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Abstract
The emergence of social media increases the need
for the recognization of social influence mainly mo-
tivated by online advertising, political and health
campaigns, recommendation systems, epidemio-
logical study, etc. In spreading processes, it is pos-
sible to define the most central or influential ver-
tices according to the network topology and dy-
namic. On the other hand, the least influential
spreaders have been disregarded. This paper aims
to maximize the mean of information propagation
on the network by recognizing the non influential
individuals by making them better spreader. Ex-
perimental results confirm that selecting 0.5% of
least influential spreaders in three social networks
(google+, hamsterster and advogato) and rewiring
one connection to some important vertex, increase
the propagation over the entire network.

1 Introduction
Nowadays social media, such as blogs, social networks,
sharing sites, etc., can quickly spread rumors or informa-
tion [Castellano et al., 2009; González-Baillón et al., 2011],
reaching millions of users in the Global village. Propagation
process evolving information or rumors can be both benefi-
cial or destructive in scenarios like stock market, advertising
and marketing, adoption of technologies, politics and national
security, among other.

Many of the approaches to information or rumor spread-
ing [Moreno et al., 2004; Castellano et al., 2009; González-
Baillón et al., 2011; Borge-Holthoefer et al., 2012] concen-
trate in how ideas are shared among individuals and what
are the conditions that allow a large dissemination. For this
reason, they are understood as being equivalent to dynam-
ics like epidemics spreading, in the sense that individuals
would be psychological ‘infected’ with some idea or opin-
ion [Daley and Kendall, 1964; Maki and Thompson, 1973;
Barrat et al., 2008; Castellano et al., 2009]. The rumor
spreading process assumes that the population can be divided
into groups with different states, which is generally described
as the Susceptible (inactive), Infectious (spreader) and Re-
covered (stifler) (SIR) model [Daley and Kendall, 1964;
Maki and Thompson, 1973].

Some individuals can have a higher social influence than
others, according to their position, topological character-
istics in the network and dynamic [Kitsak et al., 2010;
González-Baillón et al., 2011; Borge-Holthoefer et al., 2012].
A lot of researches have tried to identify influence in social
networks [Burt, 1992; Sabidussi, 1996; Kitsak et al., 2010;
Borge-Holthoefer et al., 2012]. It was found that the final
fraction of informed individuals is not significantly affected
by chosen the spreaders by topological features [Moreno et
al., 2004]. However, incorporating characteristics of real sce-
narios as the activity of spreader or apathy with the new infor-
mation [Borge-Holthoefer et al., 2012], or exposure to multi-
ple sources and individual’s thresholds [González-Baillón et
al., 2011] lead to the emergence of influential spreaders in the
information spreading dynamic.

In the other hand, the least influential individuals of the
network are ignored in the literature. Let consider the case of
a scientific collaboration network. Some research groups are
more prominent than others. If a researcher with few publi-
cation or contacts visits a prominent group, by the homophily
phenomenon he/she can consequently improve his/her publi-
cation capacity. Based on this, we measure the vertices’ in-
fluence and recognize the least influential spreaders. Thereby,
we propose to turn those individuals into better spreaders by
connecting to the most central nodes.

The main contributions of this paper are: i) confirm the ex-
istence of least influential individuals in the network; ii) char-
acterize the least influential spreaders by analyzing central-
ity measures, such as degree, betweenness, closeness, pager-
ank, eigenvector, k-core, clustering coefficient and struc-
tural holes; iii) select a proportion of least influential users
from google+, hamsterster and advogato social networks and
make them better spreaders rewiring one of its connection to
a more central individual; iv) analyze the impact of different
proportions in the rewiring process and how it increases the
mean of information spreading on the network.

