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ABSTRACT
Although there is a large and growing literature that tackles the
unsupervised outlier detection problem, the unsupervised evalua-
tion of outlier detection results is still virtually untouched in the
literature. The so-called internal evaluation, based solely on the
data and the assessed solutions themselves, is required if one wants
to statistically validate (in absolute terms) or just compare (in rel-
ative terms) the solutions provided by different algorithms or by
different parameterizations of a given algorithm in the absence of
labeled data. However, in contrast to unsupervised cluster analysis,
where indexes for internal evaluation and validation of clustering
solutions have been conceived and shown to be very useful, in the
outlier detection domain this problem has been notably overlooked.
Here we discuss this problem and provide a solution for the inter-
nal evaluation of top-n (binary) outlier detection results. Specifi-
cally, we propose an index called IREOS (Internal, Relative Evalu-
ation of Outlier Solutions) that can evaluate and compare different
candidate labelings of a collection of multivariate observations in
terms of outliers and inliers. We also statistically adjust IREOS for
chance and extensively evaluate it in several experiments involving
different collections of synthetic and real data sets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Outlier detection, unsupervised evaluation, validation

1. INTRODUCTION
One of the central tasks of data mining is outlier or anomaly de-
tection, the problem of discovering patterns that are exceptional in
some sense. Detecting such patterns is relevant for two main rea-
sons: (i) in some applications, such patterns represent spurious data
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(e.g., sensor failures or noise) that should be removed in a prepro-
cessing step for further data analysis; or, more importantly, (ii) in
many applications, such patterns represent extraordinary behaviors
that deserve some special attention, such as genes associated with
certain diseases, frauds in financial systems, employees with un-
usual productivity profiles, or customers with uncommon purchas-
ing patterns.

Outlier detection techniques can be categorized in different ways.
For instance, a common distinction is that between the methods that
assign binary labels (“outlier” vs. “inlier” for those observations
deemed anomalous vs. normal) and methods that assign a score or
rank representing a degree to which an observation is considered
to be outlier. Another distinction is that between supervised, semi-
supervised, and unsupervised outlier detection techniques [11]. Su-
pervised techniques assume that a set of observed instances labeled
as inliers and outliers are available to train a classifier. In the semi-
supervised scenario, labeled outliers are not available and only pre-
viously known inliers can be used in order to obtain a (one class)
classification model. When no labeled data are available at all, it is
necessary to use unsupervised techniques, which do not assume any
prior knowledge about which observations are outliers and which
are inliers.

In this work we focus on unsupervised outlier detection scenarios.
In general, an outlier in this context can be described as “an obser-
vation (or subset of observations) which appears to be inconsistent
with the remainder of that set of data” [4]. In this context, there
is no generally applicable definition of “appearance of inconsis-
tency”; its formalization rather depends on the application scenario
and the detection method to be used. A common scenario is to
apply some outlier detection method to a database with N obser-
vations, labeling a certain subset of n such observations as the n
most likely outliers, while the remaining N − n observations are
labeled as inliers. This is referred to as the top-n outlier detection
problem [1, 2, 5, 9, 15, 20, 23, 28, 29, 32], which is far from trivial,
especially when dealing with multivariate data following complex,
unknown distributions. Without labeled examples, the main com-
plicating factor in this problem is that the notion of “outlierness” is
not precisely and generally defined.

The subjectivity inherent in the unsupervised outlier detection sce-
nario is one of the main reasons why a rich variety of detection
methods has been developed, from classic parametric statistical
methods [4, 13] to more recent database-oriented approaches con-



ceived to deal with multivariate, possibly large databases. Con-
sidering the latter category, a plethora of detection algorithms has
emerged in the past 15 years or so. Examples are DB-Outlier
[18, 19], kNN Outlier [2, 32], LOF [7] and its many variants
[16,21,22,30,37,41] (see, e.g., the work of Schubert et al. [35] for
a discussion of these and many more variants), and ABOD [23],
just to mention a few. Each of these algorithms, however, uses
its own criterion to judge quantitatively the level of adherence of
each observation with the concept of outlier, from a particular per-
spective. This complicates not only the selection of a particular
algorithm and/or the choice of an appropriate configuration of pa-
rameters for this algorithm in a practical application, but also the
assessment of the quality of the solutions obtained, especially in
light of the problem of defining a measure of quality that is not tied
to the criteria used by the algorithms themselves. These issues are
interrelated and refer to the problems of model selection and assess-
ment (evaluation or validation) of results in unsupervised learning.
These problems have been investigated for decades in the area of
unsupervised data clustering [14], but are rarely mentioned and are
virtually untouched in the area of outlier detection [43].

