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Abstract-Automatic classification of musical instruments is 
an important task for music transcription as well as for pro­
fessionals such as audio designers, engineers and musicians. 
Unfortunately, only a limited amount of effort has been conducted 
to automatically classify percussion instrument in the last years. 
The studies that deal with percussion sounds are usually restricted 
to distinguish among the instruments in the drum kit such as 
toms vs. snare drum vs. bass drum vs. cymbals. In this paper, 
we are interested in a more challenging task of discriminating 
sounds produced by the same percussion instrument. Specifically, 
sounds from different drums cymbals types. Cymbals are known 
to have indefinite pitch, nonlinear and chaotic behavior. We 
also identify how the sound of a specific cymbal was produced 
(e.g., roll or choke movements performed by a drummer). We 
achieve an accuracy of 96.59% for cymbal type classification 
and 91.54% in a classification problem with 12 classes which 
represent the cymbal type and the manner or region that the 
cymbals are struck. Both results were obtained with Support 
Vector Machine algorithm using the Line Spectral Frequencies 
as audio descriptor. We believe that our results can be useful 
for a more detailed automatic drum transcription and for other 
related applications as well for audio professionals. 

I. INTRODUCTION 

In general, musicians have great interest in reading musical 
transcriptions concerning their instrument. However, in most 
cases the transcriptions are performed manually by other musi­
cians. This task is time consuming and requires the availability 
of a skilled person to transcribe a particular music. Thus, 
the automatic identification and classification of particularities 
of musical instruments is a important step in direction to 
automatic transcription of these instruments in polyphonic 
music. 

Automatic classification of instruments is also interesting 
for audio designers. The amount of audio samples available on 
internet that can be used for music creation grows every day. 
However, most of these data are unlabeled or have insufficient 
information. Consequently, the user is frequently obligated to 
listen many audio files for selecting only a small subset of 
interest. Thus, the large amount of data makes this task costly 
and tiresome. Consequently, the automatic classification can 
be very useful for these professionals. 

In addition to these examples, we can also mention other 
applications that may benefit from automatic classification 
of instrument sounds such as those related to audio content 
analysis or for professionals such as audio engineers and 
musicians in the mixing process during recording sessions. 
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Many research papers in Machine Learning and Signal 
Processing literature focus in the classification of string or 
wind harmonic instruments and only a limited effort has been 
conducted to classify percussion instruments (an interesting 
review can be found in [1]). The main difference between 
percussion and another instruments is the fact that the per­
cussion produces indefinite pitch or unpitched sounds. Pitch is 
a perceptual property that allows the ordering of sounds on a 
frequency-related scale [2]. Although some pieces of the drum 
such as toms, bass drum and snare drum can be tuned by the 
player, this tuning does not relate to producing a perceived 
pitch achieved by other instruments. Thus, the classification 
task is more challenging when this property is undefined. 

The studies that deal with percussion sounds are more 
interested on distinguishing different instruments in the drum 
kit such as bass drum, snare drum, hi-hat, toms and cymbals. 
Some examples can be seen in [3], [4], [5], [6]. Differently 
from these works, we are interested in discriminating the 
sounds produced by the same percussion idiophone instrument. 
More specifically, sounds produced by different cymbals types 
such as China, Crash, Hi-hat, Ride and Splash. Due to the 
high perceptual similarity of the sounds produced by the same 
instrument, the investigated task in this work can be considered 
a more difficult problem than to distinguish different instru­
ments. 

In this sense, the most related work to ours is presented 
by [7]. The authors proposed the use of spectral features from 
non-negative matrix factorization to train an I-Nearest Neigh­
bor algorithm to classify specific combinations of cymbals (for 
instance, Splash vs. China or Splash vs. China vs. Crash) with 
a very limited amount of data to train and test the classifier. 

In this paper, we propose a more challenging investigation 
with a two-level classification of cymbal sounds. In the first 
level we classify the cymbal type and in the second level 
we identify how the sound of this cymbal was produced. To 
the best of our knowledge, no other work in literature has 
investigated the classification of percussion sounds with this 
specificity. Our main goal is to aid an important step on the 
build of systems for detailed drum transcription from poly­
phonic music. However, it is important to note that this work 
also can help audio professionals and other audio applications 
dependent of automatic classification of percussion sounds. 