The paper is organized as follows: Section 2 describes the
centrality measures considered for network characterization
and the spreading process (SIR model); Section 3 presents the
simulations in three social networks (google+, hamsterster
and advogato), recognizing the least influential users, mak-
ing them potential spreaders and increasing the information
capacity of the networks. Finally, Section 4 reports the final
remarks.
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2 Definitions
A social network can be represented as a static unweighted
network G = (V,E), such as V = {v1, v2, ... vn} is the
set of N vertices or actors and E = {e1, e2, ... em} is the
set of M edges or connections. The adjacency matrix A is
the mathematical entity that represents the connections of the
network. We consider undirected networks, that means i, j
∈ V , Aij = Aji = 1 if i and j are connected, or 0 otherwise.

A walk between a pair of vertices (i, j) is a consecutive
sequence that starts at i and ends in j, so that any vertices are
visited more than once. The distance or length of the walk
is defined as the number of edges contained in the sequence.
Two vertices are neighbors if they are connected in a walk of
length 1. The shortest distance between two vertices is known
as the shortest path or geodesic path `ij . The shortest paths
can be computed by the Dijkstra, BellmanFord algorithms or
by a Breadth-first search method [Cormen et al., 2009]. A
component is the largest sub-set of vertices from the network
in which exist at least one walk between each pair of vertices,
but never connect to another component. A connected net-
work has only one component. In the case that i and j belong
to different components, it is assumed that `ij = ∞. For
this reason, here we considered the largest component of the
network.

2.1 Centrality measures
Several measures have been proposed to describe the impor-
tance or centrality of a vertex in the network [Costa et al.,
2007]. These centrality measures are defined considering par-
ticular definitions of influence [Newman, 2003]. It is assumed
that vertices with higher centrality measure are more suitable
to influence in the opinion of others. Among some of the
possibilities, we have the popularity of a vertex (degree cen-
trality) [Costa et al., 2007], the proximity or how close an
individual is to the others (closeness centrality) [Sabidussi,
1996], the trusted vertices in the transmission of informa-
tion (betweenness centrality) [Freeman, 1977], the proximity
of vertices to the network core (k-core) [Seidman, 1983] or
even the renowned that an individual has (pagerank central-
ity) [Brin and Page, 1998]. In the following, we present the
centrality measures adopted in this paper.

Degree centrality (DG) considers the number of connec-
tions or relations of a vertex. The set of vertices connected
to a certain vertex i is defined as the neighborhood and the
connection degree DGi represents the size of its neighbor-
hood [Costa et al., 2007]. It means, the higher the degree, the
more popular the vertex.

Betweenness centrality (BE) is related to the capacity of
information transmission of vertices. For a vertex j this mea-
sure quantified the number of shortest paths that pass through
j between all pair of vertices (i, k) [Freeman, 1977], with
i, j and k different. The centrality measure expresses how
much the vertex j works as bridge, meaning how confidence
or trusted is j in the network.

Eigenvector centrality (EV) takes into account that ver-
tices with same degree have different levels of importance
according to the importance of their neighbors. The eigen-
vector centrality is the principal eigenvector associated with
the greatest eigenvalue of the adjacency matrixA. It describes

the importance of the vertices given the quality of its connec-
tions [Bonacich, 1972].

Pagerank centrality (PR) derives from a Markovian pro-
cess that follows a random walk navigation through the net-
work. It expresses the importance of the vertices considering
the probability of arriving at certain vertex after a large num-
ber of steps. The pagerank was initially proposed to rank web
pages [Brin and Page, 1998] and the idea is to simulate the be-
havior of a user that is surfing on the net. The user navigates
following the links available at the current page or, she/he can
jump to other pages by typing a new URL in the browser. In
social networks it can be approached like the more cited or
renowned individuals.

