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Cardiac autonomic dysfunction in chronic
stroke women is attenuated after submaximal
exercise test, as evaluated by linear and
nonlinear analysis
Juliana Valente Francica1, Aline Bigongiari1, Luís Mochizuki2, Kátia Bilhar Scapini3, Oscar Albuquerque Moraes3,
Cristiano Mostarda4, Erico Chagas Caperuto1, Maria Cláudia Irigoyen3, Katia De Angelis5 and Bruno Rodrigues1,6*

Abstract
Background: We evaluated cardiac autonomic modulation in women with chronic ischemic stroke (at least 4 years
post-stroke) at rest and in response to submaximal exercise test.

Methods: Fourteen post-stroke women (S group) and 10 healthy women (C group) participated in this study.
Autonomic modulation (using linear and nonlinear analysis), blood pressure and metabolic variables at rest were
evaluated immediately after the exercise test and during the recovery period (20 min). All participants underwent
submaximal exercise test on cycle ergometer with gas analysis.

Results: At rest, the S group displayed higher lactate concentration, systolic (SBP) and diastolic blood pressure
(DBP) values when compared to C group. Furthermore, the S group had lower heart rate variability (HRV) in time
domain (SDNN: S = 30 ± 5 vs. 40 ± 8 ms; rMSSD: S = 14 ± 2 vs. C = 34 ± 3 ms), decreased high frequency band of
pulse interval (S = 8.4 ± 2 vs. 33.1 ± 9 %) and 2V pattern of symbolic analysis (S = 17.3 ± 1 vs. 30 ± 3 %) (both
indicators of cardiac vagal modulation) when compared to C group. Immediately after exercise, S group presented
higher values of lactate, SBP, DBP and double product when compared to C group, as well as decreased heart rate
recovery (HRR) measured at the first, second and third minutes. At recovery time, all HRV parameters in time and
frequency domains improved in the S group; however, HF band remained lower when compared to C group.

Conclusions: After the exercise test, women with chronic stroke presented reduced heart rate variability, reduced
cardiac vagal modulation, as well as reduced HRR, while displayed an improvement of heart rate variability and cardiac
vagal modulation when compared to their baseline. These results reinforce the importance of a physically active
lifestyle for cardiovascular autonomic disorders observed in chronic stroke women.

Keywords: Stroke, Autonomic nervous system, Spectral analysis, Symbolic analysis, Exercise test

Background
Cardiovascular and cerebrovascular diseases are the
major cause of mortality worldwide. In developed coun-
tries, stroke is the third leading cause of death. In USA,
on average, every 40 s someone has a stroke, with
women having a higher lifetime risk of stroke than men

(each year ~55 000 more women than men have a stroke
event) [1].
Stroke is also the leading cause of serious long-term dis-

abilities [1], and further cardiac disease has been found to
occur in up to 75 % of stroke survivors. In individuals with
stroke, cardiac comorbidities may complicate the course
of disease and contribute to early mortality [2]. Alterations
initiated by cerebrovascular disease may negatively change
the autonomic function and lead to cardiac impairment;
or they may lead to a cerebral event, thus making more se-
vere the existing autonomic dysfunction associated with
cardiovascular risk factors [3, 4].
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In the acute post stroke phase, individuals show
autonomic imbalance characterized by decreased vagal
modulation and increased sympathetic cardiac modulation
[3, 5, 6]. This autonomic imbalance may contribute for
end-organ damage, predispose to cardiovascular events [7]
and it is correlated with the severity of neurological deficits
and disability [8]. However, little is known about cardiac
autonomic changes in patients after chronic stroke, par-
ticularly in women.
Heart rate variability analysis (HRV) is a well-reputed

noninvasive method used to assess the autonomic
modulation of the heart. This method allows the sympa-
thetic and parasympathetic handles of the autonomic
nervous system to the heart to be evaluated [9]. Exercise
tests may also be an important tool to evaluate auto-
nomic cardiovascular modulation and its responsiveness.
In this sense, measuring heart rate recovery (HRR) after
exercise tests may reveal the extent of reactivation of the
vagal activity [10, 11]. Furthermore, studies have demon-
strated that HRR is associated with short-term heart rate
variability, and both have been associated with increased
risk for cardiovascular events and sudden death [12–15].
Thus, given that stroke is more prevalent in women

than in men, and that residual autonomic consequences
of the stroke may influence prognosis, the aim of this
study was to evaluate cardiac autonomic modulation in
women with chronic stroke (at least 4 years of diagnosis)
at rest and in response to submaximal exercise test
through linear and nonlinear analyses.