In the data clustering domain, the related problems of evaluation
and model selection are tackled by using some kind of quantita-
tive index, called validation criterion [14]. In practice, when labels
are not available, internal validation indexes can be used. These
indexes are called internal as they do not make use of any external
information (such as class labels) in the evaluation of a solution. In-
stead, internal indexes measure the quality of an obtained clustering
solution based only on the solution and the data objects. Most such
indexes are also relative in the sense that they can be employed
to compare different clustering solutions pointing out which one is
better in relative terms. Therefore they can also be used for model
selection. Internal, relative indexes have been shown to be effec-
tive and useful tools for the unsupervised clustering evaluation and
model selection tasks — e.g. see [10, 26, 39, 40] and references
therein.

The areas of clustering and outlier detection are related to each
other and, from a certain perspective, they can even be seen as two
sides of the same coin. In fact, when referring to an outlier as “an
observation which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism”,
as in Hawkins’ [13] definition, it is implicitly assumed that there
are one or more mechanisms responsible for generating the normal,
“unsuspicious” observations. Clusters are possible candidates to
model such mechanisms. Surprisingly, although the internal eval-
uation problem has been extensively studied in data clustering, it
has been completely neglected in outlier detection. In this paper
we step towards bridging this gap by proposing an internal, rela-
tive evaluation measure for unsupervised outlier detection. We start
from a definition of “outlierness” that is not tied to any particular
criterion used by outlier detection algorithms. Rather, it follows the
same, common intuition as a multitude of these algorithms and cri-
teria: an outlier is an observation that is to some extent farther away
and can therefore be more easily separated from other observations
than an inlier. We formulate separability for outlier detection in an
objective and principled way, leading to a natural definition of the
proposed index.

In summary, we make the following contributions in this paper:

• We introduce the first internal, relative validation measure
for evaluation of outlier detection results, IREOS (Internal,

Relative Evaluation of Outlier Solutions). In its most gen-
eral form, IREOS can evaluate given solutions in polynomial
time, but searching the solution space using the measure it-
self as the basis for a detection algorithm would, in principle,
not be computationally feasible in the general case (which is
a common property of truly independent measures for evalu-
ation).

• We propose furthermore an improved version of IREOS that
is adjusted for chance by removing from the index the theo-
retical offset that is expected to be observed when evaluating
random solutions. In addition to the adjusted index, we also
devise means to return p-values with respect to the null hy-
pothesis of a random solution.

• Since the exact procedure to adjust the index for chance can
be computationally demanding for large data sets, we also
provide a faster version of the proposed procedure, based on
Monte Carlo experiments.

• We extensively evaluate IREOS using different collections of
synthetic and real data sets, both in controlled experiments as
well as in practical experiments of model selection.

The remainder of this paper is organized as follows. In Section 2,
we discuss the typical approaches for external evaluation and the
different requirements and use cases for internal evaluation. In
Section 3, we introduce IREOS, discussing requirements and so-
lutions, adjustment for chance, statistics, and algorithmic proper-
ties. We evaluate this index in Section 4 and conclude the paper in
Section 5.

2. RELATED WORK
In the literature so far, the evaluation of results in unsupervised out-
lier detection has been mostly restricted to controlled experiments
in research papers that make use of labeled data sets to evaluate
how algorithms compare to other algorithms when trying to assess,
in an unsupervised way, observations previously known to be in-
liers or outliers according to a particular intuition or semantic (e.g.,
normal patients versus patients with an uncommon pathology). In
this scenario, referred to as external evaluation or validation, the la-
bels are not used by the algorithms, but rather to assess their results
only [43, 46].

For the external evaluation of a top-n outlier detection solution,
one is given a data set with n known outliers (ground truth) as well
as the observations ranked top-n by the given solution. Precision-
at-n (prec@n for short) measures the fraction of the true outliers
(i.e., labeled in the ground truth as outlier) among the top-n ob-
jects of the given solution [8]. If an outlier ranking is to be eval-
uated beyond the top-n ranks, one could also decide to measure
prec@2n, prec@3n, or precision at some other point in the rank-
ing, but the typical choice is to use the number of true outliers as
cutoff value for measuring precision [43]. A common alternative
is the Receiver Operating Characteristic (ROC), which compares
the candidate ranking against the binary ground truth by plotting
the true positive rate against the false positive rate. Variants of
these measures and more in-depth considerations about the exter-
nal evaluation of unsupervised outlier detection results have been
discussed, e.g., by Schubert et al. [34].