Closeness centrality (CL) is the average of the shortest
paths from each vertex to the rest of the network [Sabidussi,
1996]. Formally, the closeness centrality is the inverse of the
average of the shortest paths from i to all the vertices, i.e.,
CLi = N/

∑
j 6=i

`ij . Thereby, vertices that are closer to the

others have higher closeness centrality. For the sake of calcu-
lating the centrality for disconnected networks, the average is
considered by component.
k-core centrality (KC) describes the topology of the net-

work in terms of sub network decomposition in cores. The
core of k order (Hk) is the set of vertices where for each
vertex i in Hk its degree ki ≥ k. It means, k is the maxi-
mum core that i can belongs, with Kc(i) = k and Hk been
the largest set of vertices with this property [Seidman, 1983].
The main core is the set of vertices with the largest k-core
value from the network, and these vertices are the most cen-
tral. Vertices with low values of k-core are commonly located
at the periphery of the network. Not necessary all the high-
degree vertices have higher k-core values. For instance, hubs
located in the periphery would have small values of k-core,
or vertices with larger k-core value could have not so large
degree [Kitsak et al., 2010].

Clustering coefficient (CT) or transitivity is a common
property in real-world networks. In social networks it means
that if A has one friend that is also friend of B, there is a strong
tendency that A being also a friend of B. In topology terms it
is the presence of triangles (cycles of order three) in the net-
work. The clustering coefficient [Watts and Strogatz, 1998]
for a vertexCTi is defined as the number of triangles centered
on i over the maximum number of possible connections for i.
CTi has value 1 if all neighbors of i are interconnected.

Structural Holes (HO) considers all the vertices as an ego
network, where connections no related with each vertex have
not direct effect. The key factor is the redundancy that each
vertex has in its neighborhood, evaluating if its position and
connections brings some opportunities. It means that the suc-
cess of an individual iwithin a social network or organization
is related to access local bridges (trusted people) [Burt, 1992].
If removed i from the network, a structural hole will happen
in the local neighborhood. These individuals are important to
the connectivity of local regions.

The network can be characterized by average the centrality
measures of all vertices i.e., 〈DG〉 = 1

N

∑n
i=1 DGi, and is

similar for the other measures.
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Table 1: Structural properties of the complex networks
Network N 〈DG〉 〈CT 〉 〈HO〉 〈BE〉 〈CL〉 〈EV 〉 〈KC〉 〈PR〉

hamsterster 2000 16.1 0.5399 0.2898 2.588× 103 1.43× 10−4 0.011 9.287 5.00× 10−4

advogato 5054 15.6 0.2525 0.3700 5.747× 103 6.19× 10−5 6.82× 10−3 8.137 1.98× 10−4

google+ 23613 3.32 0.1742 0.8112 3.581× 104 1.10× 10−5 2.30× 10−3 1.669 4.21× 10−5

2.2 Spreading process
Spreading is a pervasive process in society and several models
have been developed in order to understand the propagation
of ideas or opinions through social networks [Castellano et
al., 2009]. In classical rumor spreading models the ignorant
or inactive (S) are those who remain unaware of the informa-
tion, the spreaders (I) are those who disseminate the ideas,
and the stifler (R) are those who know the information but
lose the interest in spreading it. All vertices have the same
probability β for convincing their neighbors and probability
γ for stopping to be active as propagator.

The Maki-Thompson (MT) [Maki and Thompson, 1973]
rumor approach was employed to model the spreading pro-
cess. In the MT whenever an active spreader i contacts a
vertex j that is inactive, the latter will become active with
a fixed probability β. Otherwise, when j knows about the
rumor, it means j is a spreader or a stifler, the vertex i will
turn into a stifler with probability γ. The behavior when the
spreader stops to propagate is understood because the infor-
mation is too much known (contacting spreaders) or without
novelty (contacting stifler). The general rules of contact can
be represented as:

Ii + Sj
β−→ Ij ,

Ii + Rj
γ−→ Ri ,

Ii + Ij
γ−→ Ri ,

(1)

where i and j are neighbors and the operator “+” means the
contact between them.

