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Abstract—Agility may be an important competitive advantage 
in many markets. In order to achieve it, the dynamics of the 
manufacturing systems must be considered. Control theory 
supports the development of dynamic models for production 
and inventory control. This paper discusses some dynamic 
models of production control specifically applied to scheduling 
and shop floor control. A comparative and critical analysis of 
the models is presented and directions for future works are 
provided. 

Control theory; scheduling algorithms; shop-floor oriented 
systems; production control 

I.  INTRODUCTION 
In most manufacturing environments, the production 

system is always subjected to disturbances of several 
sources, such as changes of demand and customer require-
ments, machine breakdowns, urgent jobs, absenteeism, 
financial fluctuations, and so on. In order to be competitive, 
the companies must be able to quickly respond to these 
uncertainties without a large penalty in cost. In other words, 
"Agile companies [...] are strong in their adaptability to 
changing conditions in the production environment" [1]. 

System Dynamics & Control Theory, originally come 
from Mechanics and Electronics, provide a range of tools for 
modeling and analyzing dynamic systems that can be 
suitably applied to production planning and control of 
manufacturing systems. As known, some of the first works in 
this field was developed by [2]. Since then, several other 
models have been developed to approach different levels of 
the production planning hierarchy or the analysis of supply 
chain dynamics. After a broad literature scanning, few 
models were found focusing on scheduling and shop floor 
control, that is, the lower levels in the planning hierarchy. 
Thus, the aim of this paper is to present a short review of 
these works, i.e., to discuss some dynamic models of 
production control applied to scheduling and shop floor 
control. The scope of the review mainly includes 
publications of the last fifteen years. A comparative analysis 
of the models is carried out and some directions for future 
work are provided. 

II. LITERATURE REVIEW AND PRESENTATION OF THE 
MODELS 

As already mentioned, a reasonable number of models to 
control the dynamics of production systems have been 
developed. A comprehensive review is presented in [3]. 
These authors have identified two areas of application of 
control theory to production-inventory systems. 

The first one approaches the supply chain dynamics and 
related topics, such as the bullwhip effect. The developments 
in this area were labeled as "horizontal extensions" of the 
deterministic models of production-inventory systems [3]. 
One of the first works in this area was developed by [4]. In 
this, an inventory order based production control system was 
considered to have three fundamental system parameters: 
production delay time (i.e. production lead time), the time-
to-adjust inventory, and demand averaging time. Similarly, 
[5] considered three main elements while modeling 
manufacturing systems: forecasting, lead times and 
replenishment rules (or order policies). In the mentioned 
work, expressions in the frequency domain to represent 
manufacturing lead times and replenishment rules are 
presented. In general, demand forecast represents the 
feedforward path of these systems, while work-in-process 
and inventory level are usually transmitted as feedback 
information. In some systems, the order policy is the control 
element. Following this line of reasoning, several models are 
developed and improvements were proposed to the existing 
models [6-8]. Most of these models aimed at finding an 
optimum order policy to reduce the bullwhip effect, i.e., the 
variations in the inventory levels. 

The second area of application focuses on "hierarchical 
approaches" or "vertical extensions" [3] of the models. This 
area comprises multi-echelon models where the product 
structure tree or bill of materials (BOM) is used as an input 
matrix for the production-inventory system. As known, the 
bill of materials is a hierarchical representation of the 
assemblies, subassemblies, components and parts that form a 
product. Some authors that worked on this vertical approach 
are [9-12], among others. In the dynamic models, besides the 
BOM, these authors also employed the input-output analysis. 
According to [3], "input–output analysis models present the 
opportunity to transform one set of resources into another set 
using efficient mathematical language". The main objective 

2013 12th Mexican International Conference on Artificial Intelligence

978-1-4799-2604-6/13 $31.00 © 2013 IEEE

DOI 10.1109/MICAI.2013.10

38

2013 12th Mexican International Conference on Artificial Intelligence

978-1-4799-2605-3/13 $31.00 © 2013 IEEE

DOI 10.1109/MICAI.2013.10

38



of these models is lot sizing optimization, i.e., defining batch 
sizes and the optimum moments to start their production in 
time. 

In the literature review presented by [3], there are only a 
couple works approaching Operations Scheduling and shop 
floor control [1], [13]. Lately, a few more models have been 
developed for these applications. These models are the focus 
of this paper and will be discussed with some detail in the 
following subsections. The model presented by [1] will be 
also included in the discussion, since it was considered 
relevant in this subarea. 