We investigate different signal processing methods com­
bined with supervised machine learning algorithms. Moreover, 



we built a data set with more than one thousands real cymbal 
sounds from a large variety of material and size and make it 
publicly available for other interested researchers. 

Our results show that we can distinguish five different 
cymbals types with 96.S9% accuracy. We also show that our 
approach can achieve 91.S4% accuracy in the classification 
of 12 classes representing cymbal types and the manner or 
region that the cymbals are struck. Both results were achieved 
with Support Vector Machine algorithm using Line Spectral 
Frequencies as audio descriptor. 

The main contributions of this paper are in two directions. 
First, we make available a dataset of real samples of drum 
cymbals to the community interested in unpitched musical 
sounds. Second, we show that the Line Spectral Frequencies 
(LSF) are good descriptors for these data. It is important 
to note that Mel-Frequencies Cepstrum Coefficients (MFCC) 
are considered many times state-of-the-art for a related drum 
transcription task [8], [9], [ 10]. We believe that the good 
performance of LSF can also be achieved in other similar 
data or classification tasks. Thus, we recommend whenever 
possible, the comparative performance evaluation between 
MFCC and LSF. Furthermore, we show that simple features 
from temporal domain can significantly improve the results 
achieved by LSF. 

The remaining of this paper is organized as follows. 
In Section II we briefly discuss the main characteristics of 
unpitched drum sounds. In Section III we discuss some works 
related to classification of drum sounds. In Section IV we 
present the collected dataset concerning cymbals sounds and 
the signal processing methods used for the features extraction 
step. In Section V we present our experimental evaluation. 
Finally, in Section VI we present our conclusions and future 
directions for this work. 

11. UN PITCHED DRUM SOUNDS 

Psychoacoustics studies the relationship between auditory 
system and physical characteristics of the sound [11]. The 
auditory sensations are determined by characteristics as fre­
quency, amplitude and temporal features. For music signals, it 
is also considered characteristics such as loudness, timbre and 
pitch. Specifically, pitch is a perceptual property that allowing 
distinguish a bass sound from a treble sound. Thus, the 
perception of pitch is what guarantees that two distinct sounds 
with similar intensities can be distinguished as heterogeneous 
by the listener. 

String or wind harmonic instruments generates sounds 
with well defined pitch. However, percussion instruments 
such as drums and specifically cymbals, produce sounds with 
undefined pitch. Thus, the listener finds impossible or rel­
atively difficult to identify this perceptual characteristic in 
these sounds. This difficulty is extended for systems that seek 
automatically identify and classify the sounds generated by 
these instruments. 

Currently, it is probable that the most popular percussion 
instrument are the drums. Drums play an important role in 
contemporary music in nearly all musical cultures. In musical 
genres such as Rock, Pop and Jazz, the drum is an essential 
instrument responsible for the rhythmic structure of the music. 

The pieces of a drum can be divided in membranophones and 
idiophones. The first one has a membrane (skin) stretched 
over an opening cavity (e.g., bass drum or tom-toms). The 
second category are rigid bodies that vibrating as a whole, 
called cymbals. This paper have a special interest in cymbal 
sounds due to their peculiarities as discussed in the follow. 

Cymbals are thin, axially symmetric, isotropic (uniform in 
all directions) metal plates. When struck with a drumstick, 
waves radiate away from the excitation area at a velocity 
inversely proportional to the dimensions of the initial flexural 
indentation of the surface made by the drumstick. Both the 
initial pulse and the reflections off the edges of the cymbal 
travel up the transitional section to the bell. They are dispersed 
across the entire body of the cymbal, causing it to vibrate [ 12]. 

Cymbals are made from some variety of copper alloy, not 
only due their malleability, but because copper has desirable 
sonic properties. The most common copper alloys used in 
cymbals are from bronze, which are alloys of copper and tin 
with trace amounts of other metals such as silver. For example, 
the bell bronze or B20 bronze (80% copper, 20% tin) and 
B8 bronze (92% copper, 8% tin) are the most popular copper 
alloys. However, the cymbals' manufacturers have experienced 
different tin-to-copper ratios in their products along the years. 

