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Abstract-Graph transduction refers to a family of algorithms 
that learn from both labeled and unlabeled examples using a 
weighted graph and scarce label information via regularization or 
label propagation. A recent empirical study showed that the Ro­
bust Multi-class Graph Transduction (RMGT) algorithm achieves 
state-of-the-art performance on a variety of graph transduction 
tasks. Although RMGT achieves state-of-the-art performance and 
is parameter-free, this method was specifically designed for using 
the combinatorial Laplacian within its regularization framework. 
Unfortunately, the combinatorial Laplacian may not be the most 
appropriate graph Laplacian for all real applications and recent 
empirical studies showed that normalized and iterated Laplacians 
may be better suited than combinatorial Laplacians in general 
tasks. In this paper, we generalize the RMGT algorithm for any 
positive semidefinite matrix. Therefore, we provide a novel graph 
transduction method that can naturally deal with higher order 
regularization. In order to show the effectiveness of our method, 
we empirically evaluate it against five state-of-the-art graph­
based semi-supervised learning algorithms with respect to graph 
construction and parameter selection on a number of benchmark 
data sets. Through a detailed experimental analysis using recently 
proposed empirical evaluation models, we see that our method 
achieved competitive performance on most data sets. In addition, 
our method achieved good stability with respect to the graph's 
parameter for most data sets and graph construction methods, 
which is a valuable property for real applications. However, the 
Laplacian's degree value may have a moderate influence in the 
performance of our method. 

I. INTRODUCTION 

Graph-based semi-supervised learning (SSL) algorithms 
learn from both labeled and unlabeled examples using a 
weighted graph that encodes similarities between neigh bored 
examples with respect to some distance function. Since these 
algorithms can use labeled and unlabeled examples together 
during training stage in order to improve the classifiers' 
performance, they can be effective in scenarios in which we 
deal only with a few labeled examples. 

Graph-based SSL has gained increased attention in the last 
few years [1]-[6] because these methods usually perform well 
when the data lie on a low-dimensional manifold [7], i.e. when 
the manifold assumption holds. Most of these algorithms are 
based on the optimization of a convex cost function that uses a 
Laplacian regularizer term as smoothness functional, possibly 
subject to some fitting and/or normalization constraints. For­
mally, the Laplacian regularizer term is a smoothness penalty 
term that tries to reflect the intrinsic geometric structure of the 
data marginal distribution. 
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In this paper, we focus on the problem of graph trans­
duction. Consequently, we want to generate a classification 
function from both labeled and unlabeled examples using a 
weighted graph and (scarce) label information without provi­
ding generalization for the entire sample space. In other words, 
we focus on the SSL algorithms' performance on the set of 
unlabeled examples. Recently, de Sousa et al. [8] provided 
a comprehensive empirical comparison of graph-based SSL 
algorithms with respect to graph construction and parameter 
selection on a number of benchmark data sets. Among their 
findings, the authors showed that the Robust Multi-class Graph 
Transduction (RMGT) [4] algorithm achieves state-of-the-art 
performance with respect to graph construction and parameter 
selection on a variety of these data sets. 

RMGT is a parameter-free algorithm for graph trans­
duction specifically designed for using the combinatorial 
Laplacian within its regularization framework. Basically, the 
combinatorial Laplacian is a type of graph Laplacian, which 
is a matrix operator that, given a nonnegative, symmetric 
matrix, outputs a positive semidefinite (p.s.d.) matrix, i.e., a 
symmetric matrix with nonnegative eigenvalues. Unfortunately, 
the combinatorial Laplacian may not be the most appropriate 
graph Laplacian for all real applications [9]; however, in 
our experimental analysis we show that the combinatorial 
Laplacian may be better suited than the normalized Laplacian 
for text data. In addition, the use of higher order regulari­
zation can be effective in general SSL tasks [10]. Basically, 
higher order regularization, in this context, is a type of graph 
regularization in which the Laplacian's degree value is greater 
than one. Although the RMGT algorithm achieved state-of-the­
art classification performance on a variety of benchmark data 
sets [8], this method is uncapable to deal with higher order 
regularization. 

In this paper, we provide a novel SSL algorithm, based on 
the RMGT algorithm, that can naturally deal with higher order 
regularization. In order to do this, we solve the optimization 
problem of the RMGT algorithm for any p.s.d. matrix. Conse­
quently, our method can naturally deal with a variety of graph 
Laplacians, such as normalized and iterated Laplacians, within 
its regularization framework. Therefore, due to the statistical 
model in [9] and the theoretical and empirical study in [10], our 
method can achieve better results than the original RMGT with 
respect to graph construction in general SSL tasks. Although 
our method is mathematically simple, we show that it achieves 
competitive results to state-of-the-art SSL algorithms. 