Methods
Subjects
Fourteen women with at least 4 years after ischemic
stroke diagnosis (S group) were recruited from the Neuro-
logical Physiotherapy Clinic of Sao Judas Tadeu University,
along with 10 sex and age-matched control (C group) sub-
jects from the surrounding area. Participants met the fol-
lowing eligibility criteria: (1) 50–70 years old; (2) sedentary,
with no changes in physical activity over the previous
3 months; (3) non-obese; (4) non-alcoholic; (5) non-
smokers; (6) diagnosis of a first-time, ischemic front-
parietal stroke which had occurred at least 4 years before
enrollment; (7) able to walk (with or without an assistive
device); (8) not using beta blockers (since this class of medi-
cations affects cardiovascular and autonomic response to
exercise testing); (9) the possible presence of hypertension
was not considered as a sufficient ground for excluding the
patients from the study. Subjects were excluded if they had
suffered from a recent cardiac event, acute cardiac or renal
failure, or if they were regular smokers.
The study was conducted in accordance with Declar-

ation of Helsinki. All subjects signed an informed consent
form for this study, which was approved by the Ethical

Research Committee of the Sao Judas Tadeu University
(protocol number CEP-USJT: 383.800).

Measurements
Subjects were instructed to avoid alcohol and caffeinated
beverages for the preceding 24 h of evaluations, which
were performed in the morning. Age and race were
self-reported, and medications use, clinical history, as
well as lifestyle habits were determined using stand-
ard questionnaires.
Bioelectrical impedance measure of body composition

(Biodynamics® - 450 BIA) was carried out and body mass
index was determined (BMI). The following experimen-
tal sequence was then adopted:

1) Baseline period: (i) blood pressure (BP) and heart rate
(HR) measurements; (ii) RR interval registration; and
(iii) metabolic variables evaluation (lactate and glucose).

2) Submaximal exercise test protocol.
3) Immediate post-exercise test: (i) assessment of BP

and HR; (ii) metabolic variables evaluation.
4) Recovery period (20 min after the end of exercise

test): (i) assessment BP and HR; (ii) recordings of
RR interval for the 20 min of recovery; and (iii)
assessment of metabolic variables

Blood pressure and metabolic measurements
At baseline, BP was measured by auscultation with the
volunteers sitting and at rest. Three consecutive systolic
(SBP) and diastolic BP (DBP) evaluations were carried
out after 10-min rest period, with at least a 2-min inter-
val between each one [16]. During submaximal exercise
test and at the recovery period, BP was assessed once
every 2 min. Double product (DP) was calculated by
multiplying the HR and SBP.
The levels of lactate and glucose in the blood were mea-

sured at baseline, immediately after post-exercise test, and
during recovery periods using a point of care hand-held lac-
tate analyzer (Accutrend, Roche Diagnostics®, Mannheim,
Germany). The analyzer is a small, battery-powered, reflect-
ance photometer with a turnaround time of 60 s, which
uses chemistry test strips on which a drop of blood
is applied.

Autonomic evaluation by linear and nonlinear analyses
RR interval was continuously recorded for 20 min dur-
ing both baseline and recovery, using a Polar® S-810i.
The spectrum resulting from the Fast Fourier Trans-
forms (FFT) modeling is derived from all the data present
in the recorded signal; it includes the entire signal vari-
ance, regardless of whether its frequency components ap-
pear as specific spectral peaks or as non-peak broad band
powers [17]. RR interval variability was evaluated in time
and frequency domains. Spectral power for low (LF: 0.03–
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0.15 Hz) and high (HF: 0.15–0.4 Hz) frequency bands was
calculated by means of power spectrum density integration
within each frequency band width, using a customized
routine (MATLAB 6.0) [18].
A symbolic analysis was carried out according to the

