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Abstract-In some practical classification problems in which 
the number of instances of a particular class is much lower/higher 
than the instances of the other classes, one commonly adopted 
strategy is to train the classifier over a small, balanced portion of 
the training data set. Although straightforward, this procedure 
may discard instances that could be important for the better 
discrimination of the classes, affecting the performance of the 
resulting classifier. To address this problem more properly, in 
this paper we present MOGASamp (after Multiobjective Genetic 
Sampling) as an adaptive approach that evolves a set of samples 
of the training data set to induce classifiers with optimized 
predictive performance. More specifically, MOGASamp evolves 
balanced portions of the data set as individuals of a multi objective 
genetic algorithm aiming at achieving a set of induced classifiers 
with high levels of diversity and accuracy. Through experiments 
involving eight binary classification problems with varying levels 
of class imbalancement, the performance of MOGASamp is 
compared against the performance of six traditional methods. 
The overall results show that the proposed method have achieved 
a noticeable performance in terms of accuracy measures. 

I. INTRODUCTION 

Several classification problems present data with imbal­
anced class distributions. Such an imbalancement occurs nat­
urally in some practical applications, such as in financial data 
[1], where the number of instances in the "default" class 
(minority class) is generally lower than the number of instances 
in the "non-default" class (majority class). Imbalanced data 
sets may affect the predictive performance of some classical 
classification algorithms because these algorithms assume that 
the data has a balanced distribution of classes and that the 
same cost of misclassification applies to all classes [2]. 

A commonly strategy used for classification with imbal­
anced data sets is to select a balanced set of instances from 
each class. This means that the number of instances of the 
minority class will be equal to the number of instances of the 
majority class. This strategy is used to generate a classification 
model that is not detrimental to the minority class. However, 
this procedure may not be effective in some cases, since the 
final classification model may not take into account relevant 
instances for better discrimination between the classes, leading 
to a decrease in the predictive accuracy of the classifier. 

In order to overcome this problem, ensembles of classifiers 
have been considered. Ensembles are designed to increase the 
accuracy of a single classifier by inducing separately a set of 
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hypotheses and combining their decisions by some consensus 
operator [3]. The generalization ability of an ensemble is 
usually higher than that of a single classifier. In [4] the authors 
present a formal demonstration of this. Although ensembles 
tend to perform better than their members, their construction 
is not an easy task. According to [5], an ensemble of classifiers 
with high accuracy implies two conditions: each base classifier 
has an accuracy higher than 50%; and they should be different 
from each other. Two classifiers are considered different from 
each other if their misclassifications are made in different 
instances of the same test set i.e., they should disagree as much 
as possible in their outcomes [6]. 

Therefore, diversity and accuracy are the two main criteria 
that should be taken into account to generate an effective 
ensemble of classifiers. In this context, some metrics have 
been proposed to measure the diversity of the classifiers, such 
as the Pairwise Failure Crediting (PFC) [7] and the negative 
correlation in the Negative Correlation Learning (NCL) ap­
proach [8]. However, there is a trade-off on what should be 
the optimal measures of diversity and accuracy, since these are 
two conflicting criteria [9]. To handle this situation, the use 
of Multiobjective Evolutionary Algorithms (MOEA) seems to 
be an interesting solution, since MOEA can deal nicely with 
conflicting objectives in the learning process. Such algorithms 
evolve simultaneously a set (aka front) of non-dominated 
solutions over two or more objectives, without requiring the 
imposition of preferences on the objectives. In the case of 
ensembles of classifiers, the objectives are the two criteria of 
accuracy and diversity. 

In this context, this paper proposes a new approach, namely 
MOGASamp (Multiobjective Genetic Sampling), to deal with 
the problem of imbalanced data sets aiming at an ensemble 
of classifiers with high predictive performance. The goal of 
MOGASamp is to construct an ensemble of classifiers induced 
from balanced samples of the training data set. For this, a 
customized MOEA will evolve combinations of instances in 
balanced samples, guided by the performance of the classifiers 
induced by these samples. This strategy allows one to obtain 
a set of balanced samples from the imbalanced data set that 
induces classifiers with high accuracy and diversity. 