Sometimes cymbals are denoted as nonlinear percussion 
instruments, which emphasizes the fact that nonlinearity is 
essential in the production of sound by such sources [ 13]. 
There are evidences that the vibrations of cymbals exhibit 
chaotic behavior [ 14]. When struck hard with a stick, the 
cymbal oscillates chaotically, the energy spread over multiple 
vibrational modes. Even when struck lightly the pitch is not 
very clear as the cymbals are inharmonic, with many different 
and unrelated resonant frequencies. Because of its nonlinear 
behavior, the cymbal is a difficult, but not impossible, musical 
instrument to model [14]. 

Ill. RELATED WORK 

There are many research concerning automatic classifica­
tion of instruments' sounds, some examples are [ 1], [IS], [ 16], 
[ 17], [ 18]. Most of these works are focused in instruments 
with well defined pitch such as string instruments (guitar, bass, 
piano, cello, violin, harp, etc) or wind harmonic instruments 
(horns, trumpets, trombones, oboes, clarinets, etc). 

On the other hand, even with the importance of percussion 
instruments in the contemporary music, there are a minor 
interest for these instruments in research fields of computer 
science as machine learning. There are a wide variety of 
percussion instruments, some examples that can be studied are 
vibraphone, xylophone, marimba, cabasa, cajon, bongo, conga. 
In this paper, we focus on the classification of drum sounds for 
polyphonic audio signals and in this section we present some 
related works in this direction. 

In [3] the authors have presented a comparative evaluation 
of two feature selection methods (Correlation-based Feature 
Selection - CFS and ReliefF) and five classification techniques 
(Canonical Discriminant Analysis - CDA, K*, C4.S, PART and 
KNN) on 634 drum sounds. The sound descriptors considered 
are from different categories as attack-related and decay­
related descriptors, relative energies for selected bands and 



Mel-Frequency Cepstral Coefficients. The authors evaluated 
three levels of taxonomic classification: i) membranes vs. 
plates; ii) kick vs. snare vs. hi-hat vs. toms vs. cymbals; iii) 
kick vs. snare vs. ride vs. crash vs. hi-hat open vs. hi-hat closed 
vs. high tom vs. medium tom vs. low tom. They achieved 
accuracies of 99%, 97% and 90%, for these levels respectively. 
The authors consider only two cymbal types (ride and crash) 
plus the hi-hat (considered as a different class from cymbals). 
As a the paper have your main focus in feature selection 
methods, a more detailed discussion about the interclass error 
rates are not presented. 

A system called AdaMast that recognize drum sounds 
in polyphonic audio signals is presented in [5]. The system 
detects the onset times and identifies three drum instruments: 
bass drum, snare drum, and hi-hat cymbals. The system uses 
a template-adaption and a template-matching method that 
uses power spectrograms of drum sounds as template. The 
method calculates the distance between a template and each 
spectrogram segment extracted from a song spectrogram using 
the Goto's distance measure. In their experimental evaluation, 
the authors report that the Average F-Measures were 82.92%, 
58.29%, and 46.25% in recognizing bass drum sounds, snare 
drum sounds, and hi-hat cymbals sounds, respectively. Al­
though the AdaMast considers a audio signal with different 
instruments (not only percussion instruments), we can note that 
for cymbals it is considered only the hi-hat. Even so, we can 
see that the hi-hat results are below to the other instruments. 

Different from audio recogmtlOn works in general that 
use spectral features, the authors in [6] have presented a 
biologically inspired approach to classify drum sounds by i) 
learning sparse atomic functions on unlabeled data and ii) 
supervised learning of the classes using features derived from 
a temporal approximation of the signal. In i) they used gam­
matone filterbanks as atomic functions. The authors evaluated 
their method in a dataset with a few more than 200 audio 
samples that have signals from bass drum, snare drum, open 
hi-hat and closed hi-hat. The classification task was performed 
by a Support Vector Machine algorithm using a radial basis 
function (RBF) kernel. The classification accuracies were over 
95%. 