approach previously described and validated by Porta [19].
However, the data were adjusted for 3 groups instead of 4,
following Guzzetti et al. [20]. For this method, the same
5 min of iRR selected recording was used. Then, a coarse
graining approach based on a uniform quantization pro-
cedure was used to transform the iRR series into a se-
quence of symbols. The length (L) was kept fixed in all
analyses. The full range of the sequences was uniformly
spread over 6 levels (from 0 to 5), and patterns of length
L = 3 were constructed. Therefore, each subject and each
experimental condition had its own range of iRR intervals.
The Shannon entropy of the distribution of the patterns
was calculated to provide a quantification of the complex-
ity of the pattern distribution. All possible patterns (i.e.,
216) were grouped without any loss into 3 families re-
ferred to as (1) patterns with no variation (0V; i.e., all 3
symbols were equal), (2) patterns with 1 variation (1V; i.e.,
2 symbols were equal and the remaining symbol was dif-
ferent), and patterns with 2 variations (2V; i. e., all symbols
were different from the previous ones) [20].

Submaximal exercise test protocol
The exercise test was performed on a cycle ergometer
(Ergometric® 6.0). According to Tang et al. [21] and
Billinger et al. [22], a cycle ergometer may be an al-
ternative to a greater subset of the stroke survivor popu-
lation because of the seated support and feet affixation in
the pedals, which increase safety. A 3 min warm up was
previously performed, at 10 Watts · min−1, without charge.
This was followed by a ramp protocol of 10 Watts ·
min−1, with increments of 0.3 kp every minute, until
it reached 80 % of maximal HR age predicted (using
the formula 220 bpm - age), or by request of the
subject. When any of these parameters was reached,
the charge was removed and the protocol was final-
ized after 3 min cool-down at 10 watts. During exer-
cise, HR was monitored by simultaneous 12-lead
electrocardiogram (Wincardio, Micromed®) and BP,
assessed each 2 min. The expired gases were con-
tinuously analyzed with metabolic analyzer VO2000
(NedGraphics®, USA). Peak of maximal oxygen con-
sumption (VO2peak) was determined as the mean for
an integral number of breaths over the final 20 s of
the incremental phase.
Baseline HR was determined by the HR recorded as

participants were standing and before the initiation of
the treadmill test. Peak HR was determined as the high-
est value recorded across exercise protocol. HR recovery
(HRR) were calculated as the difference between peak

HR and HR at 1, 2 and 3 min after test cessation (HRR1’,
HRR2’, HRR3’, respectively).

Statistical analyses
Statistical analyses were performed with SPSS software
(Version 20.0 for Windows; SPSS Inc., Chicago, USA).
Data are presented as mean ± standard deviation (SD).
Repeated-measures ANOVA was used to test changes at
the baseline, post-exercise and recovery periods. One
way ANOVA was applied to compare measurements be-
tween the groups at the same period. Post-hoc analysis
was performed with Bonferroni test. Statistical signifi-
cance was set at P < 0.05.

Results
Subject profiles, medication use and associated comorbidi-
ties are shown in Table 1. We observed that 57 % of S
group had previously been diagnosed with hypertension.
There were no significant differences in age, body mass
index, lean and fat body mass between the groups, while
VO2 peak was smaller in S than in C group (Table 1).

Metabolic and hemodynamic responses to submaximal
exercise test
During baseline evaluation, S group displayed higher lac-
tate concentration, systolic and diastolic blood pressure
values when compared to C group (Table 2). BG and DP
at baseline were similar in both S and C groups. Imme-
diately after exercise (post-exercise period), S group pre-
sented higher values of lactate, systolic and diastolic
blood pressure, and DP when compared to C group and
baseline evaluation.

Table 1 Participant characteristics

Parameters C S

Age (years) 61 ± 5 57 ± 6

Time after stroke (months) - 60 ± 10

BMI (Kg/m2) 26.1 ± 3.3 29.3 ± 3.7

Lean Mass (%) 70.8 ± 6 65.2 ± 8

Fat Mass (%) 26.2 ± 5 34.1 ± 6

VO2 peak (mL/Kg−1/min−1) 37.8 ± 6 29.6 ± 4*

Medications (n)

ACE inhibitor 3 7

HMG-CoA reductase inhibitor 2 9

Diuretic 4 1

Acetylsalicylic acid - 10

Associated Comorbidities (n)

Hypertension 3 8

Dyslipidemia 1 5

Values expressed as mean ± SD. C: control group; S stroke group, BMI body
mass index, VO2 peak peak of oxygen consumption during submaximal
exercise. *P < 0.05 vs. C
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During the recovery period, only systolic blood pressure
and DP values remained higher in the S group when com-
pared to the C group, while lactate and diastolic blood
pressure were similar between the groups (Table 2). Fur-
thermore, metabolic (except for BG) and hemodynamic
parameters were reduced in the S group at the recovery
period when compared to their post-exercise evaluation.