We call our method Robust Multi-class Graph Transduction 
with Higher Order Regularization (RMGTHOR). By applying 
a common strategy of constrained optimization to solve the 
optimization problem of our method, we show that it has 
a closed-form solution. This closed-form solution can be 
computed in cubic time in the number of labeled and unlabeled 
examples, which is the same time complexity of a variety 
of widely used graph-based SSL algorithms [6], [5], [2]. 
In practice, our method has a little bit higher running time 
than the RMGT algorithm. Therefore, we can achieve better 
classification performance with a little increase in computation 
time. Moreover, we formally prove that the RMGT algorithm 
is a special case of our method when we use the combinatorial 
Laplacian in our method. 

Our theoretical findings are supported by a comprehensive 
empirical comparison between our method and five state-of­
the-art SSL algorithms with respect to graph construction 
and parameter selection on widely used benchmark data sets. 
Precisely, we evaluate our method against the following SSL 
algorithms: Gaussian Fields and Harmonic Functions (GFHF) 
[6]; Local and Global Consistency (LGC) [5]; Laplacian Regu­
larized Least Squares (LapRLS) [2]; Laplacian Support Vector 
Machine (LapSVM) [2]; and RMGT [4]. A brief overview on 
the regularization framework of these methods will be given 
in further section. 

For a fair empirical comparison, all SSL algorithms were 
evaluated using a variety of graph construction methods and 
parameter values. More precisely, the SSL algorithms were 
evaluated using the same graph construction methods with 
the same values for the graph's parameter. The values for the 
regularization parameters of the SSL algorithms were chosen 
based on the values suggested in the SSL literature [11], 
[12], [4], [8]. We compare our experimental results with those 
reported in [1], [8], [10]. 

In order to provide a comprehensive empirical comparison 
between our method and state-of-the-art graph-based SSL 
algorithms with respect to graph construction and parameter 
selection, we used the empirical evaluation models recently 
proposed in [8]. Specifically, our experimental analysis is sub­
divided into the following three parts: (1) best case analysis; 
(2) evaluation of classifier stability; and (3) evaluation of 
external parameters. 

In the best case analysis, we evaluate the best average 
error rates of the SSL algorithms obtained over all parameter 
values. Although this empirical analysis is widely used in the 
SSL literature [1], it may hide useful information concerning 
the classifiers' performance with respect to graph construction 
and parameter selection, being not adequate for comprehensive 
empirical comparisons [8]. In this analysis, we compare the 
best performances achieved by our method for each graph 
construction method with the best performances obtained by 
the other classifiers over all graph construction methods and 
parameter values. 

In the evaluation of classifier stability, we analyze the 
performance of the SSL algorithms with respect to graph 
construction and parameter selection. With this analysis, we 
want to identify which classifiers provide a good trade-off 
between performance and stability with respect to the graph's 
parameter. 

In the evaluation of external parameters, we analyze the 
performance of our method with respect to the graph's pa­
rameter and the Laplacian's degree, i.e., we analyze the error 
surfaces generated by our method with respect to these pa­
rameters. With this analysis, we want to verify how stable our 
method is in this parameter space. 

Our results show that our method achieved competitive 
performances in comparison to the other SSL algorithms in the 
best case analysis. The results are impressive for the data sets 
of Gaussian mixtures, in which our method outperformed the 
competing methods by a large margin. Moreover, our method 
showed good stability with respect to the graph's parameter on 
most data sets for many graph construction methods, which 
is a valuable property for real applications. In many real 
applications, stable classifiers may be preferable to classifiers 
that have exceptional performance in only a very narrow range 
of parameter values [8]. 

By analyzing the error surfaces generated by our method 
with respect to the graph's parameter and the Laplacian's 
degree, we see that our method has good stability with respect 
to the graph's parameter. However, the Laplacian's degree 
value may have a moderate influence in the performance of 
our method in some cases. 

The remainder of this paper is organized as follows. 
Section 11 provides a background on graph Laplacians, graph­
based SSL, and the regularization framework of the RMGT 
algorithm. Section III formulates our method, providing our 
main theoretical results. Section IV shows our experimental 
analysis. Finally, Section V provides our conclusions. 

11. BACKGROUND 

Consider a training sample X := {X;}i=l C jRd, in which 
the first I examples are labeled with one of c classes; the 
remainder u := n -I examples are unlabeled. Let lB := {a, I} 
and Na := {i E N*ll :s: i :s: a}, Va E N*. Assume that Xi, 
i E NI, has label Yi E Ne. Let Ye E lB/xe be a label matrix 
in which (Y c)ij = 1 if and only if Xi has label Yi = j. This 
paper focus on multi-class problems; hence, Ye le = 11 such 
that le is a c-dimensional I-entry vector. 