A. The Lever Heuristic for Adaptive Production 
Scheduling (Model 1) 
A computer-aided production scheduling and control 

system is proposed by [14]. In this system, an average 
processing time and lever heuristic (APT-LVR) is integrated 
with a closed-loop feedback control scheme, as shown in 
Fig. 1. The jobs are rescheduled based on simulation and 
reapplication of the heuristics to the updated boundary 
conditions of the problem. The simulation module employed 
by the mentioned authors is named THOCPN-CS and was 
developed using Petri nets. 

The necessary steps to run the system, as presented in 
[14], are reproduced as follows. 

1. Manually assign possible manufacturing resources 
(e.g. operators/machines) to each stage, and hence form a 
task-resource matrix (TRM). 

2. Schedule the jobs by the APT-LVR heuristic. 
3. The simulation module will simulate the execution of 

the jobs, and the bottleneck stages will be identified. Human 
schedulers may reallocate operators/machines in stages 
accordingly, to smooth production flow. 

4. Reschedule the jobs by the APT-LVR heuristic. 
5. Repeat steps 3 and 4 in the offline production 

scheduling phase until a satisfactory production schedule is 
obtained. 

6. Deliver the production schedule to the shop floor and 
switch the control loop from the simulation model to the 
shop floor. 

7. If any disturbance occurs on the shop floor, switch the 
control loop back to the simulation model, and go back to 
step 3 if operators/machines reallocation is necessary, or go 
back to step 4. 

 
 

 
Figure 1.  A computer-aided production scheduling and control system 

[14]. 

 

The heuristic developed by the authors is an extension of 
Johnson’s algorithm. Basically, m machines are grouped into 
two virtual machines several times, and Johnson’s algorithm 
is applied to obtain a set of sequences. The lever concept 
comes from an analogy with the moment of punctual forces 
applied on a beam. A flow line with m machines is modeled 
as a lever, as shown in Fig. 2. On this lever, the counter, Ctr, 
is regarded as a fulcrum. Each machine acts as a force with 
magnitude of dij, where dij is an array with the differences 
between the processing times of the jobs on machine j and 
the average of all processing times (APT). The distance 
between machines is of one unit. The counter is used as an 
auxiliary variable to split up the machines into two groups. 
As it moves along the beam, the sum of the moments in each 
side of the counter is calculated. Each of these sums 
correspond to an arrays associated to each virtual machine. 
Johnson’s algorithm is thus applied to these arrays to 
generate a sequence. The sequence with best performance is 
chosen. 

The proposed heuristic was applied to benchmark data 
for performance assessment. In addition, a case study was 
carried out in a company that manufactures windows and 
doors. In this company, 1396  jobs should be processed on a 
five-stage flow shop in one day. The researchers claimed that 
an improvement in productivity of 1,49% was obtained, 
which corresponds to processing 20 additional products daily 
[14]. 

B. A Scheduling Heuristic Based on the Distributed 
Arrival Time Controller (Model 2) 
The Distributed Arrival Time Controller, DATC [15-16] 

is a scheduling model where an integral controller is used to 
determine the arrival times of parts. In this model, shown in 
Fig. 3, the scheduling is processed according to the just-in-
time logic, where both earliness and tardiness from due date 
are penalized. The closed loop system iteratively adjusts the 
arrival time of a given part i so that it may be completed as 
close as possible from its due date. The completion time of 
the parts is calculated by a shop floor simulation module 
based on the arrival times of each iteration and the given 
processing times of the parts. 

 

 
Figure 2.  The lever concept for an m-machine flow line [14]. 

 
Figure 3.  Structure of the Distributed Arrival Time Controller [16]. 
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As it can be seen, each part has an embedded controller 
that computes the deviations of the expected completion time 
from the due date and adjusts the arrival times based on the 
accumulated deviations. For this reason, the controller of 
DATC is classified as an integral one. The completion times 
are calculated by the simulation module according to a first-
come-first-served (FCFS) dispatching policy, which is 
applied in each iteration based on the current arrival times. 
The arrival time of i-th part in discrete time domain can be 
written as in 

(1) 

where ai(t), pi(t), ci(t), di(t) and zi(t) refer to arrival time, 
processing time, completion time, due date and deviation 
from completion time about due date of i-th part, 
respectively, and ki is the control gain for i-th part. 