Heart rate and heart rate recovery
No differences were observed in HR at baseline, peak of
exercise test, and recovery periods between the groups
(Table 3). However, HR values in the 1st and 2nd minutes
after exercise test cessation remained higher in the S group
when compared to C group, while HR values remained
unchanged in the 3rd minute after the end of test in all
groups. In addition, HRR values in the 1st (20 ± 5 vs. 43 ±
6 bpm; P < 0.001), 2nd (29 ± 6 vs. 52 ± 10 bpm; P = 0.001)
and 3rd minutes (46 ± 9 vs. 64 ± 8 bpm; P = 0.105) were re-
duced in S group when compared to C group (Fig. 1).

Cardiac autonomic modulation
Regarding heart rate variability in time domain, the S
group had lower values of VarRR, SDNN, rMSSD, and
pNN50 than C groups at the baseline period. Through-
out the recovery period, the S group had higher VarRR,
SDNN, pNN50 and rMMSD when compared to their
baseline evaluation (Table 4). Furthermore, at recovery

time, the S group presented similar SDNN and rMSSD
values when compared to C group.
In frequency domain (Table 4) at baseline evaluation, the

S group had a decrease in HF band (absolute and normal-
ized values) when compared to the C group. Throughout
the recovery period, the S group displayed increased LF
band (absolute and normalized values) and HF band (ab-
solute and normalized values) when compared to the base-
line evaluation. However, despite the increase in HF band
in the S group, these values remained lower than those
found for the C group. Similarly, LF/HF ratio was in-
creased in S group when compared to C, both at baseline
(2.3 ± 0.3 vs. 0.9 ± 0.2), and during recovery (1.5 ± 0.1 vs.
0.6 ± 0.1). However, it should be noted that the LF/HF ra-
tio was reduced in S group when compared to the baseline
evaluation (Fig. 2).
The results of symbolic analysis are shown in Table 4.

At baseline evaluation, the 0V pattern, which indicates
sympathetic modulation, was increased, while 2V pat-
tern, an indicator of parasympathetic modulation, was
reduced in S group when compared to C group. During
recovery, both parameters, 0V and 2V, were increased in
S group when compared to their initial evaluation,
reaching similar values to C group.

Table 2 Metabolic and hemodynamic variables at baseline, immediately after exercise (post-exercise) and after 20 min of recovery

Baseline Post-exercise Recovery

C S C S C S

BG (mg/dl) 97 ± 5 99 ± 8 90 ± 9 90 ± 8 98 ± 7 91 ± 10

Lactate (mg/dl) 2.5 ± 0.6 4.0 ± 0.4* 3.5 ± 0.5 5.4 ± 0.5*† 2.7 ± 0.6 3.8 ± 0.8‡

SBP (mmHg) 109 ± 10 126 ± 9* 114 ± 8 138 ± 12*† 109 ± 6 125 ± 9*‡

DBP (mmHg) 76 ± 7 84 ± 5* 75 ± 8 89 ± 6* 76 ± 5 82 ± 8‡

DP (mmHg/bpm) 7980 ± 624 9393 ± 765 11871 ± 492† 13326 ± 952*† 8264 ± 802‡ 10452 ± 919*‡

Values expressed as mean ± SD. C control group, S stroke group, BG blood glucose, SBP systolic blood pressure, DBP diastolic blood pressure, DP double product.
*P < 0.05 vs. C at same time evaluation; †P < 0.05 vs. baseline in the same group; ‡P < 0.05 vs. post-exercise in the same group