For internal evaluation, which is the focus of our paper, we are not
aware of the existence of any internal validation index for unsuper-
vised outlier detection. This has been noted as a gap in the literature



with respect to the development of advanced ensemble selection
methods [43], but the potential applications of internal measures
are far more diverse. Most fundamental is the practical application
of outlier detection methods where users would benefit from un-
supervised estimates of the quality of a solution provided by some
method. After all, the availability of labeled data required by ex-
ternal evaluation measures is not consistent with the premises of
unsupervised learning, and the commonly practiced external eval-
uation of unsupervised outlier detection algorithms makes sense
only when comparing performances of algorithms in controlled ex-
periments.

3. INTERNAL EVALUATION OF
OUTLIER DETECTION

3.1 Problem Statement
Let X = {x1, · · · ,xN} be an unlabeled data set containing N
d-dimensional feature vectors, xi, and assume that one or more un-
supervised outlier detection algorithms will produce, for this data
set, candidate solutions of top-n outliers, which one wants to eval-
uate in the absence of labels. Formally, a solution can be seen as a
subset S ⊂ X, |S| = n, containing the objects labeled as outliers.
Given a collection of such candidate solutions, we want to inde-
pendently and quantitatively measure the quality of each individual
candidate solution, e.g., in order (i) to assess their statistical signif-
icance when compared to the null hypothesis of a random solution;
or (ii) to compare them in relative terms so that the best candidates,
corresponding to more suitable models (algorithms, parameters),
can be selected.

3.2 Preliminary Attempt: A Baseline Index
We start from the intuition that an outlier is an observation that is to
some extent farther off and can therefore be more easily separated
(discriminated) from other observations than an inlier. The labeling
of n data objects as outliers corresponding to a better (worse) unsu-
pervised outlier detection solution S is expected to be more (less)
according to this intuition. The basic problem is then to quantify
how easy or difficult it is to separate each object xi ∈ S from other
objects. In a good solution S, consisting mostly of genuine outliers
correctly detected by some method, the average degree of separa-
bility is expected to be high, whereas in a poor solution containing
many false positives this average degree of separability should be
lower.

We propose to assess the separability of individual data objects us-
ing a classifier. We advocate the use of a maximum margin classi-
fier [36,42], as this type of classifier is able to quantify how distant
each object is from the decision boundary while trying to maxi-
mize the margin of separability between this boundary and the in-
stances of different classes. This idea is illustrated in Figure 1.
Figures 1(a), 1(b), and 1(c) highlight different objects labeled as an
outlier (red square) in different hypothetical outlier detection so-
lutions. In Figure 1(a), the highlighted object, a genuine global
outlier, is far away from a maximum margin classification bound-
ary (dashed line) that discriminates it from the other objects. In
Figure 1(b), the highlighted object is arguably a local outlier (w.r.t.
the neighboring cluster) and the margin is narrower but still wider
than that in Figure 1(c). In the case of Figure 1(c), the highlighted
object is undoubtedly an inlier and not only the margin is very nar-
row but also the decision boundary needs to be nonlinear (i.e., more
complex).

(a) Global outlier (b) Local outlier

(c) Inlier
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Figure 1: Illustrative data set: (a − c) three different objects
labeled as outliers; (d) curves of separability for a maximum
margin classifier for each of these labeled outliers.

The fact that the decision boundary needs to be nonlinear to sepa-
rate certain objects (as in the example in Figure 1(c)) implies that
a nonlinear maximum margin classifier is required for our purpose,
such as Nonlinear SVMs or Kernel Logistic Regression [36, 42].
These classifiers use a kernel function to transform the original
(possibly non-linearly separable) problem into a linearly separable



one. One of the most effective and popular kernel functions is the
radial basis kernel, given by:

K(xi,xj) = e−γ‖xi−xj‖2 .

The term γ, which is inversely proportional to the width of such a
Gaussian-shaped kernel, is positively related to the flexibility (de-
gree of nonlinearity) of the decision boundary of the corresponding
classifiers. In other words, the discrimination capacity of a kernel-
based classifier is positively dependent on γ. As a special case it
approaches a linear classifier as γ approaches zero. The effect of γ
is similar to that of the order of a polynomial kernel function, start-
ing from linear for first order and getting more and more non-linear
as the order increases.