All matrices can be subdivided into submatrices of labeled 
and unlabeled examples. Let W E jRnxn be a weighted matrix 
generated from the training sample X and F E jRnxe be the 
output of a given graph-based SSL algorithm. Assume that F 
is subdivided into two submatrices while all other matrices are 
subdivided into four submatrices. For instance: 

W:= [ Wee 
Wu c  

Wcu ] 
Wu u  

where Wee E jR/xl and F eE jR/xe are the submatrices of 
W and F, respectively, on labeled examples, Wu u  E jRuxu 
and F u E jRuxe are the submatrices of Wand F, respectively, 
on unlabeled examples, and so on. Let M E jRnxn be a p.s.d. 
matrix generated from W; M is usually some graph Laplacian. 
In this paper, we consider the problem of how to compute the 
output matrix F u E jRuxe given M and the label matrix Ye 
in a parameter-free way by solving the optimization problem 
of the RMGT algorithm using M in the Laplacian regularizer 
term. 



A. Graph Laplacians 

The graph Laplacians are important tools for many fields 
of machine learning, such as spectral clustering and dimen­
sionality reduction [13]. One of the motivations for using a 
graph Laplacian in machine learning (and specially in SSL) is 
that it induces an adaptive regularization functional that may 
adapt to the data's density and geometric structure [14]. 

Given a (sparse) weighted matrix W, we can compute a 
graph Laplacian in order to start the diffusion process. The 
combinatorial Laplacian is defined by � := D - W where 
D := diag(Wl n). The normalized Laplacian is defined by 
L := In - D-1/2WD-1/2 where In is the n-by-n identity 
matrix. We see that if W ;::: 0 and W = WT, � and L 
are p.s.d. matrices (�, L >,:= 0); hence, the objective functions 
of most gr�h-based SSL algorithms become convex. The 
superscript represents transposition of matrices or vectors. 

Although the combinatorial and normalized Laplacians are 
the most cOlmnonly used graph Laplacians in the SSL literature 
[15], [1], there are other graph Laplacians that can also be 
effectively applied in graph-based SSL as well [14], [13]. For 
instance, the iterated Laplacian is defined by Li := L� in 
which Lb E jRnxn is the "basis" Laplacian and p E N* is the 
Laplacian's degree. In practice, Lb can be any graph Lapla­
cian. Therefore, we can easily apply iterated Laplacians in 
the regularization framework of graph-based SSL algorithms, 
achieving the same closed-form solutions. 

B. Graph-based SSL 

Given a graph Laplacian constructed from the weighted 
matrix W, most graph-based SSL algorithms generates the 
output matrix F by minimizing a (usually convex) cost func­
tion using a Laplacian regularizer term. For instance, consider 
the following optimization problem: 

(1) 

where Y := [ Ye ] E lRnxe is the "extended" label Ouxe 
matrix, � E jRnxn is a diagonal matrix with non negative 
values, and Ouxe is the u x c null matrix. The symbol 
tr(·) stands for the trace matrix operator. If M = Land 
�ii = J.L > 0, Vi E Nn, we have the LGC algorithm [5]; 
if M = �, �ii -7 +00, Vi E Nl, and �ii = 0, Vi E Nn \Nl' we have the GFHF algorithm [6] (see [16]). 

The manifold regularization [2] framework can be viewed 
as the following optimization problem: 

where V(Xi, Yi, j) is a cost function, 1-l,c is the Reproducing 
Kernel Hilbert Space (RKHS) for the kernel K, 11·lhix; is 
the norm in 'H/C, f := [J(xI},··· , f(xn)]T E jRn, lA and 
If are the regularization parameters, and Yi E {-I, + 1 }, 
Vi E Nl. If V(Xi,Yi,j) = (Yi - f(Xi))2, we have the LapRLS 
algorithm [2]; if V(Xi, Yi, j) = max(O, 1 - yd(Xi))' we have 
the LapSVM algorithm [2]. 

C. The RMGT algorithm 

The RMGT algorithm [4] is based on the GFHF algorithm, 
incorporating two normalization constraints that encode output 
normalization and class prior knowledge. The multi-class ver­
sion of the GFHF algorithm can be viewed as the following 
optimization problem: 

min tr (FT �F) S.t. F £ = Y £ (3) 
FEIRnXc 

Considering � >,:= 0, the optimIzation problem in (3) is 
convex in F. As shown in [6], the closed-form solution of (3) 
is given by Fu = -�u��u£ Y £. In the RMGT framework, 
we optimize the objective function in (3) S.t. F £ = Y £ and 
the following normalization constraints: (1) FIe = In; and 
(2) FT In = nw, in which w E jRe is considered a model's 
parameterl. Mathematically, the optimization framework of the 
RMGT algorithm is given by: 

min tr (FT �F) 
FEIRnXc 

S.t. F£ = Ye, FIe = In, FTln = nw 
(4) 

Since we do not impose that F ;::: 0, the constraint 
FIe = In enforces the soft labels in F to act like pseudo­
probabilities. The constraint FT In = nw enforces output 
normalization using class prior knowledge. Liu & Chang [4] 
showed that (4) has the following closed-form solution: 

F = F(O) + 
�u�lu (nw T - 1 Tl Y £ - 1 Tu Fu(O) ) (5) u u 1 T � -1 1 u uu u 

where FiJ) 
= -�u��u£ Y £ is the closed-form solution of 

the GFHF algorithm. 