Although the above discussed works deal with cymbal 
sounds, we can note that they have a limited coverage. In 
general, only the hi-hat cymbals are focus of the classification 
task while the same task with membranophones' instruments 
(snare drums, bass drums and toms) is well established. To 
fill this gap, we are interested in a more deeper analysis of 
cymbal sounds in this paper. In this sense, the most similar 
work to ours found in literature is presented by [7]. The 
authors proposed the use of spectral features from non-negative 
matrix factorization to train an I-Nearest Neighbor algorithm 
to classify specific combinations of cymbals (for instance, 
Splash vs. China or Splash vs. China vs. Crash). They used 
between 11 and 16 audio samples for each considered cymbal 
combination, a very limited amount of data to evaluate a 
supervised machine learning algorithm. The best classification 
rates achieved were 95% when distinguishing between two 
cymbals and 86% when distinguishing between three cymbals. 

IV. CYMBAL DATASET 

In this section we describe the collected dataset with 
real cymbal audio samples and the feature sets used in our 
experimental evaluation. 

A. Dataset Description 

In this study we collected 1,052 samples from the tradi­
tional Swiss manufacturer and designer of cymbals Paiste. 
The sound samples are freely available in their website1. 
We collected data from 18 different cymbal series produced 
by the company. Each cymbal series is specified by a set 
of parameters such as construction material (brass or bronze 
alloys), texture, curvature, thickness, and diameter (from 8 to 
24 inches). 

Initially, we sorted the samples in five main categories 
according to the cymbal type: i) China; ii) Crash; iii) Hi-hat; 
iv) Ride and v) Splash. In Figure 1 we can see an illustrative 
example of these cymbals in a drum kit2. 

Hi-hat 
14" 

China 
IT 

Fig. 1. Illustrative example with five different cymbal types in a drum kit 

Hi-hat is a pair of cymbals mounted one above the other on 
a stand that is activated by the musician's foot. Splash are small 
cymbals, usually between 6" to 12" in diameter, with a very 
short decay. Often damped immediately after struck. Crash 
is a cymbal with a relatively short decay, used to accentuate 
musical phrases. China is a cymbal that has a slightly upturned 
edge and a conical bell that produces a sharp and explosive 
crash tone. Ride is a cymbal with higher dimensions primarily 
used in more popular music to execute rhythmic patterns. 

We also divide each main category into subcategories 
according to the manner or region that the cymbals can be 
struck. For instance, China, Crash, Ride and Splash cymbals 
can be struck in the border region, called Edge. Ride cymbal 
also can be played in their raised center called Bell. The size of 
the bell determines the amount of overtones that will emanate 
from the instrument. Another possibility for Ride cymbals it 
is be struck in their Body (also called Bow), a region between 
the Edge and Bell. See Figure 2 to better understand. 

For China and Crash cymbals we also consider the move­
ment of Roll. Here Roll means a fast succession of single 

1 http://www.paiste.com/ 
2This figure was built with the support of tool Zildjian SoundLab available 

online at http://Zildjian.com/soundlab 



Bell ril Body or Bow �)dge 

Fig. 2. Anatomy of traditional Turkish cymbal 

notes on a cymbal at the edge region. In Splash cymbal we 
consider the movement of Choke where the cymbal is muffled 
with a hand after being struck. For Hi-hat we consider three 
subcategories: Chick, the sound produced by Hi-hats when 
closed with the foot; Closed, when the Hi-hat is struck in the 
edge and the bottom and top cymbal are together; Open, the 
sound produced after struck when the top and bottom cymbals 
are slightly separated. 

Table I shows the distribution of each cymbal type and 
their subcategories in our evaluated dataset. 

TABLE I. CLASS DISTRIBUTION OF CYMBAL DATASET 

Cymbal 
Characteristic 

# Examples # Examples 
Total 

Type per Subclass per Class (%) 

China 
Edge 51 

99 (9.41) 
Roll 48 

Crash 
Edge 152 

303 (28.80) 
Roll 151 
Chick 75 

Hi-hat Closed 77 227 (21.58) 
1,052 

Open 75 
Bell 107 

Ride Body 113 344 (32.70) 
Edge 124 

Splash 
Choke 36 

79 (7.51) 
Edge 43 

B. Features Extraction 

We evaluate the most popular features extraction methods 
used in signal processing applications such as speech and 
musical instrument recognition. Briefly, these methods are 
responsible to change the original data representation in a more 
representative feature set for supervised learning algorithms. A 
description of each method is presented in the follow. 