In practical classification tasks, γ can be used to control the com-
promise between the performance of the classifier on the training
data versus on test data. Here, however, we are not interested at
all in the classifier itself or its performance on new, unseen data.
We use a classifier merely to measure the degree of difficulty when
trying to discriminate between one individual data object and the
other data objects. The key observation to achieve this without
having to specify a particular value for γ as a parameter is that our
original premise tends to hold true, to a lesser or greater extent, no
matter the value of γ. In other words, the fundamental assumption
“the more outlierish an object is, the easier is it to discriminate
from others” is expected to be observed for different values of γ,
although the contrast between easier and more difficult cases may
change. This is illustrated in Figure 1(d). We vary the value of γ
from zero up to a maximum value γmax (for which all the objects la-
beled as outliers (a, b, c) can be individually discriminated from all
the others by using a kernel-based classifier). The values along the
curves (vertical axis) stand for a measure p(xj , γ) that quantifies in
a normalized interval how far each object xj is from the decision
boundary. For all values of γ, the two outliers are distinctly farther
away from the decision boundary than the inlier.

Thus, we do not need to choose a particular value of γ. Instead, we
can measure the overall separability of an object xj by computing
the area under the curve (AUC) over the interval of γ values, i.e.,∫ γmax

γ=0

p(xj , γ).

Our final goal is, though, to evaluate the separability across the
collection of data objects labeled as outliers in a given solution S.
We therefore take the average curve of separability for those objects
in S, i.e.,

p̄(γ)=
1

n

∑
xj∈S

p(xj , γ),

and then compute the area under this curve to get a single number,
i.e., ∫ γmax

γ=0

p̄(γ).

This value can be trivially normalized in [0, 1] by dividing it by its
maximum possible value, γmax, thus giving rise to a first, prelimi-
nary index,

I(S) =
1

γmax

∫ γmax

γ=0

p̄(γ).

As in practice classifiers need to be trained to compute p̄(γ) for
each γ, we discretize the interval [0, γmax] into a finite number of

values for γ, from γ1 = 0 to γnγ = γmax. A baseline index can
thus be computed (within [0, 1]) as:

I(S) =
1

nγ

nγ∑
l=1

 1

n

∑
xj∈S

p(xj , γl)

 . (1)

3.3 IREOS Index
Intuitions Missing in the Baseline Index: Our preliminary, base-
line index introduced in Section 3.2 may work satisfactorily in var-
ious application scenarios. Conceptually, however, it does not cap-
ture two basic intuitions that we judge important in the realm of out-
lier detection. Both are related to the possible presence of clumps
of data objects in the data set. Clumps, or particles, are subsets of
objects lying in the same region of the data space, relatively closer
to each other than they are from other objects, but too small to be
deemed a cluster. They may exist for different reasons, mainly: (i)
just by chance, e.g., in data sets with background noise following a
Poison process; or (ii) as a result of anomalies whose instances are
relatively rare but tend to be somewhat similar to each other, e.g.,
some genetic mutations or certain types of frauds. Although the
semantics behind the possible interpretation of such clumps as out-
liers would be different, namely, noise in the first case and micro-
clusters in the second, in both cases the analyst may not want to
miss the corresponding objects as potential outliers for further in-
vestigations.

In principle, an issue with the idea of considering clumps as part
of our evaluation model is that the interpretation of this concept
may depend strongly on both the application domain and the users’
personal expectations. The point is that, without a mechanism that
allows different users in varied application scenarios to explicitly
express what they judge “too small” to be interpreted as a cluster,
an evaluation measure will end up being hooked on a single, rigid,
and very particular evaluation perspective. Therefore, in contrast to
the common practice of avoiding any parameters in evaluation in-
dexes for unsupervised learning, here we advocate that for outlier
detection it is actually important to provide the users with an op-
tional control mechanism to adjust their expectations about clump
sizes. Given a certain expectation about what a maximum clump
size should be, and beyond what the user believes a somewhat iso-
lated group of objects is more of a cluster nature rather than a clump
of potential outliers, we support that an evaluation index should
be able to differentiate between weak candidate outliers as objects
inside clusters from moderate candidate outliers as objects in iso-
lated clumps (and these from strong candidate outliers in the form
of isolated objects). This is the first intuition that is missing in our
baseline index as it was defined in Section 3.2. In order to capture
this intuition, we define a maximum clump size,mcl, as an optional
control parameter for exploratory data analysis, to be incorporated
in our index.