Ill. PROPOSED M ETHOD 

In order to formulate our method, we consider the same 
optimization problem in (4) changing the combinatorial Lapla­
cian � in the objective function for any p.s.d. matrix M. We 
provide a mathematical formulation of our method without as­
suming any other special property of M. Given a p.s.d. matrix 
M and a label matrix Y £ such that Y £le = Il, our method 
computes the output matrix F u via convex regularization in 
a parameter-free way. In practice, our method generalizes the 
RMGT algorithm for any p.s.d. matrix and we can compute 
its closed-form solution in 0 (n3) time with 0 (n2) space 
complexities, which are the same time and space complexities 
of a variety of widely used graph-based SSL algorithms [2], 
[4]-[6]. 

The main theoretical result in this paper is given in 
Theorem 1, in which we provide the closed-form solution of 
our method by applying a standard strategy of constrained 
optimization. In Corollary 1, we show that our method is 
reduced to the RMGT algorithm when M = �. 

l Empirically speaking, w can be the class prior probabilities or the uniform 
class distribution (w = le/c), as suggested in [4] . w is not a parameter for 
tunning. 



Mathematically, our method solves the following cons­
trained optimization problem: 

min tr (FTMF) 
FEIRnxc 

S.t. Fe = Ye, FIe = In, FT1n = nw 

(6) 

If M � 0, then M = MT; hence, Muc = MIu. 
Therefore, we have: 

(7) 

Considering the hard constraint Fe = Ye and Eq. (7), we 
obtain: 

tr (FTMF) = tr (YIMcc Y c) + tr (F�MuuFu) 
+ 2tr (F�Muc Ye) 

Then, the optimization problem in (6) can be rewritten as: 

min tr (F�MuuFu) + 2tr (F�Muc Y c) 
FuEIRUXC 

S.t. Fu1e = 1u, F� 1u = nw - yI1l 
(8) 

If M � 0, then Muu � O. Therefore, the objective 
function of the optimization problem in (8) is convex in Fu. 
We provide the closed-form solution of (8) in the following 
theorem. 

Theorem 1: The closed-form solution of the optimization 
problem in (8) is given by 

(9) 

in which 

T 

v 

Proof The Lagrangian corresponding to the optimization 
problem in (8) is given by 

£(Fu, e, A) = tr (F�MuuFu) + 2tr (F�Muc Y c) 

- C (Fu1e - 1u) 
- AT (F�lu - nw + YI1l) 

where e E IRu and A E IRe are the Lagrange multipliers. 
Zeroing 8£j8Fu, we obtain: 

Substituting (10) in the constraint Fu le = 1u, we obtain: 

(11) 

Substituting (10) in the constraint F� 1u = nw - YI1l, 
we obtain: 

(12) 

in which 

Substituting (12) in (11), we obtain: 

(13) 

where 

Substituting (12) and (13) in (10), we get (9). This finishes 
the proof. • 

Corollary 1: If M = d, (9) is reduced to (5). 

Proof Let v E IRu such that 

We know that dIn = On; hence, duC1l = -duu1u. 
Then, v = Ou. Substituting v in (9), we get (5). This finishes 
the proof. • 

In Theorem 1 and Corollary 1, we showed the main 
theoretical results in this paper. Although our method can be 
considered mathematically simple because we used standard 
techniques of constrained optimization in order to solve (8), 
we show through a comprehensive experimental analysis on 
benchmark data sets that our method achieves competitive 
(or even better) performance to (than) state-of-the-art methods 
for graph-based SSL with respect to graph construction and 
parameter selection. 



TABLE l. AVERAGE ERROR RATES (%) AND STANDARD DEVIATIONS (%) OF THE SSL ALGORITHMS AND THEIR AVERAGE RANKINGS IN THE 
PARTITIONS OF 10 LABELED EXAMPLES. 

US PS COll..2 DIGIT-I G-241N G-241C TEXT ranking 

GFHF (best) 19. 75( 4.50) I 35.07 (3.82) 9.35 (4.51) 46.12 (7.61) 46.19 (7.25) 37.51 (6.85) 1l.75 

LGC (best) 9.93 (4.34) 34.81 (6.22) 10.47 (4.66) 37.95 (6.66) 40.10 (5.46) 34.78 (6.55) 10.167 

Lap RLS (best) 19. 75( 4.53) 1 31.78 (7.81) 9.33 (4.48) 38.06 (6.52) 40.11 (6.06) I 34.58 (6.14) 9.417 

LapSVM (best) 9.91 (2.51) 31.54 (6.24) 8.67 (3.89) 38.90 (6.50) 40.82 (6.66) 37.49 (7.07) to 
RMGT (best) 13.08 (3.41) 28.00 (4.67) 7.50 (2.43) 42.75 (7.33) 38.31 (6.02) 27.77 (5.95) 7.667 