In order to assess the novel approach, experimental tests 
were performed using several different imbalanced data sets. 
Comparative evaluations have demonstrated that MOGASamp 



can outperform traditional algorithms, such as AdaBoost and 
Bagging, being a good option for dealing with imbalanced data 
sets. 

The remainder of this paper is structured as follows: Sec­
tion 2 provides a review of related work. Section 3 discusses 
the evaluation metrics considered in this work. Section 4 
introduces the main ingredients of the MOGASamp technique. 
Section 5 shows the experimental analysis and Section 6 
concludes the paper. 

II. LITERATURE REV IEW 

Most of the studies found in the literature for classification 
with imbalanced data sets rely on two approaches [10]. The 
first approach allocates different costs to classes during the in­
duction of the classification model [11]. The second approach 
is based on data resampling (subsampling or oversampling). In 
subsampling, instances from the majority class are removed, 
while oversampling the instances of the minority class are 
replicated or synthetic data are generated. 

Although using a simple strategy, the subsampling ap­
proach when performed randomly may discard important data. 
To address this problem, a directed subsampling method can 
be used to detect and eliminate less representative portions 
of the data. This is the strategy used by the One-Sided 
Selection (OSS) technique [12], which removes instances from 
the majority class that are redundant, noisy, and/or close to 
the boundary between the classes. The border instances are 
detected by applying Tomek links, and the instances that are 
distant from the decision boundary (redundant instances) are 
discovered by Condensed Nearest Neighbor (CNN) [13]. 

On the other hand, considering the oversampling approach, 
the replication of instances tends to increase the computational 
cost of the process [14]. These approaches can be categorized 
into random or classic oversampling and synthetic oversam­
piing. The classic oversampling method is a non-heuristic 
method that add instances through the random replication 
of the minority class instances. This kind of oversampling 
sometimes creates very specific rules, leading to overfitting 
[15]. However, synthetic oversampling methods add instances 
by generating synthetic minority class instances. The gener­
ated instances add essential information to the original data 
set that may help improve the classifiers performance. The 
interpolation technique is commonly used to generate synthetic 
data, such as in SMOTE (Synthetic Minority Oversampling 
Technique) [16]. SMOTE finds the k nearest neighbors of each 
instance of the minority class and, then, synthetic instances 
are generated along the line that connects the instance with 
its k nearest neighbors. Although SMOTE has proved to be 
an effective tool for handling the class imbalancement, it may 
overgeneralize the minority class, once it does not consider 
the distribution of majority class neighbors. As a result, it may 
increase the overlapping between classes [17]. 

Other studies use ensembles of classifiers to deal with 
imbalanced data set, such as Bagging [18] and Boosting [19]. 
The Bagging approach trains a set of base classifiers with 
different samples of the training data set. The sampling is 
performed with replacement and each sample has the same 
size of the original training data set. After obtaining the base 

classifiers, it combines them by majority voting, and the most 
voted class is predicted for a new instance. 

The AdaBoost approach, the most representative algorithm 
in the Boosting family, uses the whole training data set to 
create classifiers serially. In each iteration, AdaBoost gives 
more emphasis to the instances that were incorrectly classified 
in the previous iteration. For this, the weights of incorrectly 
classified instances are increased and the weights of correctly 
classified instances are decreased. Finally, when a new instance 
is presented, each base classifier gives its vote, weighted by its 
overall accuracy, and the label of the new instance is selected 
based on the majority of votes. 

III. PERFORM ANCE EVALUATION 

This section presents measures to evaluate the performance 
of the classifiers in imbalanced domains and to evaluate the 
diversity of an ensemble of classifiers. 

A. Accuracy 

An effective measure to evaluate the performance of a 
classifier is the rate of classification errors made in each 
class [2]. Such measure can be obtained using a confusion 
matrix. Each column of this matrix represents the instances in 
a predicted class, while each row represents the instances in an 
actual class. Elements along the main diagonal represent the 
correct classifications, number of true negatives (TN) and true 
positives (TP), while the off-diagonal elements represent the 
classification errors, number of false positives (FP) and false 
negatives (FN). From the confusion matrix, it is possible to 
extract two independent measures: True Positive Rate (Eq. 1) 
and True Negative Rate (Eq. 2). These two measures evalu­
ate the performance on the positive (minority) and negative 
(majority) classes, respectively. 