Table 3 Heart rate responses (bpm) to submaximal exercise test

Parameters C S P values

Baseline 73 ± 10 75 ± 15 0.837

Peak HR 153 ± 12† 144 ± 15† 0.688

HR 1′ 110 ± 15† 124 ± 18†* 0.028

HR 2′ 101 ± 15† 115 ± 12†* 0.001

HR 3′ 89 ± 17 98 ± 13 0.093

Recovery 76 ± 18 82 ± 10 0.083

Values expressed as mean ± SD. C control group, S stroke group, HR heart rate,
HRR heart rate recovery. *P < 0.05 vs. C at same time evaluation; †P < 0.05 vs.
baseline in the same group

Fig. 1 Heart rate recovery changes at the 1st, 2nd, and 3rd minutes
in the Control (C) and Stroke (S) groups. *P < 0.05 vs. C at same
time evaluation
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Discussion
The main finding of our study is that patients with
chronic stroke (5 years in average) presented decreased
heart rate variability, autonomic imbalance and impaired
cardiac vagal modulation, as measured by linear and
nonlinear analysis. Other important findings in women
with chronic ischemic stroke, when compared to con-
trols, include: (1) reduced values of VO2 peak and higher
levels of blood lactate; (2) decreased HRR measured at 1,

2 and 3-min after submaximal exercise test; (3), im-
proved hemodynamic and cardiac autonomic parameters
during the recovery period (20 min after the end of exer-
cise test).
Most of the survivors had residual disabilities caused

by stroke, such as hemiparesis and spasticity, while total
recovery was much less frequent. Activity limitations
were demonstrated by the reduced ability to perform
daily tasks and basic self-care, leading the individual to
chronic sedentary behavior [22]. Regarding this issue, in
a study conducted by Gadidi et al. [23], the percentage
of subjects reporting some activity limitation 4 years
post stroke was 42.3 %, while 28.2 % pointed to less se-
vere limitations and 78.1 % felt they had not fully recov-
ered. Although we did not classify individuals according
to their self-reporting of activity limitations, we observed
that VO2 peak was reduced by 21 % in stroke women,
and blood lactate levels were higher at rest and after ex-
ercise test when compared to the controls, which seems
to indicate physical deconditioning and sedentary life-
style on stroke survivals.
Physical deconditioning usually leads to physiological

and metabolic changes in the paretic muscle. These
changes are characterized by decreased blood flow, in-
creased lactate production, increased muscle glycogen
utilization and decreased ability of fatty acid oxidation.
In addition, changes in muscle fibers during exercise were
observed: active paretic muscle activated glycolytic type II
fibers to initiate contraction, while the non-paretic muscle
recruited primarily type I fibers. These changes usually
lead to disuse and causes decreased oxidative metabolism,
low resistance to aerobic exercise, early fatigue, sedentary
lifestyle and deconditioning [24–26].
Blood pressure values were higher in S group (at rest,

in the post exercise and recovery period) when com-
pared to C group. Although 57 % of S group individuals
had prior history of hypertension, blood pressure values
observed in these patients were within normal parame-
ters, showing that the pressure levels were controlled
[16]. Similarly, Dütsch et al. [27] have found no alter-
ations in blood pressure in stroke patients 30 months
after stroke. In addition, since that double product
seems to be an indirect predictor of myocardial oxygen
consumption [28, 29], our findings suggest that women
with chronic stroke require higher myocardial work
when compared to the control group.
In the present study, even after nearly five years post-

stroke, women presented reduced time domain parame-
ters (VarNN, SDNN, rMSSD and pNN50) of heart rate
variability at rest. Similarly, Muslumanoglu et al. [5] have
observed reduced values for VarRR, SDNN and pNN50
in the post-stroke acute phase. Dütsch et al. [27] have
shown that post–acute stroke patients presented parasym-
pathetic cardiac deficit and higher LF/HF than age-and

Table 4 Heart rate variability in the time and frequency domain
at baseline and during recovery from exercise protocol