C hap 13.61 5.44 118.641 22.76 127.151 
IterLap 13.10 6.54 20.99 118.011 38.84 

RMGTHOR-symKNN-RBF 13.32 (3.64) 30.98 (3.52) 7.42 (3.37) 36.11 (16.00) 26.94 (4.95) 30.22 (2.47) 7.167 
RMGTHOR-mutKNN-RBF 10.88 (4.12) 27.80 (5.10) 6.38 (2.37) 36.83 (12.13) 33.26 (4.41) 28.74 (4.02) 5.167 
RMGTHOR-symFKNN-RBF 12.54 (3.32) 30.89 (3.53) 7.00 (2.74) 36.86 (15.34) 26.79 (4.94) 29.42 (2.31) 6.667 
RMGTHOR-symKNN-HM 14.5Ll4.87) ] 28.74 (6.52) 6.03 (1.96) 35.95 (15.70) 26.59 (4.53) 30.31 (3.23) 5.667 

RMGTHOR-mutKNN-HM 10.60 (4.18) 27.69 (5.58) 1 5.22 (1.77) 1 35.20 (12.80) 34.12 (4.51) 29.00 (3.57) 3.333 
RMGTHOR-symFKNN-HM 13.78 (4.69) J 28.34 (7.88) 
RMGTHOR-symKNN-LLE 14.77 (4.11) 29.79 (5.70) 

RMGTHOR-mutKNN-LLE 10.69 (3.36) 1 27.30 (5.56) 1 
RMGTHOR-symFKNN-LLE 14.22 (4.12) • 28.93 (4.89) 

IV. EXPER IMENTAL EVALUATION 

In this section, we empirically evaluate our method against 
the GFHF, LGC, LapRLS, LapSVM, and RMGT algorithms in 
transductive learning tasks with respect to graph construction 
and parameter selection on six benchmark data sets, available 
in [1], using the preprocessing step described in [8f. In order 
to compare our results with those reported in [1], [8], [10], 
[17], we used the same graph construction methods and pa­
rameter setting chosen in [8] and the data splits of 10 and 100 
labeled examples suggested in [1]. Due to reasons concerning 
reproducibility, the source code used in our experiments as 
well as our experimental results are freely available3. 

A. Experimental setup 

Let tJt : lRd X lRd f-7 lR be a distance function. In order 
to compute a distance matrix W E lRnxn from the training 
sample X such that Wij = tJt(Xi, Xj), we chose the cosine 
distance for the TEXT data set and the L2-norm for the other 
data sets. From W, we generated three adjacency graphs based 
on the k-nearest neighbors (kNN) graph: symmetric kNN 
(symKNN); mutual kNN (mutKNN); and symmetry favored 
kNN (symFKNN) [4]. Let Ak E lRnxn be the adjacency 
matrix of the kNN graph. The symKNN graph has adjacency 
matrix A�sym) = max (Ak, An; the mutKNN graph has 
adjacency matrix A�mut) = min (Ak, An; the symFKNN 
graph has adjacency matrix A�symF) = Ak + A�. The 
parameter k was chosen in the set {4, 6, 8, . . .  , 40}. 

In order to generate a sparse, symmetric, weighted matrix 
W from the adjacency matrix4 A E {O, 1, 2}nxn and the 
distance matrix W, we used the following three weighted 
matrix generation methods: RBF kernel; similarity function 
of Hein & Maier (HM) [18]; and Locally Linear Embedding 
(LLE) [19]. The HM similarity function can be viewed as 
an RBF kernel with adaptive kernel sizes; the LLE method 
generates W via local reconstruction minimization on each 
example Xi. 

2http://sites.labic.icmc.usp.br/sousalexperiments_ graph_ SSLI. 
3http://sites.labic.icmc.usp.br/sousalconstrained�raph_ SSLI. 
4Note that the symFKNN graph has a non-binary adjacency matrix. 

5.89 (2.00) 36.62 (15.29) 26.76 (4.96) 28.65 (2.68) 4.5 
6.30 (2.02) 41.54 9.67) ] 36.14 (3.92) 32.13 (3.56) 9.333 

5.46 (1.84) 41.38 (6.59) 39.84 (5.05) 28.71 (3.13) 5.333 

6.15 (2.07) I 41.82 (10.06) • 36.37 (5.17) 30.60 (3.62) 8.833 

Since it may not be straightforward to choose an ad­
equate value for the RBF kernel's parameter er when we 
have only a few labeled examples, we estimated its value as 
er = 3� L�=1 tJt (Xi, Xik) where Xik is the k-th nearest neighbor 
of Xi, as suggested in [11]. We used in our experimental 
analysis the following weighted graphs: symKNN-RBF (G 1); 
mutKNN-RBF (G2); symFKNN-RBF (G3); symKNN-HM 
(G4); mutKNN-HM (G5); symFKNN-HM (G6); symKNN­
LLE (G7); mutKNN-LLE (G8); and symFKNN-LLE (G9). 