TP = 
TP 

r TP+FN 

TN = 
TN 

r TN + FP 

(1) 

(2) 

However, the goal is to achieve a good prediction in 
both classes (minority and majority) when dealing with a 
binary classification problem. So, it is necessary to combine 
these individual measures (T Pr and T Nr), since they are 
not useful when used alone. These measures are combined 
by the Receiver Operating Characteristic (ROC) curve [20], 
which shows the relationship between the benefits and the 
classification costs in relation to the distribution of the data. 
So, we say that a classification model is better than another 
if its ROC curve dominates the other. When it is necessary 
to encode the ROC curve into a single scalar value, the most 
common strategy is to calculate the Area under the ROC Curve 
(AUC) [21]. 

B. Diversity 

If we have a perfect classifier that makes no errors, then we 
do not need an ensemble. If, however, the classifier does make 
some errors, then we can try to complement it with another 
classifier, which makes errors on different objects. Therefore, 



Database YeastMEl YeastMit YeastME3 Spect Ion German Haberman CMC 

Imbalance Ratio 1:33 1:5 1:8 1:4 1:2 1:2 1:3 1:3 
Total of Instances 1484 1484 1484 267 351 1000 306 1473 

TABLE I: Databases Used for the Experimental Tests 

as mentioned earlier, the success of an ensemble depends on 
the diversity of the prediction errors generated by their base 
classifiers. 

The diversity of an ensemble can be measured in two dif­
ferent ways: 1) considering the diversity of a pair of classifiers 
and then the average is obtained for all pairs diversity (Pairwise 
Measures); or 2) considering all the classifiers together and 
calculating a unique diversity value of the ensemble (Non­
pairwise Measures) [22]. 

The Pairwise Failure Crediting (PFC) measure [7] calcu­
lates the distance between the failure patterns taking each 
pair of individuals. A failure pattern is a string of Os and 
Is indicating success or failure of the classifier. The accu­
mulated differences on each individuals in the ensemble is 
used to compute the diversity of the individual members with 
respect to the ensemble, i.e. how different a member is with 
respect to others in the ensemble. The PFC measure has been 
employed in MOGASamp to achieve a set of samples that 
induce classifiers with good performance when dealing with 
imbalanced data sets. 

IV. MOGASAMP 

The goal of the proposed method is to generate a set 
of samples to induce base classifiers that will compose an 
ensemble of classifiers, so that that these classifiers have high 
accuracy with the most diversity as possible. For this purpose, 
MOGASamp adopts a multiobjective genetic algorithm to 
evolve a selection of samples and to evaluate the classifiers 
induced by these samples based on accuracy and diversity. 

Figure 1 outlines the proposed method. In the following 
subsections, we will detail each of its main steps. 

A. Sampling and the Training Models 

In the first step we obtain n balanced samples from the 
training data set. This means that each sample will have an 
equal amount of instances of each class. The size of the 
samples is chosen based on the number of instances of the 
minority class. However, we use only 90% of the instances 
of the minority class to compose the samples. The remain 
10% of the instances are used to perform the validation in 
the evolution process (refer to the next step). These samples 
are obtained without replacement. Each sample represents an 
individual of the population of the Genetic Algorithm (GA). 
These samples are encoded by a vector with dimensionality 
equal to the sample size. The cells of this vector represent the 
training instances that are part of the sample, and for each 
individual an SVM model is generated. 

B. Evaluation 

The obtained SVM model of each individual is validated 
using the instances that were not used to obtain the samples, 

i.e. the remaining 10% of the instances of the minority class 
and the other instances of the majority class. The AUC metric 
is calculated based on the performance of this model over the 
validation data. The PFC is also calculated for each individual 
using a pair-wise comparison with all individuals of the current 
population. 

In this MOGASamp, the fitness of each individual is given 
by the AUC and PFe. These two metrics are used to compose 
a dominance rank [23] of the solutions. The dominance rank 
of a given solution is the number of other solutions in the 
population that dominate it. A solution Xl is said to dominate 
another solution X2 if Xl is no worse than X2 in all objectives 
and Xl is strictly better than X2 in at least one objective 
[24]. A nondominated solution will have the best fitness of 0, 
while high fitness values indicate poor-performing solutions, 
i.e. , solutions dominated by many individuals. 