In the proposed model, the scheduling objective is to 
minimize the Mean Squared Deviations of completion times 
from due dates (MSD), as follows: 

 ./)( 2 ncdMSD
i ii� −=  (2) 

According to [16], the integral controller of DATC 
works as a search engine that replaces the heuristics used in 
the traditional models. However, it is important to highlight 
that the controllers are distributed on part entities and 
computation of deviations and adjustment of arrival times in 
part entities takes place with limited global information, 
since each controller is independent of the other ones, as can 
be seen in (1). 

The response of the model depends on the relationship 
between processing times and due dates. If the due dates are 
infeasible, that is, if they are too close to each other and 
cannot be simultaneously met due to insufficient resource 
capacity, then the trajectory of arrival times converges to a 
steady-state value, regardless of the initial values of arrival 
times. On the other hand, the trajectory converges to distinct 
values of  di - pi when due dates are feasible. 

The DATC was applied to static single machine 
scheduling problems with known optima, in order to evaluate 
its performance in this context. The biggest values for the 
average percentage deviation from the optimum solution 
were around 5%. 

C. An Automatic Production Control System Based on a 
Continuous Flow Model (Model 3) 
An Automatic Production Control (APC) system based 

on flow models in continuous time is presented by [1], [17]. 
According to them, a flow model is advantageous since 
control theory offers many more methods for continuous 
models than for discrete ones. The mentioned authors 
propose a flow-oriented stochastic job shop model based on 
the funnel model and the theory of logistic operating curves. 
They represent the work-in-process (WIP) of a work centre 
within a flow network in continuous time as in (3). 

 
 

 

(3) 

 
 
where mwiporder , k (t) = mean work-in-process of centre k at 
time t, mwiporder , k (0) = initial mean work-in-process of 
centre k, extinorder ,k (t) = cumulative external input of centre k 
until time t, outorder,max, j (t) = cumulative potential outflow of 
upstream centre j until time t, outorder , loss, j (t) = cumulative 
potential lost of outflow due to empty upstream centre j until 
time t, outorder , max, k (t) = cumulative potential outflow of 
centre k until time t; outorder, loss, k (t) = cumulative potential 
loss of outflow due to empty centre k until time t, and pj ,k = 
fraction of total output from centre flowing directly to centre 
k. All these variables (except pj,k, which is dimensionless) are 
expressed in number of orders. 

As it can be seen in the right side of (3), the momentary 
work-in-process of work centre k depends on its initial 
inventory, its cumulated external input, the actual 
cumulative input of its upstream work centers flowing to k 
and its own actual cumulative output until time t. In simple 
terms, the work-in-process of each work centre on time t is a 
result of the difference between the input flow and the 
output flow, summed to the initial WIP. Thus, the second 
term and the summation in the right side of (3) represent the 
input flow, while last term in brackets refers to the output 
flow of work centre k. 

According to [1], although the parameters of initial 
work-in-process, external input and potential cumulative 
output of each work centre are relatively easy to determine, 
the relation between losses in utilization (outloss ,k) and the 
momentary WIP level cannot be easily defined.  In order to 
overcome this issue, the funnel model and the derived 
theory of logistic operating curves are applied. 

The funnel model states the relationship among the work 
in process of a system, its performance (in terms of 
production rate or throughput rate) and its mean range (or 
lead time). The mean range is related to the mean runout 
time of the work centre. "The incoming orders, measured in 
hours of work content, form a stock of pending lots, which 
have to flow through de funnel outlet. The diameter of the 
outlet can be described as the capacity of the work system, 
which is adjustable within limits" and determines the actual 
performance of the system [1]. 

According to the theory of the logistic operating curves 
[18], the output of a work centre is independent of the mean 
work-in-process as long as every work system has a buffer of 
pending orders at all times. If so, the performance of the 
system is equal to its capacity.  Losses in production will 
occur only if the buffer is further reduced, due to 
interruptions in material flow. Also, the range decreases in 
proportion to the WIP until the physical minimum is reached. 
Beyond this point the range cannot be further reduced 
because it is limited by the sum of the operation time and the 
transport time, which is the minimum range. The ideal WIP 
minimum represents the WIP level necessary to run the 
system, considering that the arriving orders do not have to 
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wait and the material flow is not interrupted. Considering (3) 
and both the aforementioned theories, the flow of work in a 
work centre may be represented as in (4). 