A second, related intuition is not captured by the preliminary index
either. While it is clear that the evaluation of each object labeled as
an outlier and, accordingly, the whole index, should be negatively
affected by the presence of other objects nearby (e.g., in a clump),
it is intuitive that such a negative impact should be more severe if
the nearby objects are assigned a different label (i.e., they are ac-
tually deemed inliers). Consider the example in Figure 2, which
corresponds essentially to the same data set as Figure 1 except for
an additional object placed near the global outlier in the left bottom
corner. The difference between the subfigures respectively). On the
left, this label appears to be inconsistent with the label of the origi-



(a) (b)

Figure 2: Data set of Fig. 1 with an additional object at the
lower left corner: (a) labeled inlier; (b) labeled outlier.

nal object close by, and the index should be negatively affected. On
the right, even though the original object is less of an outlier now
in the presence of the additional object, their common labeling as
outliers is more consistent as both objects can be seen as a clump,
so the negative impact of the presence of the new object should be
smaller.

Incorporating the Missing Intuitions: In order to capture both
desired intuitions, we propose the use of classifiers with soft mar-
gins, as it is common practice both in the literature as well as in
real-world applications when it comes to maximum margin classi-
fiers, such as SVMs and Kernel Logistic Regression [36, 42]. By
making use of a soft margin, these classifiers allow the misclassifi-
cation of objects at the price of a penalty term Pt that is incorpo-
rated into the original objective of margin maximization. Such a
term is typically in the form

Pt = C

N∑
j=1

ξ(xj),

where C is a constant and ξ(xj) stands for the individual penalty
component associated with object xj . The farther an object xj is
from the margin boundary on the wrong side, the greater the value
of ξ(xj).1 The constant C controls the overall cost of penalties.
In classification problems, this is a key parameter used to adjust the
compromise between under- and overfitting. Here, since we are not
interested in the performance of the classifiers for new data, this
constant is not critical and should only be big enough so that the
objects labeled as outliers in solution S can be discriminated from
others by these classifiers when following the procedure to com-
pute Equation (1). Indeed, as we will see in Section 4, results and
conclusions drawn from such results are very stable across many
data sets for values of C varying several orders of magnitude.

Soft margin classifiers allow the use of a generalized penalty com-
ponent that can assign different costs to different objects, rather
than a single, uniform cost C. Thus we can assign full cost C to
the objects labeled as inliers yet only a fraction β ∈ [0, 1] of C to

1For SVMs, ξ(xj) is zero when xj lies on the correct side of
the margin boundary. For Kernel Logistic Regression, all objects
(rather than only support vectors) can influence the decision bound-
ary and ξ(xj) can be non-null but tending to zero as xj moves away
from the margin boundary on the correct side.

the objects labeled as outliers, i.e.,

Pt =

N∑
j=1

C(xj)ξ(xj),

where C(xj) = C or β · C depending on the label of xj (inlier
respectively outlier). For β = 1, the method reduces to the ordi-
nary case where objects are treated equally no matter their labels.
In the other extreme, β = 0, objects labeled as outliers can be mis-
classified for free (notice that, when evaluating the separability of
a specific object, this is equivalent to removing all other objects
labeled as outliers from the data set). The choice of β would there-
fore tune the influence of other objects depending on their assigned
labels and, thus, address our second desired intuition.

In order to capture our first intuition, the modeling of possible
clumps by defining a maximum clump size, mcl, we can set the
fraction of the penalty C as β = 1/mcl. This way, we are left
with mcl as a single, optional control parameter in our evaluation
method. It is optional because by setting mcl = 1, the method re-
duces to the particular case where clumps are not modeled and the
same, full penalty cost is assigned to all objects. As mcl increases,
objects labeled as outliers in a clump will individually affect less
and less each other’s measure of separability, and a larger number
of nearby objects will be needed to get a certain negative impact.
Notice that, by setting β = 1/mcl, one needs mcl objects labeled
as outliers to get the same impact as a single inlier. Also, notice
that for a top-n detection problem, it would be contradictory to set
mcl > n, as no more than n objects can be labeled as outliers. By
considering this conceptual upper bound, one gets 1 ≤ mcl ≤ n.
Except when mcl = 1, the separability of each object in the gen-
eral case depends on the labels of the other objects and, therefore,
seeking a solution that maximizes the proposed index (rather than
using it to assess a given solution) would hardly be computation-
ally feasible: in principle, it would demand an exhaustive search in
a space of size

(
N
n

)
, where typically n� N .

Summary and Algorithm: In brief, IREOS is summarized as fol-
lows: like the baseline index (Section 3.2), IREOS is also computed
using Equation (1). However, we make use of classifiers with soft
margins in order to compute the terms p(xj , γl) in that equation,
where the full penalty is assigned by the used classifier to those ob-
jects labeled as inliers and only a fraction 1/mcl of the full penalty
is assigned to those objects labeled as outliers.

A high level pseudo code for computing IREOS for a set Ω of mul-
tiple top-n outlier detection solutions S (as, e.g., for model selec-
tion) is given in Algorithm 1.

