 4 and 5.
Figure S4. Light response curves for different leaf segments. Figure S5.
Responses of leaf CO2 assimilation to increasing intercellular CO2

concentration (Ci) for different leaf segments. Figure S6. Stomata
counting in 2 cm segments of sugarcane leaf. Figure S7. Venn Diagram
representing groups of orthologous genes shared between the five
species (Sorghum bicolor, Setaria italica, Saccharum sp. SP80-3280, Oryza
sativa and Zea mays). Figure S8. Protein content of sugarcane leaf
segments. Figure S9. Expression patterns exhibited by the 14 genes
identified in all contrasts (Figure 5 on the manuscript). Figure S10. Water
content. Figure S11. Phylogenetic tree of the Trehalose 6-Phosphate
Synthase family. Figure S12. Expression pattern of cell wall related
genes. Figure S13. Expression pattern of genes peaking at segment M.
Additional References. References of the Methodology of Gas exchange
and fluorescence evaluation. (DOCX 6742 kb)

Additional file 2: Fasta file with the assembly. Transcript assembly as
obtained by trinity and submitted to the TSA at NCBI. (BZ2 57956 kb)

Additional file 3: Assembled transcripts were annotated with
Trinotate (https://trinotate.github.io/). Transcripts were mapped
against the databases UniProt, PFAM, UniRef90. Subcellular location
was predicted using SignalP. Transmembrane regions were identify
by tmHMM. Ribosomal RNA genes were predicted by RNAMMER. All
results were loaded into a SQLite DB as per Trinotate instruction and
results were exported into tabular format. For details of the format of
this table please check https://trinotate.github.io/. (BZ2 9438 kb)

Additional file 4: Sugarcane Trinity contigs were mapped to KEGG
pathway using the single-directional best hit approach available in
the KEGG Automatic Annotation Service (http://www.genome.jp/
tools/kaas/). This is a table with the results of such mapping. The table
has three columns, 1. The name of the sugarcane transcript/contig, 2. The
identifier for the KEGG pathway, and 3. The name of the pathway.
(BZ2 76 kb)

Additional file 5: Transcription associated proteins were identified
following the approached presented in Perez-Rodrigues et al 2010.
The table has 5 fields. 1. Gene identifier, as defined in the text, 2.
Transcript identifier, 3. Protein identifier, 4. TAP family, 5. This filed has
always the value TAP. (BZ2 30 kb)

Additional file 6: Table with the list of orthologous genes
between the five species: Sorghum bicolor (Abbreviation:
SBIC), Setaria italica (Abbreviation: SITA), Saccharum sp.
SP80–3280 (Abbreviation: SACC), Oryza sativa (Abbreviation:
OSAT) and Zea mays (Abbreviation: ZMAY). Groups of
orthologous genes were identified by OrthoMCL with an inflation value
of 1.5. (BZ2 1258 kb)

Additional file 7: This Additional File is an Excel File containing 3
spreadsheets (Additional Tables 1–3) with the results of our
differential expression analysis contrasting two leaf segments.
Table S1. Differentially expressed genes between the contrast B-B0.
Table S2. Differentially expressed genes between the contrast M-B.
Table S3. Differentially expressed genes between the contrast T-M.
(XLSX 150 kb)

Additional file 8: Input data (read count per gene per condition)
and R code, to reproduce the differential gene expression analysis
for the sugarcane leaf development segments. (BZ2 15159 kb)

Additional file 9: Input data and R code to produce the heatmap
shown in HeatMapMaize_vs_Sugarcane. For the comparison, all the
orthologous genes used in Wang et al. (2014) that were identified as one
to one orthologues between Sugarcane and Maize by OrthoMCL were
used. (BZ2 1620 kb)

Additional file 10: This Additional File is an Excel File containing 6
spreadsheets (Additional Tables 4–9) with the results of our gene
ontology analysis for each leaf segment. Table S4. Enriched gene
ontology terms for genes over-expressed at B0 identified on the contrast
B-B0. Table S5. Enriched gene ontology terms for genes over-expressed
at B identified on the contrast B-B0. Table S6. Enriched gene ontology
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terms for genes over-expressed at B identified on the contrast M-B. Table S7.
Enriched gene ontology terms for genes over-expressed at M identified
on the contrast M-B. Table S8. Enriched gene ontology terms for
genes over-expressed at M identified on the contrast T-M. Table S9.
Enriched gene ontology terms for genes over-expressed at T identified
on the contrast T-M. (XLSX 39 kb)

Additional File 11: This Additional File is an Excel File containing
2 spreadsheets (Additional Tables 10 and 11) showing the
identification of genes related to cell wall modification and gene
putatively related to suberin biosynthesis. Table S10. Cell Wall
related genes identified in each contrast. Table S11. Genes putatively
involved in suberin biosynthesis identified in each contrast. (XLSX 23 kb)

Additional file 12: This Additional File is an Excel File containing 6
spreadsheets (Additional Tables 12–17) with the results of our
transcriptional factors families enrichment analysis for each leaf
segment. Table S12. Transcriptional factors families enriched on B0
considering the contrast B-B0. In red are highlighted the families with
significative enrichment. Table S13. Transcriptional factors families
enriched on B considering the contrast B-B0. In red are highlighted the
families with significative enrichment. Table S14. Transcriptional factors
families enriched on B considering the contrast M-B. Table S15.
Transcriptional factors families enriched on M considering the contrast
M-B. Table S16. Transcriptional factors families enriched on M
considering the contrast
T-M. Table S17. Transcriptional factors families enriched on T considering
the contrast T-M. In red are highlighted the families with significative
enrichment. (XLSX 32 kb)

Additional file 13: This Additional File is an Excel File containing 2
spreadsheets (Additional Tables 18 and 19) indicating the genes
identified as having their peak expression at the middle segment
and demonstrating the gene ontology analysis of those genes.
Table S18. Genes with expression peaking at the M segment. Table
S19. Enriched KEGG pathways for genes with expression peaking at the
M segment. In grey are highlighted the significant KEGG pathways.
(XLSX 92 kb)

Additional file 14: List of sugarcane genes and primers used for
qRT-PCR. Table S20. qRT-PCR Primers. (XLSX 9 kb)

Abbreviations
A: Photosynthesis; B0: Base “zero” segment; B: Base segment; C3: 3-carbon
compound; C4: 4-carbon compound; DE: Differentially expressed;
ETR: Electron transport rate; FPKM: Fragments per kilobase of exon per
million fragments mapped; GO: Gene ontology; K: Potassium; k: PEPcase:
carboxylation efficiency; KEGG: Kyoto encyclopedia of genes and genomes;
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