LSF. The Linear Spectral Frequencies [19] is a signal 
representation derived from Linear Predictive Coding (LPC) 
[20]. In LPC, a signal is represented as a linear combination 
of previously observed values according to Equation 1. 

P 
Xk = Laixk-i 

i=l 
( 1) 

where k is the time index and p is the number coefficients. 
The ai coefficients are calculated in order to minimize the 
prediction error using covariance, auto-correlation or recursive 
least squares algorithms. 

Equation 1 can be rewritten in the frequency domain with 
a z-transform [2 1]. In this way, a short segment of signal is 
assumed to be generated as the output of an all-pole filter 
H (z) = At z)' where A (z) is the inverse filter such that: 

1 1 H(z) = A(z) = 1 LP -i - i=l aiz 
(2) 

As previously discussed, LSF is an alternative way to 
represent LPC coefficients. In order to calculate LSF, the 
inverse polynomial filter is decomposed into two polynomials 
P(z) and Q(z): 

P(z) = A(z) + zp+lA(Z-l) 
Q(z) = A(z) - zp+lA(Z-l) 

(3) 

where P(z) is a sYlmnetric polynomial and Q(z) is an anti­
symmetric polynomial. The roots of P(z) and Q(z) determine 
the LSF coefficients. Thus, LSF can represent a large signal 
using a small number of coefficients. In this work we evaluate 
different amount of coefficients and we found empirically that 
100 coefficients are adequate for our classification problem. 

LFC and MFCC. The Linear-Frequency Cepstrum (LFC) 
and Mel-Frequency Cepstrum Coefficients (MFCC) [22] are 
a feature sets extracted from the cepstrum of the signal. The 
cepstrum is the inverse Fourier transform of log-magnitude 
spectrum of a signal. LFC uses the linear representation 
on the cepstrum and MFCC rescale the cepstrum based on 
known variation of the human ear's critical bandwidth with 
frequency called mel scale which replicates the human hearing 
perception. Equation 4 shows the conversion from frequency 
(f) to me!. 

mel = 2595 x 10glO (1 + 7�0) (4) 

For many problems in signal processing such as speech 
recognition, MFCC are state-of-the-art for audio description. 
It is frequently assumed in the literature that in general 13 is a 
good choice for the amount of coefficients, for instance [3], [6], 
[23], [24]. However, as pointed in [25], a different amount of 
coefficients can achieve better results in some applications that 
deal with short duration signals. Thus, we evaluated a range 
of values between 10 and 50 and we chose 40 coefficients 
as feature descriptor for our problem. The same amount of 
coefficients is used for LFC. 

Temporal. In Temporal set we consider 13 features ex­
tracted from temporal domain such as Short-time Energy, Mag­
nitude Average, Root Mean Square, Mean, Temporal Centroid, 
Zero-crossing Rate, Interval, Complexity Estimate, Variance, 
Standard Deviation, Skewness, Kurtosis and Duration of sig­
nal. 

Spectral. In Spectral set we consider some of basic features 
from Temporal set, but calculated in the spectral domain such 
as Energy, Spectral Centroid, Variance, Standard Deviation, 
Skewness, Kurtosis and Mean. We also extracted more 10 
features as Fundamental Frequency, Inharmony, Tristimulus 1, 
Tristimulus 2, Tristimulus 3, Irregularity, Modified Irregularity, 
Spectral Flux, Roll-off and Flatness. 

A more detailed discussion about how Temporal and Spec­
tral features are calculated can be found in [26]. 



We make available in our website3 both audio samples 
sorted into categories and subcategories as well as the extracted 
audio features. 

V. EXPERIMENTAL EVAL UATION 

In our experiments, we evaluate five traditional machine 
learning algorithms: Naive Bayes (NB) [27], C4.S [28], Ran­
dom Forest (RF) [29], k-Nearest Neighbor (KNN) [30] and 
Support Vector Machine (SVM) using Sequential Minimal 
Optimization [31]. 