 
 
 
 

(4) 
 
 
 

where perj(mwipj(t)) is the output performance of a center j 
for a given level of mean work-in-process. The performance 
is measured in terms of throughput rate, and its value is 
taken from the logistic curve. Actually, the term 
perj(mwipj(t)) represents a specific operating point of the 
work centre j in relation to its characteristic logistic curve of 
performance. 

In order to adapt (3) to the continuous time domain and 
use control-theory elements, the dimensions of the variables 
must be converted from number of orders into work content 
(e.g. hours). This conversion is done by means of the mean 
order time of the work centers (mot), which appears in (4). 

The transition probabilities are used since (4) represents 
a job shop configuration. These probabilities can be easily 
calculated with the aid of a common material flow matrix 
(MFM) obtained by using real data from the job shop. As 
known, this matrix shows the quantities of the material or 
the number of orders that flow from a work centre to 
another. To obtain the transition probabilities, the matrix 
must be normalized. 

Based on the presented equations, a job shop model with 
two controllers was developed: a backlog controller and a 
WIP controller [1], [17], as shown in Fig. 4 and Fig. 5. The 
backlog of a system may be defined as the difference 
between the planned sum of work and the actual output. 
Thus, in this case, the planned performance is the reference 
variable whereas the capacity is used as a correcting 
variable. "The essential task of a work system is to allocate 
the required performance to process the system load" [1]. In 
the proposed system, the difference between the actual and 
the planned performance is integrated over a time interval, 
resulting in the above-mentioned backlog. 

In most production systems, capacity can be increased or 
decreased in different size steps and a reaction time is 
required. This reaction time was included in [19]. Thus, the 
capacity installation and de-installation is represented in the 
model by envelope curves, as seen in Fig. 4. 

 

 
Figure 4.  Concept of the automatic backlog controller [1], [17]. 

 
Figure 5.  Concept of the automatic WIP controller [1],[17]. 

The main task of the WIP controller is "to set the system 
to an operating point on the operating characteristic curve 
that was defined within the scope of production planning" 
[1]. The reference variable is the planned WIP, and the 
controller adjusts the input rate of the production system 
based on the difference between the actual and the planned 
WIP, as shown in Fig 5. 

In the model presented in [1], the backlog and the WIP 
controller were combined, as can be seen in Fig. 6. This 
combination is more effective to control the system since 
the backlog controller only acts when the planned utilization 
of the system is reached, otherwise, backlog does not arise. 
In this case, the WIP controller assumes the control task. 
The authors of the aforementioned work compare the two 
controllers to the conventional production control methods: 
capacity is usually increased when backlog increases in a 
production system; if the range keeps growing, the queue in 
front of the work system can be reduced by reducing the 
input rate of the system. 

The functioning of the combined system is outlined as 
follows. First, in order to run the model, it is necessary to 
decide to which operating state on the characteristic curve 
the system should be driven. For this purpose, a value of 
utilization of the system must be set. Then, the necessary 
capacity is derived from the planned output and the planned 
utilization. In the other branch of the system shown in Fig. 6, 
the relative planned WIP (mwiprel,plan) is multiplied by the 
mean WIP minimum resulting in the planned mean WIP. 
The backlog of the system is calculated by means of the 
integration of the deviations between the planned and 
realized performance over a time interval. The backlog 
controller then calculates the planned performance for the 
next period, which will lead to the corrected capacity of the 
system. The actual mean WIP of the system is also compared 
to the planned mean WIP. Based on the deviations, the WIP 
controller corrects the input rate of the system [1], [17]. 

 

 
Figure 6.  Concept of the combined WIP and backlog controller [1], [17]. 
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In order to evaluate the proposed system, the 
aforementioned authors carried out simulations where an 
urgent order is introduced when the system is balanced. They 
compared the performance of the system without control and 
with control, observing the behavior of the mean WIP and 
the backlog over time in both cases. As expected, in the 
controlled system, work-in-process and backlog were 
reduced to the initial level much faster than in the 
uncontrolled system. 

D. A dynamic single-product manufacturing system 
modeled with bond-graphs (Model 4) 
The dynamics of the manufacturing systems is modeled 

using the bond-graph methodology in [20]. The bond graphs 
express general class physical systems through power 
interactions between the components. The methodology is 
based upon an analogy with the ideal properties of basic 
electronic components, such as resistors, capacitors and 
transformers. Each of these components have a 
correspondent graphical representation. From the graphical 
model, the mathematical structure of the system, i.e., the 
state representation, can be deducted. 