As for the classifier to be used in practice, our method is not hooked
on any specific soft margin classifier. Kernel Logistic Regression
(KLR) [42], which we have used for all the experiments reported
in this paper,2 offers the following advantages: (i) it automatically
provides p(xj , γl) as the probability that object xj belongs to the
positive (outlier) class; (ii) these terms are not only provided di-
rectly as a byproduct of the classifier, but they are naturally nor-
malized (as probabilities) within [0, 1]; and (iii) KLR is a classifier
known to be robust even in the presence of imbalanced classes and
small amounts of training data.

2Our code is available upon request.



Algorithm 1 IREOS
1: procedure IREOS(X, Ω, mcl)
2: γmax = value of γ needed to separate from the other objects
3: every object labeled as an outlier in all S ∈ Ω
4: setOfGammas = [0, γmax] discretized into nγ values
5: for all (S ∈ Ω) do
6: for all (γ ∈ setOfGammas) do
7: for all (xj ∈ S) do
8: prob[xj] = Classifier(X, xj , S, mcl, γ)
9: end for

10: avgProb[γ] = Average(prob)
11: end for
12: ireos[S] = NormAUC(avgProb, setOfGammas)
13: end for
14: end procedure

3.4 Adjustment for Chance
The IREOS index as described above is ready to be used in practice
if one is only interested in comparing in relative terms a set of dif-
ferent candidate solutions, e.g. for model selection. However, the
interpretation of the index for individual solutions, e.g. for statisti-
cal validation, can be very misleading. The reason is that IREOS
will provide a certain positive value even when evaluating purely
random solutions. To make things worse, such a value is data de-
pendent. In fact, note from Figure 1(d) that even inliers will exhibit
a non null value for the AUC of separability. This prevents inter-
preting and assessing the statistical relevance of a given result in
absolute terms, which requires the index to be adjusted for chance.
Here, we follow the classic statistical framework for chance adjust-
ment, i.e.,

Iadj(S) =
I(S)− E{I}
Imax − E{I}

, (2)

where Iadj(S) is the resulting (adjusted) index, I(S) is the origi-
nal index (Eq. 1), Imax = 1 is the maximum value that the index
can take, and E{I} is its expected value assuming that the n data
objects labeled as outliers in a solution are chosen randomly. For
random solutions, Iadj is expected to take values around zero. The
maximum is still 1, but the index now can take negative values to
indicate solutions even worse than what one would expect to obtain
by chance.

Exact Computation: Term E{I} in Equation (2) is given from
Equation (1) as

E{I} =
1

nγ

nγ∑
l=1

E{p̄(γl)}, (3)

where

p̄(γl) =
1

n

∑
xj∈SR

p(xj , γl)

is a random variable associated with random solutions SR.

In the following we show that the expectation E{p̄(γl)} (and, ac-
cordingly, E{I}) can be computed in an exact way for the basic
setup where mcl = 1. In fact, recall that, when mcl = 1, the classi-
fiers just try to discriminate between each candidate outlier xj and
the other objects, no matter their labels. This means that p(xj , γl)
depends only on the data, not on any particular realization SR of
possible candidate outliers, and therefore it can be independently

precomputed for each object xj ∈ X and γl (l = 1, · · · , nγ). Re-
calling that |SR| = n, it then follows that

E{p̄(γl)} =
1

n

∑
xj∈SR

E{p(xj , γl)}

= E{p(xj , γl)}.

This is an instance of the well-known result that the expected value
for the mean of an i.i.d. sample of size n is the mean of the popula-
tion. Here, for a given γl, our (finite) population consists of the N
precomputed values p(xj , γl) for all data objects xj in the database
X. Taking their average gives the exact value for E{p̄(γl)}, i.e.:

E{p̄(γl)} = E{p(xj , γl)}

=
1

N

∑
xj∈X

p(xj , γl).
(4)

Statistical Validation: The variance is not needed for the adjust-
ment for chance in Equation (2), but it can be useful for statistical
validation when this type of validation is required. Since our index
is given by a sum of random variables 1

nγ
p̄(γl) over γl, we can

compute the variance of the index as

Var{I} = Var
{

1
nγ

∑nγ
l=1 p̄(γl)

}
= 1

n2
γ

∑nγ
l1,l2=1 Cov

(
p̄(γl1), p̄(γl2)

)
,

(5)

which can also be rewritten equivalently as

Var{I} =
1

n2
γ

nγ∑
l=1

Var{p̄(γl)}

+
2

n2
γ

l2−1∑
l1=1

nγ∑
l2=2

Cov
(
p̄(γl1), p̄(γl2)

)
.