From the weighted matrix W, we have to generate a graph 
Laplacian in order to start the diffusion process. In an attempt 
to avoid numerical issues while running our method (specifi­
cally when computing Milt), we generated the combinatorial 
Laplacian as a = 1]D - W and the normalized Laplacian as 
L = 1]In - D -

1/2WD -

1/2 with 1] > 1, as suggested in [8]. 
In our experiments, we set 1] = 1.01. 

Since higher order regularization may be effective on SSL 
[10], we used the iterated Laplacian in our method. Since the 
normalized Laplacian L performs better than the combinatorial 
Laplacian a in general SSL tasks [9], we chose the normalized 
Laplacian as the "basis" Laplacian. The Laplacian's degree 
value was chosen in the set {I, 2, 3, 4, 5}. 

B. Best case analysis 

Tables I and IT show the best performances (average error 
rates) of our method for each graph construction method as 
well as the best performances for the other classifiers over 
all graph construction methods in the partitions of 10 and 
100 labeled examples, respectively. All the competing SSL 
algorithms were evaluated in the same nine (GI-G9) weighted 
graphs with the same values for the parameter k (extensive 
results for these classifiers can be found in [8], [17]). However, 
due to lack of space, we only report in this paper the best result 
over all graph construction methods and parameter values in 
each data set for the GFHF, LGC, LapRLS, LapSVM, and 
RMGT algorithms. The best results in [1] are reported as 
"Chap" while the best results in [10] are reported as "lterLap". 
Since the authors in [1], [10] only reported the error rates of 
the methods they were analyzing, we do not report the standard 
deviations for Chap and IterLap. 



TABLE n. AVERAGE ERROR RATES (%) AND STANDARD DEVIATIONS (%) FOR THE SSL ALGORITHMS AND THEIR AVERAGE RANKINGS IN THE 
PARTITIONS OF 100 LABELED EXAMPLES. 

USPS COIL2 DIGIT-I G-241N G-241C TEXT ranking 
GFHF (best) 3.26 (1.00) 1.09 (1.59) 2.01 (0.58) 1 31.71 (6.08) 37.59 (5.75) 23.69 (2.48) 9.917 
LGC (best) 3.54 (0.96) 1.09 (1.59) 2.13 (0.72) 22.04 (1.7a 29.81 (2.57) 23.35 (2.26) 9.75 

LapRLS (best) 13.17(0.93) 1 1 0.35(0.75) 1 1l.87(0.51) 1 21.89 (1.73) I 28.73 (3.43) 23.48 (1.64) 6.167 

LapSVM (best) 3.71 (1.44) 0.36 (0.74) 1.92 (OA8) 21.64 (3.90) 25.51 (5.58) 22A3 (1.11) 5.667 
RMGT (best) 4.71 (2.25) 1 0.85 (0.80) 1.95 (OAO) 

I 

26.01 (8.82) 1 25.11 (2.12) 120.76(1.18) I 7.25 

1 Chap 1 4.68 I -
I 

2.44 I 14.951 113.491 23.09 1 1 
I IterLap I 3.96 -

! 

2.22 
� 

10.55 14.82 , 25.77 I I 
RMGTHOR-symKNN-RBF 3.80 (1.05) 3.10 (1.79) 2.14 (0.40) 9.95 (0.88) 18.56 (0.93) 21.17 (0.92) 7.333 
RMGTHOR-mutKNN-RBF 3.31 (0.85) r 2.58' (1.43) 2.17 (0.3�) ] 15.82 (1.17) 26.48 (1.99) 21.1 0 (0.90) 7.667 
RMGTHOR-symFKNN-RBF 3.67 (1.09) 2.93 (1.90) 2.15 (0.37) 10.56 (0.87) 19AO (1.09) 21.09 (0.97) 7.0 
RMGTHOR-symKNN-HM 4.38]0.95) 2.91 (1.17) 

J 
1.93 (0.41) 9.63 (0.94) 18.23 (0.83) 22.54 (1.22) 6.667 

RMGTHOR-mutKNN-HM 3.18 (0.66) L 2.46JI.46) 2.04 (0.34) 15.80 (1.48) 27.29 (1.98) 22.19 (0.83) 7.0 
RMGTHOR-symFKNN-HM 4.04 (0.88) 2.26 (1.03) 1.97 (0.53) 9.64 (0.79) 18.79 (0.93) 22.05 (0.98) 6.167 
RMGTHOR-symKNN-LLE 4.21 (0.65J.. J 0.80 (0.69) 2.08 (0.41) 20.91 (1.59) 26.45 (1.28) 22.87 (1.17) 8.667 
RMGTHOR-mutKNN-LLE 3.86 (0.87) 0.38 (0.49) 2.06 (0.30) [ 23.07 (1.30) 32A1 (2.1SLJ 21.94 (0.78) 8.667 
RMGTHOR-symFKNN-LLE 3.75 (0.44) 0.61 (0.60) 

Note that we report in Tables I and 11 the best performances 
of our method for each graph construction method on each 
data set; for the other SSL algorithms, we only report their 
best performance over all graph construction methods, due to 
lack of space. Therefore, the results in these tables may appear 
slightly pessimistic to our method. The best result of our 
method in each data set over all graph construction methods is 
marked in bold face while the best overall result in each data 
set is boxed. The four worst results in each data set have a 
grey background. We also report the average rankings of the 
algorithms over all data sets. Since the results for the COIL2 
data set do not appear in [1], [10], Chap and IterLap were not 
considered during ranking computation. 