For KNN we analyze different values for the parameter k 
(values between 1 to 15) and for SVM we evaluate different 
values for parameters c and 'Y (c varying from 1 to 3 and 'Y 
from 0.001 to 0.1) using the Grid Search technique [32]. We 
also varied the SVM's kernel in our experiments (Polynomial 
and Radial Basis Function - RBF). 

Ten-fold cross-validation was used to partition the data into 
training and test sets. In other words, we break the data into 10 
mutual sets of size approximately n/l0, train the classifier on 
9 sets and test on the remaining set. This process is repeated 
10 times, each time with a different test set, and the mean 
test set accuracy is taken. We repeated this process ten times, 
randomizing the order of examples between two consecutive 
executions, i.e., we performed 10xl0-fold cross-validation. 

In the next sections we will better discuss our results for 
the classification of cymbal type and classification of cymbal 
type and the respective manner or region that the cymbal is 
struck. 

We present our results using four main evaluation mea­
sures: Accuracy, Precision, Recall and F-Measure. Considering 
the True Positive (TP), True Negative (TN), False Positive (FP) 
and False Negative (FN) rates from a confusion matrix, these 
measures are calculated according to Equations S-8. A more 
detailed discussion about these measures can be found in [33]. 

A r _ TP + TN 
ccu acY-TP + TN + FP + FN 

(S) 

TP 
Precision 

= TP + FP 
(6) 

TP 
Recall 

= T P + F N 
(7) 

F M 
Precision * Recall - ea sure 

= 
2 * (8) 

Precision + Recall 

A. Classification of Cymbal Type 

Our first experiment consists in classify the signals accord­
ing to the five possible cymbal types: China, Crash, Hi-hat, 
Ride and Splash. The accuracy results for different algorithms 
and feature sets can be seen in Table 11. These values are 
the mean accuracy on a set of lOxlO-fold cross-validation 
executions. In this table, we highlight in bold the best results 
achieved by an algorithm given a feature set and we underline 
the best result achieved by a feature set given an algorithm. 

3http://sites.labic.icmc.usp.br/vsouzalpaiste_datasetl 

TABLE H. ACCURACY RESULTS FOR CYMBAL TYPE CLASSIFICATION 

Feature set NB C4.5 RF KNN SVM 

LSF 80.90 88.05 93.08 93.59 96.59 

MFCC 82.68 85.41 90.09 89.33 94.01 
LFC 73.10 80.41 86.94 85.65 91.41 

Temporal 70.28 86.51 89.95 82.27 85.85 
Spectral 66.38 86.48 89.38 79.57 87.54 

We note in Table 11 that the best result is achieved by the 
SVM classifier using the Line Spectral Frequencies, followed 
by the same classifier with MFCC feature set. In general, 
all classifiers have achieved their best results with these two 
feature sets. More specifically, C4.S, Random Forest, k-Nearest 
Neighbor and SVM have achieved their best results using LSF 
and the Naive Bayes algorithm with MFCC. 

Each single execution of the 10-fold cross-validation pro­
cedure produced a confusion matrix where we can analyze the 
error between the classes. In Table III we show an example 
of one of 10 executions of the SVM classifier with the LSF 
feature set. In this table, we also show the Precision, Recall 
and F-Measure rates for each class. 

TABLE Ill. EXAMPLE OF CONFUSION MATRIX OBTAINED BY SVM 
CLASSIFIER (KERNEL RBF, c = 3.0 AND 'Y = 0.01) WITH LSF FEATURE 

SET FOR CYMBAL TYPE CLASSIFICATION 

Actual Predicted 

China Crash Hi-hat Ride Splash 
China 99 0 0 0 0 
Crash 0 292 0 1 I  0 
Hi-hat 0 0 225 2 0 
Ride 0 21 I 322 0 
Splash 0 0 0 78 

Precision 1.00 0.93 0.99 0.96 1.00 
Recall 1.00 0.96 0.99 0.94 0.99 
F-Measure 1.00 0.95 0.99 0.95 0.99 

We can see in Table III that the classifier achieves very 
good results for China, Hi-hat and Splash cymbals. Basically, 
the mistakes are concentrated in Ride and Crash cymbals. In 
practical terms, these errors are not a great problem. Due 
to the sound similarity between these two cymbals, mainly 
between Crash with larger dimensions and Ride in general, 
many drummers use only Crash cymbals in their drum sets. 