This latter, equivalent form emphasizes the possible lack of inde-
pendence of p̄(γl) over γl, specifically when the second term is not
null. For the first term, it follows that

Var{p̄(γl)} =
1

n2

∑
xj∈SR

Var{p(xj , γl)}

=
1

n
Var{p(xj , γl)},

i.e., the variance of the sample mean is the variance of the popu-
lation over the sample size. Analogously, for the covariance one
has

Cov
(
p̄(γl1), p̄(γl2)

)
=

1

n
Cov

(
p(xj , γl1), p(xj , γl2)

)
, (6)

which can be exactly computed once we have precomputed the
whole population p(·, ·).3

Provided that the sample size is not critically small, the Central
Limit Theorem (CLT) ensures that, for each γl, the sample mean
p̄(γl) follows at least approximately a Normal distribution, i.e.,

p̄(γ)∼N
(
E{p̄(γ)}, Var{p̄(γ)}

)
.

3Since the population is of a finite size (N ), though, when consider-
ing sampling without replacement and sample sizes n significantly
large w.r.t. N (e.g., more than 5%), a finite population correction
factor (N − n)/(N − 1) can be used to adjust the computed vari-
ance [38].



Algorithm 2 Chance Adjustment — Exact Version (mcl = 1)
1: procedure CHANCEADJUSTMENT(X, I(S), γmax, n)
2: setOfGammas = [0, γmax] discretized into nγ values
3: for all (γl ∈ setOfGammas) do
4: for all (xj ∈X) do
5: p(xj , γl) = Classifier(X, xj , γl)
6: end for
7: E{p̄(γl)} = AvgOverDB(p(·, γl)) . Eq. (4)
8: end for
9: E{I} = AvgOverGamma(E{p̄(·)}) . Eq. (3)

10: Iadj = IndexAdjustment(I(S), E{I}) . Eq. (2)
11: for all (γl1 , γl2 ∈ setOfGammas) do
12: Cov(p̄(γl1), p̄(γl2)) = Cov(p(·, γl1), p(·, γl2)) /n

. Eq. (6)
13: end for
14: Var{I} = AvgOverGammas(Cov(p̄(·), p̄(·))) . Eq. (5)
15: pValue = z-test(I(S), E{I}, Var{I})
16: end procedure

This means that, for random solutions SR, our index in Equation
(1) is given by a sum of normally distributed variables 1

nγ
p̄(γl)

over γl. The sum of normally distributed random variables

X∼N (µX , σ
2
X)

and

Y ∼N (µY , σ
2
Y )

is also normally distributed, i.e.,

X+Y ∼ N (µX + µY , σ
2
X+Y ),

where [33]

σ2
X+Y = σ2

X + σ2
Y + 2 Cov(σX , σY ).

This leads to the very important result that our index IREOS, as a
sum of sample means, will follow at least approximately a Normal
distribution according to the CLT, i.e., I ∼ N (E{I},Var{I}),
with mean E{I} and variance Var{I} computed in an exact way
as described above.

Since we know such a mean and variance for the population, we
thus can go beyond the ordinary adjustment for chance (Eq. 2) and
perform statistical validation as well. Particularly, if we are given
a certain outlier detection solution, S, and the corresponding value
for our adjusted index, Iadj(S), we can assess the statistical signifi-
cance of Iadj(S) by means of a z-test. In this case, a p-value can be
trivially computed based on the Normal assumption by contrasting
Iadj(S) against the null hypothesis of a random solution [38]. The
computation of the adjustment for chance of the IREOS index is
summarized in Algorithm 2.

Approximate Computation via Monte Carlo: The exact compu-
tations described above presume mcl = 1. For different evaluation
setups, p(xj , γl) can no longer be independently precomputed for
each object xj ∈ X, as the separability of a given object as as-
sessed by the classifiers now depends also on the labels assigned to
the other objects of the data set, for each possible random solution.
This means that, for a given γl, the size of our finite population ex-
pands from N to

(
N
n

)
and, as such, it can easily become intractable

for exhaustive computations. Even when mcl = 1, precomputing
N terms p(xj , γl) for each γl (i.e., N · nγ in total) may be com-
putationally prohibitive for large databases as well, as each term
demands to train an independent classifier.

To make adjustment for chance and statistical validation feasible
when mcl > 1 or N is large, we can use Monte Carlo simulations
in order to estimate statistics rather than trying to compute them in
an exact and exhaustive way. The idea is to sample a number nMC

of random outlier detection solutions whereby the desired statisti-
cal moments can be estimated. In particular, the expected value in
Equation (2) can be directly estimated from the sample.