Baseline Recovery

Parameters C S C S

Time Domain

VarRR (ms2) 1152 ± 39 717 ± 44* 1346 ± 130 890 ± 66*†

SDNN (ms) 40 ± 8 30 ± 5* 41 ± 6 44 ± 8†

rMSSD (ms) 34 ± 3 14 ± 2* 42 ± 4 35 ± 3†

pNN50 (%) 8.7 ± 1.0 2.2 ± 0.5* 17.3 ± 4.2† 7.5 ± 1.6*†

Frequency Domain

LF (ms2) 266 ± 80 216 ± 35 317 ± 81 244 ± 33†

LF (%) 23 ± 6 12 ± 4 21 ± 5 25 ± 8†

HF (ms2) 384 ± 75 55 ± 13* 533 ± 80 154 ± 30*†

HF (%) 33.1 ± 9 8.4 ± 2* 38.2 ± 6 16.3 ± 3*†

Symbolic analysis

0V (%) 21 ± 3 39.9 ± 2 24 ± 3 30.0 ± 3†

1V (%) 49 ± 1 42.5 ± 1 48 ± 2 45 ± 2

2V (%) 30 ± 3 17.3 ± 1 28 ± 4 25 ± 3†

Values expressed as mean ± SD. C control group, S stroke group, VarRR variance of
RR interval, SDNN standard deviation of the RR interval, rMSSD root-mean square of
differences of successive RR intervals, pNN50% of differences of adjacent
RR intervals > 50 ms, LF low frequency band in absolute and normalized
values, HF high frequency band in absolute and normalized values, LF/HF
low frequency/high frequency ratio; patterns with no variation (0 V; i. e., all 3
symbols were equal), (2) patterns with 1 variation (1 V; i. e., 2 symbols were equal
and the remaining symbol was different), and patterns with 2 variations (2 V; i. e.,
all symbols were different from the previous ones) *P < 0.05 vs. C; †P < 0.05 vs.
baseline in the same group; ‡P < 0.05 vs. post-exercise in the same group

Fig. 2 Autonomic balance (LF/HF ratio) in the Control (C) and Stroke
(S) groups. *P < 0.05 vs. C at same time evaluation; †P < 0.05 vs.
baseline in the same group
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sex-matched controls. In our study, women with stroke
showed a decrease in both HF band of spectral analysis
and in 2V pattern of symbolic analysis. These two
measurements serve as indicators of both vagal cardiac
modulation and autonomic imbalance, as demonstrated
by the LF/HF ratio.
Since the 80s, researchers have indicated that physical

inactivity is associated with negative changes in auto-
nomic nervous system. Reduction in blood volume af-
fects cardiac stroke volume; as such, maintaining oxygen
delivery [30] requires an increase in heart rate triggered
by increased sympathetic and reduced parasympathetic
activity to the sinoatrial node Furthermore, studies with
experimental models of physical inactivity, associated
with a sedentary lifestyle or extreme forms of inactivity
with bed rest or spaceflight, have pointed to a decrease
in parasympathetic drive and an increase in the sympa-
thetic tonus to heart [See for review, 31]. These findings
may explain, at least in part, the autonomic imbalance
observed in chronic stroke individuals observed in the
present study.
Some stroke subjects (57 %) were diagnosed with hyper-

tension before the event, and most of them were being
treated with angiotensin-converting enzyme (ACE) inhibi-
tors. Most antihypertensive drugs induce a rearrangement
of the autonomous nervous system. It is well-established
that central sympatholytic agents and beta-blockers induce
amplified inhibitory effects on sympathetic activity. Fur-
thermore, angiotensin-converting enzyme inhibitors and
angiotensin II receptor antagonists may also promote re-
duction of sympathetic tone, although to a lesser extent.
On the other hand, other compounds may either be neu-
tral or may play unfavorable role on the sympathetic ner-
vous system, such as long-acting calcium channel blockers,
diuretics, and short-acting calcium channel blockers, re-
spectively [32–34]. Although it is not possible to differenti-
ate whether autonomic dysfunction, as displayed by the
stroke group, was a result of ischemic cerebral event, previ-
ous hypertension, or both, we suggest that the residual
motor disability triggered by stroke may be the main rea-
son, since blood pressure levels were controlled and within
normal limits.
Regarding predictive values of heart rate variability, it

is well established that alterations in these parameters
may predispose individuals to arrhythmias and cardiac
events [35–37], being associated with several diseases,
e.g., myocardial infarction [38, 39] heart failure [40], dia-
betes [41] and stroke [42, 43]. Moreover, heart rate vari-
ability has been found to be a predictor of stroke in
subjects aged 55–70 years and without cardiovascular
disease [44].
In addition to autonomic modulation analysis, we ob-

served that women with chronic stroke showed a decrease
in HRR measured at 1, 2 and 3 min after the end of test