C. Genetic Operators 

The dominance rank is used to select the individuals 
that will breed a new generation using the genetic operators 
(reproduction and mutation). This selection is performed using 
a tournament of size 3. If a tie occurs, we consider that the 
winner will be the one with highest AUe. The quantity of 
parents selected will be equal to the quantity of individuals 
of the current population. For each selected pair of parents, 
two new individuals are generated by merging the instances 
from the minority class of a parent with the instances from the 
majority class of another parent, and vice-versa. The mutation 
occurs in a percentage of the offspring generated. The instances 
of a random portion of the sample that represents an individual 
is changed by a new sampling, maintaining the proportion of 
classes. 

D. Elimination of Identical Solutions 

After applying the genetic operators, identical individuals 
can occur, especially when the imbalance ratio is not high (less 
than 1:6). This fact was observed in our experimental tests. 
Identical individuals with high fitness have a higher probability 
of being selected for reproduction and for future generations, 
increasing even further the number of replicated solutions. 
However, the goal of this work is to have a diverse ensemble 
of classifiers with a high accuracy. For this reason, after 
reproduction, identical individuals are eliminated. Afterwards, 
if the number of individuals is less than the initial population 
size, a new reproduction and mutation process is performed. 

E. New Generation and Stop Criterion 

The selection of the individuals that will compose the new 
generation is based on the non-dominance of each individual. 
First, individuals with higher levels of non-dominance are 
selected, then only those who are not dominated by the first, 
and so on, until the default population size is reached. This 
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Fig. 1: MOGASamp - Multiobjective Genetic Sampling 

process repeats until the fixed number of generations and/or 
the maximum AVC value is reached, i.e. AVC = 1.0. 

The classification models of all individuals in the final 
population compose the ensemble of classifiers. When a new 
instance is presented to the classifiers, its class is determined 
by majority voting considering the output of all classifiers. 

V. EXPERIMENTAL RESULTS 

Eight binary classification data sets with different imbal­
ance ratio were used in our empirical assessment. These data 
sets were obtained from the VCI Repository [25] and are 
summarized in Table I. For each data set, half of the instances 
of each class were randomly chosen for the training set and the 
other half as the test set. This ensures that both the training and 
test sets maintain the same class proportion as in the original 
data set. 

MOGASamp was compared against six well-known re­
sampling and classification techniques from the literature. The 
resampling techniques used were: SMOTE; Classical subsam­
piing (random); Directed subsampling (OSS); and Classical 
oversampling. The classification techniques used were: Bag­
ging and AdaBoost. For the resampling algorithms, after the 
process of rebalancing the classes, the SVM algorithm was 
used to generate the classification model. 

MOGASamp was performed with a population of 40 indi­
viduals, a maximum of 20 generation and 5% as mutation rate. 
The SMOTE parameters used were: 200% as the percentage 
of oversampling and undersampling, 5 as the number of the 
neighbors. These are the default parameter values specified in 
the package used [26]. The classic Subsampling and Oversam­
piing were performed until resulting in a balanced dataset. For 
the OSS technique, it is not necessary to set any parameter. The 
package used for OSS, classic Subsampling and Oversampling 

was that available in [27]. For Bagging and AdaBoost 100 
iterations were used, as well as the standard configuration of 
the package used [28]. 

Table II shows the AVC, True Positive rate (minority class) 
and True Negative rate (Majority class) values obtained by 
the evaluated techniques in each data set used. The values 
presented are the mean and standard deviation after running 
30 times each algorithm. We highlight in bold the highest value 
for each measure. 

In order to statistically validate the obtained results, we 
present the results of statistical tests by following the approach 
proposed by Demsar [29]. In brief, this approach seeks to com­
pare multiple algorithms on multiple data sets, and it is based 
on the use of the Friedman test with a corresponding post­
hoc test. The Friedman test is a non-parametric counterpart of 
the well-known ANOVA. If the null hypothesis, which states 
that the classifiers under study present similar performances, 
is rejected, then we proceed with the Nemenyi post-hoc test 
for pairwise comparisons. 