In Table I, we see that our method achieved the best overall 
results in 2 out of 6 data sets as well as competitive results 
to the other SSL algorithms in the G-241N, G-241C, and 
TEXT data sets for all graph construction methods. The results 
are impressive in the G-24IC data set, in which our method 
outperformed the competing methods by a large margin when 
applying the graphs generated by the HM method and the 
RBF kernel. However, our method did not outperform the 
best results reported in [1], [10]. We also see that our method 
showed competitive results in the US PS data set only when 
we apply the graphs generated by mutKNN. By analyzing the 
average rankings, we see that our method outperformed the 
best overall average rankings for the other SSL algorithms for 
most graph construction methods. 

In Table 11, we see that our method achieved competitive 
results to the other SSL algorithms in the USPS, COIL2, 
DIGIT-I, and TEXT data sets for all graph construction 
methods as well as good to exceptional results in the G-24IN 
and G-24IC data sets in many settings. Moreover, our method 
outperformed the results of Chap and IterLap in the DIGIT­
I and TEXT data sets. Since the RMGT algorithm achieved 
better results than our method in the TEXT data set, we 
suppose that the combinatorial Laplacian may be better suited 
than the normalized Laplacian for text data. Using our method 
on the G-241C and G-241N data sets, the graphs generated 
by mutKNN achieved worse performance than those generated 
by symKNN and symFKNN. In addition, the graphs generated 
by the HM method and the RBF kernel achieved better results 
than those generated by the LLE method. 

1.95 (OA1) 21.77 (1.19) 28.39 (1.98) 22.11 (0.86) 7.083 

TABLE Ill. AVERAGE RAN KINGS OF THE SSL ALGORITHMS WITH 
RESPECT TO GRAPH CONSTRUCTION ON THE PARTITIONS OF 10 LABELED 

EXAMPLES. 

Gl G2 G3 G4 G5 G6 
GFHF 4.833 5.083 I 4.667 I 5.333 5.5 5.333 
LGC 3.833 4.583 3.667 3.667 4.667 I 4 

LapRLS 3.167 2.5 3.667 3.5 2.833 3.5 
LapSY M 4.333 3.5 4.167 4.167 3.5 4 
RMGT 3.167 3.5 3.167 3.167 3.167 3.167 

RMGTHOR 1.667 1.833 1.667 1.167 1.333 1 
G7 G8 G9 mean 

GFHF 5.5 5:667 5.417 5.259 
LGC 4.333 4.5 4.167 4.157 

LapRLS 2.833 2.833 3A17 3.139 
LapSY M 3.167 3 3 3.648 
RMGT 3.5 3.5 3.5 3.315 

RMGTHOR 1.667 1.5 1.5 1.482 

TABLE IV. AVERAGE RANKINGS OF THE SSL ALGORITHMS WITH 
RESPECT TO GRAPH CONSTRUCTION ON THE PARTITIONS OF 100 LABELED 

EXAMPLES. 

Gl G2 G3 G4 G5 G6 
GFHF 4.583 4.75 4.583 5.5 5. 167 1 5.5 
LGC 4.25 4.4 17 4.25 4.833 4.667 4.833 

LapRLS 2.583 2.333 2.583 2.667 2.667 3. 167 
LapSY M 2.583 2.5 2.583 3. 167 1.833 2.667 

RMGT 4.167 4.333 4. 167 3.5 4.333 3.25 
RMGTHOR 2.833 2.667 2.833 1.333 2.333 1.583 

G7 G8 G9 mean 
GFHF 5.5 5.5 5.5 5.176 
LGC 5.0 5.0 5.0 4.694 

LapRLS 3. 167 2.5 2.833 2.370 
LapSY M 2.833 2.333 3.0 2.6 1 1  

RMGT 3. 167 3.833 3.333 3.787 
RMGTHOR 1.333 1.833 1.333 2.009 

Tables III and IV show the average rankings of the SSL 
algorithms with respect to graph construction. The best average 
ranking for each graph construction method is marked in 
bold face. In order to statistically evaluate our results, we 
ran the Friedman test5 with the Bonferroni correction using 
a significance level of 0.05. We applied the software Orange6 
to run this statistical test using the average rankings shown in 
Tables III and IV. The rankings for the algorithms that were 
statistically outperformed by our method are marked with a 
grey background. 