Four types of generalized variables are considered in this 
technique, as known: stress (e), flow (f), moment (q) and 
displacement (p). In the model developed by [20], the flow 
variable f represents the evolution of the material flow over 
a given section of the manufacturing system, while the 
moment q is the production volume, which corresponds to 
the integral of the production flow. The variable stress e is 
used to represent the coupling phenomenon between a 
machine and its precedent stock, in the case when its 
production capacity is impeded by the entity located 
upstream for missing available material. The displacement 
variable is not used. 

The production entities used are: sources, stocks, 
machines, convergent and divergent junctions and wells. The 
sources provide the material flow to the system, while the 
wells are similar to stocks with infinite capacity, used to 
represent the system outputs. The machines are represented 
by resistors, while the stocks are modeled, by analogy, as 
capacitors. Each machine is preceded by a correspondent 
stock; they are connected by means of a coupling structure, 
forming a production station. The convergent and divergent 
junctions enable the representation of the topology of the 
manufacturing system, i.e., they aggregate the different paths 
of flow that must go through an specific station or they 
distribute the material flow into the different stations of the 
system. The bond-graph representation of a station, that is, a 
stock-machine entity is shown in Fig. 7. 

In order to illustrate the bond graph application to 
manufacturing systems, [20] modeled the single-product 
manufacturing system presented in Fig. 8. 

The state representation of the manufacturing system is 
derived from the constitutive equations of each element, i.e., 
resistor, capacitor, junction, etc., which are well known 
among the bond graph users. 

C :   Ci � ∞

eei

fei

input

0

R :   Ti = 1/ Ui

fsi

esi

output

1

Se :  min(1, qi)

1

 
Figure 7.  Bond graph model of a station [20]. 
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P4

 
Figure 8.  Elementary single-product manufacturing system modeled and 

simulated in [20]. 

The control objective is to adjust the level of the output 
flow of the system to attend the demand of the considered 
product, while, at the same time, keeping the work in 
process (WIP) at the desired levels. This objective must be 
achieved by controlling the production frequencies of the 
machines and the flow sources, represented by the variable 
U in Fig. 8. In [20], the control of the system was simulated 
for the following conditions: null initial stock levels for all 
the intermediate stocks; reference levels of 15, 10, 20 and 
22 material units for the stocks 1 to 4, respectively; 
reference production frequency of the machines derived 
from the solution of the state model of the system for the 
permanent regime. 

This presented system is dynamic in the sense that it can 
respond to some unexpected events, such as machine 
breakdowns. In order to test this feature of the system, the 
breakdown of machine 3 at the time t = 45s was simulated. 
The machine remained broken for 3s. After machine 3 stops, 
the production frequencies of the machines 1 and 2 are 
temporally reduced to avoid an excessive WIP accumulation 
at station 3. Also, the supply flow of the sources 01 and 02 is 
reduced. The quantity of material accumulated in the stock of 
station 4 enables it to continue production normally. After 
approximately 120s, all the reference levels for the stocks are 
achieved and the system becomes stable, operating at its 
permanent regime. Therefore, the results showed that the 
system was able to dynamically respond to the machine 
breakdown. 

III. COMPARATIVE AND CRITICAL ANALYSIS 
A comparative analysis among the three discussed 

models is summarized in Table 1. As it can be seen, models 
1 and 2 are similar regarding their application and time 
domain. These models work with detailed and discrete 
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production orders, whilst model 3 uses weighted averages 
calculated from discrete orders data. Also, model 3 is 
suitable for a more complex production configuration. Thus, 

the use of average values may be advantageous to simplify 
the solution of the problem, since job shop scheduling 
problems are NP-complete. 

TABLE I.  COMPARISON BETWEEN THE PRESENTED MODELS 

 Modelo 1 Modelo 2 Modelo 3 Modelo 4 

Domain discrete discrete continuous continuous 

Application scheduling scheduling shop floor control shop floor control 
Nature of the 

problems 
dynamic, not 

automatic static dynamic, automatic dynamic, automatic 

Production 
configuration flow shop single machine job shop not applicable (single 

product) 
Number of 

products/ jobs multiple multiple multiple single 

Main variables and 
parameters 

processing times, 
makespan 

processing times, due 
dates, controller gains, 

lateness 

work content, WIP, range, 
backlog, utilization, 

performance 

WIP, inventory reference 
levels, frequency of 

operation of the machines 
Theoretical 

background for 
modeling 

extension of Johnson’s 
algorithm 

expressions of PI and PID 
controllers (not used in the 

dynamic sense) 