The results suggest that MOGASamp achieved the best 
overall performance. The ranking provided by the Friedman 
test supports this assumption, showing MOGASamp as the 
best-ranked method on AVC and True Positive rate and sixth 
best-ranked method on True Negative rate. The Friedman test 
also indicates the rejection of the null hypothesis, confirming 
that the differences among the algorithms are statistically 
significant (AVC: p-value = 0.0071, AccMin: p-value = 

2.74 x 10-5, AccMaj: p-value = 9.40 x 10-5). Hence, we have 
executed the Nemenyi post-hoc test for the purpose of pairwise 
comparison. The proposed method outperforms the Bagging 
and OSS on True Positive rate and outperforms the Bagging 
on AVC with statistical significance at a 95% confidence level. 

AVC was used as a measure for evaluating the performance 
of each approach considering both classes. It can be seen that 



AVC AccMin AccMaj 

MOGASamp 0.960 [0.001] 1.000 [0.000] 0.918 [0.003] 
SMOTE 0.960 [0.008] 0.995 [0.013] 0.929 [0.021] 

Over Sampling 0.831 [0.011] 0.675 [0.022] 0.988 [0.001] 
YeastMEl Under Sampling 0.951 [0.009] 1.000 [0.000] 0.902 [0.019] 

Bagging 0.772 [0.042] 0.547 [0.086] 0.997 [0.001] 
AdaBoost 0.835 [0.025] 0.675 [0.051] 0.995 [0.001] 

OSS 0.838 [0.000] 0.681 [0.000] 0.994 [0.000] 

MOGASamp 0.764 [0.007] 0.627 [0.015] 0.900 [0.007] 
SMOTE 0.764 [0.007] 0.618 [0.019] 0.910 [0.008] 

Over Sampling 0.741 [0.005] 0.584 [0.010] 0.898 [0.010] 
YeastMit Under Sampling 0.753 [0.008] 0.648 [0.029] 0.859 [0.022] 

Bagging 0.682 [0.009] 0.385 [0.019] 0.979 [0.001] 
AdaBoost 0.694 [0.008] 0.435 [0.016] 0.953 [0.003] 

OSS 0.736 [0.000] 0.508 [0.000] 0.964 [0.000] 

MOGASamp 0.910 [0.004] 0.913 [0.010] 0.905 [0.008] 
SMOTE 0.885 [0.011] 0.822 [0.022] 0.949 [0.007] 

Over Sampling 0.862 [0.005] 0.785 [0.008] 0.938 [0.003] 
YeastME3 Under Sampling 0.896 [0.008] 0.894 [0.030] 0.898 [0.025] 

Bagging 0.885 [0.008] 0.802 [0.018] 0.968 [0.002] 
AdaBoost 0.858 [0.009] 0.751 [0.018] 0.966 [0.002] 

OSS 0.852 [0.000] 0.731 [0.000] 0.974 [0.000] 

MOGASamp 0.680 [0.000] 0.408 [0.000] 0.953 [0.000] 
SMOTE 0.672 [0.006] 0.383 [0.018] 0.961 [0.006] 

Over Sampling 0.678 [0.005] 0.403 [0.011] 0.953 [0.002] 
Spect Under Sampling 0.679 [0.005] 0.401 [0.013] 0.957 [0.005] 

Bagging 0.684 [0.010] 0.512 [0.045] 0.856 [0.037] 
AdaBoost 0.699 [0.011] 0.501 [0.022] 0.896 [0.019] 

OSS 0.666 [0.000] 0.370 [0.000] 0.962 [0.000] 
MOGASamp 0.966 [0.003] 0.985 [0.003] 0.944 [0.004] 

SMOTE 0.967 [0.003] 0.996 [0.007] 0.938 [0.005] 
Over Sampling 0.959 [0.002] 0.950 [0.005] 0.968 [0.004] 

Ion Under Sampling 0.949 [0.012] 0.986 [0.007] 0.912 [0.024] 
Bagging 0.906 [0.005] 0.872 [0.003] 0.941 [0.012] 

AdaBoost 0.924 [0.005] 0.865 [0.010] 0.984 [0.006] 
OSS 0.943 [0.000] 0.968 [0.000] 0.919 [0.000] 

MOGASamp 0.960 [0.003] 1.000 [0.000] 0.917 [0.007] 
SMOTE 0.994 [0.001] 1.000 [0.000] 0.989 [0.002] 

Over Sampling 0.954 [0.005] 0.908 [0.011] 1.000 [0.000] 
German Under Sampling 0.918 [0.048] 1.000 [0.000] 0.836 [0.090] 