In terms of Monte Carlo (MC) implementation, let con-
sider a constant population of N vertices in all time steps.
Each vertex can be only in one state, that is Ii(t) = 1 if i ∈
I , otherwise Ii(t) = 0, and Si(t) + Ii(t) + Ri(i) = 1. The
macroscopic fraction of ignorant (ψ(t)), spreaders (φ(t)) and
stifler (ϕ(t)) over time is calculated asψ(t) = 1

N

∑N
i=1 Si(t),

that is similar to the other states and always fulfill ψ(t) +
φ(t)+ϕ(t) = 1. We assume that infection and recovering do
not occur during the same discrete time window or step. Also
the case when a spreader randomly contacts one neighbor per
unit time, the contact process, was adopted.

The initial setup for the propagation is ψ(0) = 1 − 1/N ,
φ(0) = 1/N and ϕ(0) = 0. Each simulation begins with a
uniformly selection of vertices as defined in the initial setup.
At each time step, all spreaders uniformly select one of its
neighbors and try to infect it with probability β, or stop the
propagating with probability γ. The simulations run until the
end of the propagation process is reached, when φ∞ = 0.

Different theoretical models have been proposed for mod-
eling the rumor dynamics in networks [Moreno et al., 2004;
Barrat et al., 2008; Castellano et al., 2009; Borge-Holthoefer

et al., 2012]. These analytical models make assumptions
about the network structure such as the degree correlation
or distribution, compartments or class of vertices with same
probabilities, homogeneous mixing or mean field theory.
Notwithstanding all of them claim that their numerical so-
lutions agree with the MC simulations, so we adopt this ap-
proach.

3 Maximization of least influential spreaders
We analyze the spreading capacity in the microscopic and
macroscopic scales of the propagation. For each vertex i ∈
V , we calculate the final fraction of stifler ϕi∞. This quan-
tity represents how long the rumor propagates in the net-
work starting in i. Each ϕi∞ were average over 90 realiza-
tions. For the macroscopic propagation scale, the ϕV∞ repre-
sents the mean of spreading capacity for all vertices, it means
ϕV∞ = (

∑
i∈V ϕ

i
∞)/N .

3.1 Dataset
We employ the following social networks: the hamster-
ster [Kunegis, 2014], an undirected and unweighted network
based on the website data from HAMSTERSTER.COM. The
vertices are the users of the system and the edges represent
a relationship among users. It consists of friend and fam-
ily relationship between the users of the website. The ad-
vogato [kon, 2014], an online community platform for devel-
opers of free software launched in 1999. Vertices are users of
advogato and the directed edges represent trust relationships.
Finally, the google+ [Gpl, 2014] contains Google Plus user-
user links. The directed edge denotes that one user has the
other in his circles, but we assume the network as undirected.
We always consider the main component for these networks.

The topological characteristics of these networks are sum-
marized in Table 1, with the corresponding averages of
the centralities: degree 〈DG〉, clustering coefficient 〈CT 〉,
structural holes 〈HO〉, betweenness 〈BE〉, closeness 〈CL〉,
eigenvector 〈EV 〉, k-core 〈KC〉 and pagerank 〈PR〉. The
google+ is more an egocentric network (〈HO〉) than others,
where vertices are very close (〈CL〉) and most of them have
few connections. The hamsterster is a more sparse network
with more triangles (〈CT 〉) and connections between users.
And, advogato is a more dense network and in the middle
term of the previous.

3.2 Propagation analysis
For evaluating the impact of the least influential users in
the networks, we employ the z-score normalization over the
spreading capacities ϕi∞ and sort the values in ascending or-
der. The z-score indicates how many standard deviations an
element is according to the mean. The z-score of a raw value
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Figure 1: Comparative z-score of the propagation capacity in func-
tion of the proportion of least influential spreaders

x is z = x−µ
σ , where: µ is the mean and σ is the standard

deviation of the population. The impact is shown in Fig-
ure 1, where considering 10% of least influential spreaders,
the mean decreases around 3 standard deviations. This de-
creasing behavior continues successively. The less influential
spreaders impact the overall mean of spreading capacity.