B. Classification of Characteristic or Movement 

In our second experiment, the main goal is to achieve a 
more informative response. In addition to classify the cymbal 
type, we identify how the sound of this cymbal was produced. 
This specificity is especially useful for musical drum transcrip­
tion applications. The possibilities considered for each cymbal 
were previous presented in Section IV-A. The general results 
in terms of accuracy are presented in Table IV. 

TABLE IY. ACCURACY RESULTS FOR CLASSIFICATION OF CYMBAL 
TYPE AND THEIR CHARACTERISTIC 

Feature set NB C4.5 RF KNN SVM 

LSF 78.45 71.53 80.09 74.63 86.49 
MFCC 65.23 63.90 69.72 56.40 74.93 

LFC 56.96 57.55 66.53 58.67 72.91 

Temporal 68.07 82.17 86.02 72.93 81.54 
Spectral 78.59 80.77 85.16 73.18 84.36 



TABLE V. EXAMPLE OF CONFUSION MATRIX OBTAINED BY SYM CLASSIFIER (KERNEL RBF, c = 3.0 AND 'Y = 0.01) WITH LSF FEATURE SET FOR 
CLASSIFICATION OF CYMBAL TYPE AND THEIR CHARACTERISTIC 

Actual 

CE CR CrE CrR 
China-Edge (CE) 43 8 0 0 
China-Roll (CR) 14 34 0 0 
Crash-Edge (CrE) I 0 130 10 
Crash-Roll (CrR) 0 0 22 129 
Hi-hat-Chick (HCh) 0 0 0 0 
Hi-hat-Closed (HCI) 0 0 0 0 
Hi-hat-Open (HOp) 0 0 0 0 
Ride-Bell (RBe) 0 0 0 0 
Ride-Body (RBo) 0 0 0 0 
Ride-Edge (REd) 0 0 16 I 
Splash-Choke (SC) 0 0 2 0 
Splash-Edge (SE) 0 0 2 0 

Precision 0.74 0.81 0.76 0.92 
Recall 0.84 0.71 0.85 0.85 
F-Measure 0.79 0.76 0.80 0.89 

Again, we note that the SVM classifier with LSF achieved 
the best result with 86.49% of accuracy. However, unlike the 
first experiment, Temporal features also show good results. 

In Table V we show the confusion matrix of one of 10 
executions of SVM classifier with the LSF feature set for the 
classification of cymbal type and their respective characteristic. 
We observe that this new classifier inherits the errors from the 
first classifier presented, with mistakes concentrated in Crash 
and Ride cymbals. This type of error is expected. However, the 
higher error rate occurs with Splash cymbal when the Choke 
movement is performed. Thus, the Splash-Choke and Splash­
Edge classes have achieved very low results with 0.23 and 
0.49 of F-Measure. These low F-Measure results were achieved 
with LSF. This feature set basically extracts characteristics 
from the frequency domain. Thus, it is expected a difficulty in 
distinguish sounds from the same cymbal type. For instance, 
consider the example of signals of Splash-Choke and Splash­
Edge in frequency domain showed in Figure 3. 

(a) Frequencies of a Splash-Choke signal 

Frequen:y(Hz) 

(b) Frequencies of a Splash-Edge signal 

Fig. 3. Two different examples of Splash signals in frequency domain 

HCh 
0 
0 
0 
0 

72 
I 
0 
0 
0 
0 
0 
0 

0.99 
0.96 
0.97 

Predicted 

HCI HOp RBe RBo REd SC SE 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 I1 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

75 I 0 0 0 0 0 
0 74 0 I 0 0 0 
0 I 104 0 2 0 0 
0 0 0 113 0 0 0 
0 0 3 I 103 0 0 
0 0 0 0 0 7 27 
0 0 0 0 0 18 23 

0.96 0.97 0.97 0.98 0.89 0.28 0.46 
0.97 0.99 0.97 1.00 0.83 0.19 0.53 
0.97 0.98 0.97 0.99 0.86 0.23 0.49 

We can see in Figure 3 that both signals are very similar 
and justifies the classifier's errors. On the other hand, if we 
analyze the same signals in time domain, as presented in 
Figure 4, we can note clearly that sounds generated in the 
regions of Choke and Edge of Splash cymbals has significant 
differences in the ADSR envelope features: attack, decay, 
sustain, and release. 