5 See [20] for a review on statistical tests for machine learning. 
6http://orange.biolab.si/ 
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Fig. l .  Average error rates of the SSL algorithms with respect to k using the symKNN-RBF graph in the partitions of 10 labeled examples. 

In Table Ill, we see that our method achieved the best 
average ranking for all graph construction methods as well as 
the best overall average ranking. The results are impressive for 
the symFKNN-HM (G6) graph, in which our method achieved 
the best performance in all data sets. 

In Table IV, we see that our method achieved the best 
average ranking for the graphs generated by the LLE method 
and for the symKNN-HM (G4) and symFKNN-HM (G6) 
graphs. Moreover, our method achieved the best overall ave­
rage ranking, being the most appropriate SSL algorithm in 
terms of average ranking given a weighted graph. However, 
for the graphs generated by the RBF kernel, our method 
was outperformed by the LapRLS and LapSVM algorithms. 
Although our method frequently outperformed the competing 
methods with respect to graph construction in terms of average 
ranking (as shown in Tables III and IV), the statistical test 
found significant differences only in a few cases. This is likely 
to be due to the use of a non-parametric statistical test which 
requires additional evidence (results in more data sets) in order 
to detect significant differences. 

C. Evaluation of classifier stability 

Fig. I shows the performances of the SSL algorithms in 
the partitions of lO labeled examples with respect to k using 
the symKNN-RBF graph, which is widely used in the SSL 
literature [Il. In Fig. I, we see that our method achieved an 
outstanding performance with respect to k on most data sets. 
In addition, our method achieved the best performance for a 
significant range of k values for all data sets, excluding USPS 
and TEXT. In the COIL2, DIGIT-I, and G-241C data sets, our 
method achieved the lowest average error rates for virtually the 
entire range of k values. We note that no other single algorithm 
achieved similar performance. On these same three data sets, 
the runner-up method was the RMGT algorithm. However, the 
RMGT algorithm showed high instability on the COIL2 data 
set when k E {4, 6}. 

In the G-241C data set, the competing methods achieved a 
slightly better stability than our method. However, our method 
outperformed the other SSL algorithms by a large margin in 
this data set for most values of k. In the DIGIT-I data set, 
our method and the RMGT algorithm achieved exceptional 
performance and stability while the other SSL algorithms 
showed worse performance and frequently higher instability. 

In the G-241N data set, our method significantly improved 
the RMGT's performance, achieving competitive results to the 
other classifiers. Unfortunately, our method achieved worse 
performance than the RMGT algorithm in the TEXT data set 
for sparse graphs. In the USPS data set, our method also 
significantly improved the RMGT's performance. However, 
this improvement was not enough to provide competitive 
performance to the other classifiers. 

D. Evaluation of external parameters 

Fig. 2 shows the error surfaces for our method using the 
symKNN-RBF graph with respect to k and p in the partitions 
of 10 labeled examples. We see that our method achieved good 
stability with respect to k in the USPS, DIGIT-I, G-24IC, 
and TEXT data sets, which is a valuable property for real 
applications. In contrast, the Laplacian's degree value showed 
a moderate influence in the performance of our method. 

The error surfaces for the USPS and DIGIT-I data sets 
showed similar patterns, with the optimal results occurring 
when p = 2. For the COIL2 data set, the value of p showed 
small influence in the performance of our method while the 
value of k showed a moderate influence in its performance 
when p = 5. For the TEXT data set, the best results were 
achieved when we applied our method on dense graphs (speci­
fically k 2: 20) with p 2: 3. We note that our method achieved 
good to exceptional performances when p = 2 using sparse 
graphs in all data sets, excluding the artificial data sets G-
241C and G-24IN. 
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Fig. 2. Error surfaces of our method with respect to k and p using the symKNN-RBF graph in the partitions of 10 labeled examples. 

By analyzing all the other results (not shown here due 
to lack of space), we see that our method achieved its best 
performance in the USPS, DIGIT-I, COIL2, and TEXT data 
sets when p = 2 for most graph construction methods when we 
use k � 10. However, in the artificial data sets G-241C and G-
241N, p = 5 is the most appropriate value for the Laplacian's 
degree for most graph construction methods while k � 40 is 
the most appropriate value for the graph's parameter. 

V. CONCLUSION 

In this paper, we proposed a novel graph-based SSL 
algorithm, called RMGTHOR, by generalizing the RMGT 
algorithm for any p.s.d. matrix. Consequently, our method can 
naturally deal with higher order regularization, which is not 
the case of the original RMGT algorithm. We proved that our 
method admits a closed-form solution. We also proved that 
the RMGT algorithm is a special case of our method for the 
combinatorial Laplacian. 

Our method showed good to exceptional performance in 
comparison to state-of-the-art methods for SSL. The results 
also showed that our method achieved good stability with 
respect to k in most data sets, which is a valuable property for 
real applications. However, the Laplacian's degree may have a 
moderate influence in the performance of our method. In the 
absence of other criteria for parameter selection, we suggest 
p = 2 as initial choice for real applications. 
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