Bagging 0.805 [0.005] 0.647 [0.008] 0.963 [0.004] 
AdaBoost 1.000 [0.000] 1.000 [0.000] 1.000 [0.000] 

OSS 0.994 [0.000] 0.995 [0.000] 0.993 [0.000] 

MOGASamp 0.632 [0.008] 0.526 [0.009] 0.735 [0.013] 
SMOTE 0.609 [0.019] 0.441 [0.057] 0.777 [0.037] 

Over Sampling 0.632 [0.019] 0.515 [0.044] 0.750 [0.060] 
Haberman Under Sampling 0.617 [0.029] 0.536 [0.049] 0.698 [0.087] 

Bagging 0.596 [0.009] 0.287 [0.019] 0.906 [0.006] 
AdaBoost 0.601 [0.013] 0.400 [0.025] 0.802 [0.013] 

OSS 0.645 [0.000] 0.425 [0.000] 0.866 [0.000] 

MOGASamp 0.655 [0.005] 0.626 [0.011] 0.684 [0.009] 
SMOTE 0.643 [0.011] 0.511 [0.024] 0.775 [0.016] 

Over Sampling 0.646 [0.009] 0.512 [0.016] 0.779 [0.017] 
CMC Under Sampling 0.648 [0.011] 0.620 [0.028] 0.676 [0.022] 

Bagging 0.581 [0.005] 0.210 [0.013] 0.952 [0.003] 
AdaBoost 0.596 [0.009] 0.315 [0.019] 0.878 [0.011] 

OSS 0.608 [0.000] 0.295 [0.000] 0.922 [0.000] 

TABLE II: AUe and classification accuracy of the Minority and Majority classes (average and standard deviation) using different 
resampling and classification techniques 

MOGASamp presented the best values in six of the data sets, 
and in the data set Ion it achieved a performance statistically 
similar to that of SMOTE. Another important aspect to be 
highlighted is that the proposed method did not present the 

worst AUe value in any of the evaluated data sets. This is 
an indication that MOGASamp can be applied to different 
data sets with different imbalance ratio, even without a priori 
knowledge. 



As discussed previously, an effective way to evaluate a 
classifier with imbalanced data is using the rates of classifica­
tion errors made in each class, since traditional classification 
algorithms tend to favor the majority class rather than the 
minority class. Based on this fact, it can be seen in Table 
II that the proposed method presented a trade-off between the 
rates of True Positives and True Negatives. 

Analyzing the true positive values, MOGASamp achieved 
the best results in four data sets. In fact, considering the data 
sets YeastME3 and CMC, MOGASamp presented the highest 
values in experimental tests. These results were obtained 
without sacrificing the accuracy of the majority class (True 
Negative rate). The undersampling technique achieved good 
True Positive values, albeit it presented low True Negative 
values. 

When analyzing the True Negative rate values, one can 
observe that Bagging presents significant results. However, 
Bagging does not present good values for True Positive rate. 
This fact indicates that this method does not have a good 
performance when dealing with imbalanced data. The main 
reason of this drawback is the fact that Bagging, as well 
as other classical classification algorithms, assumes that the 
data is balanced, then giving preference to the majority class. 
Similar situation can be observed in the AdaBoost and OSS 
methods. 

VI. CONCLUSION 

In this paper, we presented a new evolutionary approach, 
called MOGASamp (Multiobjective Genetic Sampling), to 
address the problem of classification with imbalanced data sets. 
This approach is based on a multiobjective genetic algorithm. 
It uses two metrics AVC and PFC to evolve a set of balanced 
samples of the training data set, until a set of classifiers with 
high accuracy and diversity is reached. The obtained classifiers 
are used as an ensemble of classifiers to predict new instances 
using majority voting. 

Experimental tests were performed using eight data sets 
and the obtained results were compared with well known 
resampling and classification techniques from the literature. 
The experimental results has shown that MOGASamp presents 
high predictive accuracy, obtaining better results in six of 
the data sets. Furthermore, MOGASamp has also shown high 
stability to predict the data of both classes. This means that 
MOGASamp does not show noticeable differences in the rate 
of True Positives and True Negatives, which is the main draw­
back of classical algorithms when dealing with imbalanced 
data. 
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