when compared to controls. These results are indeed sig-
nificant, since the decreased HRR at 1, 2 and 3 min after
exercise is mainly a result of impaired vagal reactivation, a
predictor of cardiovascular events [45–47]. Furthermore,
decreased vagal tone is found in several conditions and it
is generally associated with poor cardiovascular prognosis
[48–50]. In fact, HRR after exercise seems to be correlated
with heart rate variability in the early recovery phase after
submaximal exercise [51, 52], reinforcing our findings.
To the extent that the parasympathetic modulation is de-

teriorated, achieving an adequate heart rate during exercise
has proved challenging, as well as returning to baseline
values. Thus, the impairment of vagal function is detectable
not only for heart chronotropic incompetence (an aspect
which has not been covered in this study), but also for the
recovery of heart rate immediately after exercise.
According to Mravec [53], afferent and efferent vagal

pathways may affect several mechanisms involved in the
onset and progression of stroke. One of the mechanisms is
the central and peripheral inflammation, which may either
lead to stroke or be stroke-induced. Reduced vagal activity
mediated by a decrease in cholinergic anti-inflammatory
pathway may be accompanied by an increase in the pro-
inflammatory status and may represent a risk factor for
stroke. Yet, stroke may alter vagal immunoregulatory func-
tions and lead to inflammatory reactions in the peripheral
tissues and brain [53].
Since the presence of residual motor disabilities may

lead to a chronic condition of physical inactivity, and
consequently to an exacerbated autonomic dysfunction,
chronic stroke patients remain at high risk for cardiovas-
cular events, including another stroke, and this should
not be overlooked. In this sense, several experimental
and clinical studies have demonstrated that exercise can
improve cardiovascular autonomic function in stroke
subjects within a short time after the event [54–58]. In
our study, we demonstrated that, although some param-
eters of heart rate variability, i.e., VarNN, pNN50 and
HF, remained lower than those found for controls sub-
jects, improvement was actually detected in all time and
frequency domain parameters, as well as in the symbolic
analysis in the stroke group at recovery after submaximal
exercise test. These data suggest that aerobic exercises, if
well conducted and carefully monitored, may be an effect-
ive non-pharmacological strategy to improve heart rate
variability and cardiac vagal modulation in stroke women,
even after a chronic period after the event.
This study has limitations that deserve comments.

First, although we did not divide patients according to
injury side, they had similar patterns of reduced para-
sympathetic modulation, both at baseline and in the re-
covery period. Second, the lack of a hypertensive control
group when more than half of patients with stroke had a
history of hypertension does not allow us to distinguish
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the participation of each of these diseases on autonomic
dysfunction presented by the stroke group. However, this
issue was not the focus of this study. Another limitation
lies in the fact that our study population was undersized,
i.e., it was not large enough (14 chronic stroke women
and 10 controls) to enable us to draw conclusions suit-
able for extending and generalizing our inferences and
results. In fact, the minimum sample size to promote a
power of 80 % in paired analyses was in C group n = 12
and in S group n = 16. This calculation has been care-
fully considered by the G * Power 3.2.1 software. Finally,
although we excluded women who were taking beta-
blockers, the presence of comorbidities (as hyperten-
sion) and the medications use may had some influ-
ence on cardiovascular autonomic modulation of the
evaluated individuals.

Conclusion
In conclusion, we found that women with chronic stroke
(5 year post-stroke, in average) presented negative changes
in lactate, aerobic capacity and autonomic modulation,
more specifically decreases in vagal component of heart
rate variability and symbolic analysis. Furthermore, in re-
sponse to submaximal exercise test, women with stroke
showed impaired heart rate recovery immediately after the
exercise test, probably due to reduced vagal modulation.
These results highlight the importance of detecting and
preventing the loss of parasympathetic function in pa-
tients after a chronic stroke, since such impairment may
be an important risk factor for new cerebrovascular or
cardiovascular events. On the other hand, in the recovery
period after submaximal exercise test, autonomic modula-
tion was improved when compared to baseline levels of
stroke women, emphasizing the importance of avoiding
the physical deconditioning in women after stroke. It is
important to emphasize that further studies with larger
populations are needed in order to dissect out, in sub-
groups analyses, the contribution of the different co-
factors to the observed heart rate variability alterations.
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