We aim to recognize these least influential spreaders in or-
der to improve their influence. Following, we considered the
centrality measures and analyzed the topological influence
over the propagation and data clustering to find patterns on
these individuals.

3.3 Topological analysis
Z-score was calculated for each centrality measure and net-
work (Figure 2 a-c). The fraction of individuals was sorted
in ascending order for each centrality. Vertices with lowest
eigenvector centrality always led the lowest z-score values.

Jaccard coefficient was employed in order to measure the
proportion of least influential spreaders contained in each
group of vertices with lower centrality measure (Figure 2 d-f).
The Jaccard coefficient compares the similarity and diversity
of sample sets. It measures similarity between finite sample
sets, and is defined as the size of the intersection divided by
the size of the union of the sample sets: J(A,B) = |A∩B|

|A∪B| .
Here, for each centrality measure A represents the proportion
of vertices with lowest values andB the fraction of least influ-
ential vertices. We define the least influential users as the ver-
tices that achieved propagation values ϕi∞ ≤

ϕV
∞
2 . Selecting

less than 10% of vertices with lowest eigenvector centrality,
it was obtained around half of the less influential spreaders.

The topological properties considering 1% of vertices with
least influential spreading and lowest EV value were ana-
lyzed. We verify if these vertices also have low values in
other centralities. For each centrality measure we normal-
ize the values by its own average. Therefore, it is possible
to compare the networks and the maximum values achieved
(Figure 2 g-i). We observe that the topological properties of
individuals with lowest EV values are a subset of the values
presented for the least influential spreaders group. Unlike ex-
pected, vertices with BE, DG or PR above the mean may be
also less influential spreaders.

Table 2: k-means clustering result for the google+ network
Measures Cluster 1 (10%) Cluster 2 (67%) Cluster 3 (23%)

DG 1.029 ± 1.001 1.128 ± 0.386 10.553 ± 72.435
BE 0.00 ± 0.0004 0.00 ± 0.0005 0.0023 ± 0.023
CL 0.5 ± 0.00 0.5 ± 0.00 0.501 ± 0.019
PR 0.0007 ± 0.0007 0.0007 ± 0.0002 0.0043 ± 0.0299
EV 0.00 ± 0.00 0.0021 ± 0.0037 0.0117 ± 0.0202
KC 0.083 ± 0 0.094 ± 0.032 0.292 ± 0.178
CT 0.00 ± 0.00 0.00 ± 0.00 0.746 ± 0.312
HO 0.991 ± 0.0291 0.942 ± 0.166 0.360 ± 0.145

Propagation 2612.274 ± 332.095 3112.858 ± 56.965 3135.407 ± 37.310

Table 3: Propagation improvements for the real networks: 1st
place are in bold and 2nd place are underlined

Network Rewired (%) DG BE EV PR
5 1.0817 1.0932 1.0810 1.0844

hamsterster 2.5 1.0804 1.0817 1.0794 1.0783
0.5 1.0493 1.0510 1.0479 1.0489
5 1.0600 1.0594 1.0599 1.0594

advogato 2.5 1.0529 1.0556 1.0549 1.0557
0.5 1.0450 1.0439 1.0453 1.0447
5 1.0124 1.0158 1.0050 1.0112

google+ 2.5 1.0143 1.0102 1.0103 1.0171
0.5 1.0241 1.0190 1.0187 1.0266

3.4 Cluster analysis

We perform a clustering analysis in order to discover the
group of least influential spreaders according to the topolog-
ical characteristics of the vertices. As objects in the same
group are more similar to each other than those in other
groups, we aim to identify common properties of the elements
that belong to the group with lowest propagation rates.