Tirre in seconds 

(a) Splash-Choke signal in time domain 
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(b) Splash-Edge signal in time domain 

Fig. 4. The same Splash signals of Figure 3 in time domain 

The ADSR envelope have a great effect on the instrument's 
sonic character. Basically, attack is the time it takes for the note 
to reach the maximum level. Decay is the time it takes for the 
note to go from the maximum level to the sustain level. Sustain 
is the level while the note is held. Release is the time it takes 
for the note to fall from the sustain level to zero (silence) when 
released. An illustrative example that represents the ADSR 
envelope is shown in Figure 5. 
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Fig. 5. Representation of Attack. Decay. Sustain, Release - ADSR envelope 

Such an observation about the signals in time domain 
and the good results achieved by the Temporal feature set 
as shown in Table IV, are indicatives that LSF together with 
Temporal can help to improve the results. Thus, we merge both 
feature sets and evaluate the results for different algorithms. 
Table VI shows the achieved results and confirms our intuition. 
The improvement row refers to the accuracy improvement in 
percentage compared to the best result showed in Table IV 
achieved by SVM with LSF (86.49%). Indeed, the SVM 
classifier with LSF and Temporal feature sets improves the 
results in more than 5% of accuracy, i.e., more 53 examples 
correctly classified in a total of 91.54% of accuracy. 

TABLE VI. ACCURACY RESULTS FOR CLASSIFICATION OF CYMBAL 
TYPE AND THEIR CHARACTERISTIC CONSIDERING LSF AND TEMPORAL 

FEATURE SETS TOGETHER 

Feature set NB C4.5 RF KNN SVM 

LSF + Temporal 85.68 87.36 89.36 83.77 91.54 

Improvement 7.09 5.19 3.34 9.14 5.05 

An example of the confusion matrix considering the SVM 
classifier and the LSF together with Temporal feature sets is 
shown in Table VII. We can note that with LSF and Temporal 
feature sets together, the classes Splash-Choke and Splash­
Edge have improved considerably their results. In addition, 
other classes such as China-Edge, China-Roll, Crash-Edge, 
Crash-Roll, Hi-hat-Open, Ride-Bell, and Ride Edge also have 
improved slightly their results. These gains can be observed 
in the three measures considered (Precision, Recall and F­
Measure). 

V I. CONCL USIONS AND F UT URE W ORK 

In this paper we present the task of drum's cymbal classi­
fication. We classify the cymbal in categories of type and the 
manner that they are struck. To the best of our knowledge, 
no other work in literature has investigated the classification 
of indefinite pitch percussion sounds with this specificity. We 
believe that our results can be useful for audio professionals 
and for a more detailed automatic drum transcription as well 
as for other related applications. 

We show experimentally that the SVM algorithm with 
LSF and Temporal features together has presented a good 
discriminative power (above 90% of accuracy on both discrimi­
native levels discussed in the paper). As MFCC is many times 
considered the state-of-the-art method for audio description, 
we encourage the comparative evaluation against the LSF 
method in similar scenarios to ours. 

In future research we plan to explore the association of 
subjective labels to cymbals by multi-label algorithms. In 

music, it is common the use of more subjective characteristics. 
For instance, drununers can say that a specific cymbal sound 
it is at the same time dark, warm, broad, smoky, lively, 
bright and others. In addition to explore different multi-label 
classifiers and good feature descriptors, we need relabel our 
data using a new set of labels. These labels can be retrieved 
from textual data in web forums about drums or achieved by 
means of questionnaires carried out for drummers about the 
sound samples. 

Another direction is explore different signal representations 
such as spectrogram, chromagram or recurrence plots for 
cymbal sounds. From these representations, it is possible to 
extract interesting and less explored features such as based in 
texture as shown in [34], [35]. 
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