analogy with fluid systems, 
funnel model, logistic 

curves 

analogy with electrical 
systems, bond graph 

technique 
 
It is worth mentioning that model 2 is, in fact, an 

iterative method to obtain a near optimal schedule, replacing 
conventional heuristics. Therefore, it is not a dynamic 
model in the strict perspective of System Dynamics and 
Control Theory. The feedback loop present in this model is 
an internal element that is part of the algorithm for 
scheduling optimization; it does not work as a controller 
itself. The discrete variable t that appears in this model 
represents the iterations executed to reach the solution. 
There is no direct relation between this variable and the real 
time of shop floor events. Although some disturbances may 
be presented to the model, such as the inclusion of an extra 
job to be scheduled, it deals in essence with a static 
problem, where there is a fixed number of parts to be 
scheduled and, after a given number of iterations, the best 
schedule is found. 

The model 1, on its turn, has a valid feedback system. 
From the design perspective, however, it does not fit into 
the conventional parameters of control theory, since the 
compensation action of the system is not automatic and it is 
not mathematically represented. The compensation, in this 
case, is done by an action of the user, which reapplies the 
proposed heuristics to a different set of initial conditions. 
On the other hand, this practical feedback of the scheduling 
execution status is of much interest for managers, even if it 
is not automatic. Thus, this feature is an advantage of model 
1. 

In the sense of automatic feedback, the models 3 and 4 
are the most aligned to control theory principles. The 
controllers of these models automatically respond to an 
input disturbance, aiming to minimize the effect of this 
disturbance and bring the system back to a stable point. The 
disturbance corresponds to the arrival of an urgent job, in 
the case of model 3 and a machine breakdown, in the case of 
model 4. The variable time (t) considered in model 3 
corresponds to real shop calendar days. Thus, it is possible 
to obtain an accurate estimative of how much time the 
system would need to stabilize and how much capacity 

increment would be necessary. On the other hand, model 3 
is much more complex than the others not only regarding 
mathematics, but also in terms of practical application. It 
requires the continuous measurement of several variables 
related to the schedule execution in the shop floor and the 
estimation of various parameters of the system. In summary, 
this model encompasses more variables and requires higher 
data acquisition and pre-processing efforts. 

The common element of the models are the application 
for which they are designed. As previously said, all the 
models are developed for production scheduling or 
production control in the short term. On the other hand, it 
can be seen that the methodologies employed for modeling 
and the variables used are pretty diverse. The production 
configuration for which the models are applicable also 
differs. 

IV. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORKS 
This paper presented and discussed three recent models 

for Scheduling and Shop Floor Control based on control 
theory elements. The presented comparative analysis 
highlighted some advantages and disadvantages of each 
model, being also useful to help practitioners when choosing 
the most suitable model for specific contexts. 

This short review showed that there is a lot of room for 
the development of dynamic models for Scheduling and 
Shop Floor Control. In comparison to the other applications 
of control in production and inventory systems, this body of 
knowledge is still incipient. One relevant branch would be 
using control theory in the development of models for 
dynamic scheduling, since the vast majority of works 
approaches static problems, using a variety of heuristics. 
Other direction could be the extension of some models, 
which were applied to a single machine configuration, for 
instance, to more complex configurations such as flow shop 
or job shop systems. An additional contribution would be the 
application of the presented models in real systems, in order 
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to define more realistic parameters and evaluate system 
performance. 

Many dynamic and control models rely on several 
parameters, i.e. time constants, and values for the controller 
gains. Usually, for electrical or mechanical applications, 
there is a systematic procedure for determining these 
parameters, which does not exist for most of the 
manufacturing applications. A methodology that focuses on 
this point can be also a subject for future research. The 
Artificial Intelligence tools could be applied in the System 
Identification field, in order to help to define the parameters 
of the modeled manufacturing systems. The pattern 
recognition capabilities of the Artificial Neural Networks are 
often applied to that aim, such as in [21-25]. In some of these 
works, fuzzy logic is also applied [21] [25]. Once again, 
most of the existing applications are devoted to mechanical, 
electrical or chemical systems. The literature lacks 
applications of AI tools to System Identification of 
manufacturing systems. Also, the design and optimization of 
the controller for the dynamic manufacturing systems may 
be certainly improved with the aid of AI methods, such as 
fuzzy logic and genetic algorithms, which are usually applied 
to the control of mechanical and electrical systems. 
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