We apply the popular k-means clustering [Macqueen,
1967] that partitions data into k mutually exclusive clusters.
Each cluster is defined by its members and by its centroid
that represents the point to which the sum of distances from
all objects in the cluster is minimized. We used the Weka1

implementation with the standard configuration.
The result for the google+ network is shown in Table 2.

As we set the parameter k = 3 the k-means generates three
clusters. We are mainly interested in the cluster 1 because
has the individuals with the lowest propagation mean. By
comparing the mean of the measures among clusters 1, 2 and
3, we observe that the values of EV ≈ 0 and HO ≈ 1 are
detachable in comparison to other clusters.

When performed the cluster analysis in hamsterster and
advogato, the more significant measures were CL < 0.5 and
also EV ≈ 0. In all the case, individuals with eigenvector
values close to zero are in the cluster with lowest spread-
ing capacity. If we aim to find a cluster with non influen-
tial spreaders in the network, we can run the k-means algo-
rithm until some group partition achieve an eigenvector mean
〈EV 〉 < 1/n. This pattern confirms the results of the topo-
logical analysis. Hence, we generalize that the lower the
eigenvector value, the lower the spreading capacity of ver-
tices.

1http://www.cs.waikato.ac.nz/ml/weka
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Figure 2: Propagation analysis for the real social networks hamsterster, advogato and google+: (a-c) the impact of vertices with low
centrality in the propagation; (d-f) the similarity between vertices with lower centrality and the less influential spreaders; (g-i) the topological
characteristic of the least influential spreaders and vertices with lowest EV values. For hamsterster and advogato were considered β = 0.3
and γ = 0.1, and for google+ β = 0.5 and γ = 0.1, in all simulations
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Figure 3: Propagation analysis for the real social networks when maximizing the social influence rewiring 0.5% of least influential spreaders
considering vertices with highest DG centrality: the impact of low centrality values in the propagation mean
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3.5 Influence maximization
For improving the spreading capacity of the network we se-
lected 5%, 2.5% and 0.5% of the vertices with lower EV. For
each vertex only one of its edges was randomly selected and
rewired to an influential vertex of the network. We randomly
consider vertices with highest DG, BE, EV and PR central-
ity and exchange only one edge of each influencer. For each
measure and proportion of lowest EV vertices to be rewired,
we have the resulting spreading capacity (ϕV∞) normalized by
the mean of the non maximized case (Table 3). When con-
necting the least influential spreaders to vertices with highest
DG centrality leads to 6 second places and 1 first place re-
sults. Hence, the visual results selecting 0.5% of lowest EV
connecting to vertices with highest DG centrality are shown
in Figure 3. The overall mean of propagation was increased
for each network. The z-score also increases for the other
measures in the entire network and not only for the 0.5% of
the selected vertices (Figure 3). For the best cases the im-
provements achieved an overall mean larger than the highest
spreading value of the non maximized case.

4 Final remarks
This paper explored the least influential spreaders of a net-
work considering centrality measures and analyzing topolog-
ical and data clustering approaches. The results indicate that
vertices with eigenvector value EVi < 1/N have little in-
fluence in the network. We selected 5%, 2.5% and 0.5% of
these individuals and rewired only one edge to an influential
vertex. This approach improves propagation capacity of those
vertices and the mean of the propagation in three social net-
works considered: google+, hamsterster and advogato. More
efficient targeted actions can be performed to improve the dif-
fusion on the network. Selecting a few non influential users
and presenting them to one influencer, they can change their
action, become better spreaders and improve the overall diffu-
sion capacity. For example, the promotion of interchange of
students to prominent institutions, or famous/popular people
giving talks in common places or to specific groups of indi-
viduals, can produce a considerable impact in the diffusion of
ideas and benefits. The motivation or incentive for the most
important vertices may be monetary, ideological causes, in-
crease publications and impact, among others. This is a work
in progress that shows promising experimental results. New
paths of study can be developed by analyzing the least influ-
ential spreaders and dynamics.
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