When statistical validation is on the agenda as well, we also need to
estimate the baseline distribution under the null hypothesis. There
are different alternatives. If the normality assumption is evoked
from the CLT, a parametric approach is possibly based on a t-
student distribution with the sample estimates for the mean and
variance (i.e., a t-test, which is known to be robust even when
normality is not fully satisfied [6]). Alternatively, p-values can
be directly derived from observed histograms in a non-parametric
way [14].

The sample size, nMC, clearly represents a trade-off between com-
putational burden and accuracy. Larger (smaller) samples lead to
more (less) accurate estimations yet from a larger (smaller) number
of trained classifiers. Rather than setting the value for nMC arbitrar-
ily, one can also determine nMC automatically, by specifying (i) a
certain significance level as the probability that the sample mean
will fall within, and (ii) a prespecified confidence interval around
the population mean [38].

3.5 Complexity
The asymptotic computational complexity of the algorithm de-
pends on the complexity of the classifier,O(f(N, d)), as a function
of the database sizeN and dimensionality d. For each candidate so-
lution S, we need to compute IREOS (Equation 2), which demands
training n · nγ classifiers, thus resulting in an overall complexity
of O(n · nγ · f(N, d)). When the index is adjusted for chance, we
need to evaluate nMC different random solutions in Monte Carlo
simulations in order to estimate the expected index, leading to a
complexity of O(nMC · n · nγ · f(N, d)). This is the complex-
ity in the most general case. Using for instance the KLR classi-
fier, which runs in O(d ·N3), we obtain the overall complexity of
O(nMC · n · nγ · d ·N3). While the question of how to reduce this
complexity is an interesting direction for further investigations, we
argue that the current complexity is not very critical, since every
single classifier can be trained in a completely independent way. In
the case where we have O(nMC · n · nγ) computer cores for par-
allel processing, the complexity of IREOS reduces to that of the
classifier used. In other words, IREOS is highly parallelizable and
can be implemented in a straightforward way in distributed (e.g.,
cloud) environments using parallel computing frameworks such as
MapReduce.

4. EVALUATION
4.1 Datasets
We combine different strategies to annotate datasets used for evalu-
ation, following statistical considerations, following the semantical
notion of unusual classes, or following common procedures and
examples from the literature.

Synthetic Datasets: For experiments on synthetic data, we use
collections of previously published benchmarking datasets. The
first collection (60 datasets) has been designed and used to evaluate
outlier detection methods [44, 45]. This dataset collection is split



into two independent sets of 30 synthetic datasets each (batch1 and
batch2). The datasets vary in the dimensionality d ∈ [20, . . . , 40],
in the number of clusters c ∈ [2, . . . , 10], and for each cluster inde-
pendently in the number of points nci ∈ [600, . . . , 1000]. For each
cluster, the points are generated following a Gaussian model with
randomly selected parameters that are attribute-wise independent.
The sampled cluster is randomly rotated and the covariance matrix
is rotated accordingly. Based on the covariance matrix, the Ma-
halanobis distance between the mean of a cluster and each cluster
point is computed. The distribution of the Mahalanobis distances
follows a χ2 distribution with d degrees of freedom. Those points
that exhibit a distance to their cluster center larger than the theo-
retical 0.975 quantile were labeled as outliers, independently of the
actually occurring Mahalanobis distances of the sampled points.
This results in an expected amount of 2.5% outliers per dataset.

The second collection of synthetic data consists of the 40 2-
dimensional datasets provided by Handl et al. [12], comprising ex-
amples with 4, 10, 20, and 40 clusters. The size of the clusters
is uniformly chosen from [50, 500] for the datasets with 4 and 10
clusters and from [10, 100] for the datasets with 20 and 40 clusters.
This dataset collection has been designed to evaluate clustering re-
sults. To label outliers, we followed the same procedure as Zimek et
al. [45] (described above), however, for these datasets the original
cluster covariance matrices were unknown and therefore calculated
from the data.

Real World Datasets: In addition to the synthetic datasets, we use
11 publicly available real world datasets. All of them are avail-
able from the UCI repository [3]. For Annthyroid, Diabetes and
Ionosphere, we use the version preprocessed for evaluation of out-
lier detection by Keller et al. [17]. For Isolet, Multiple Features
and Optical Digits, we follow the same procedure as performed
by Pham and Pagh [31] (for each of these three datasets indepen-
dently), where all observations from some classes having common
behaviors were labeled as inliers and observations of another class
were labeled as outliers. In Isolet, the classes C, D, and E that
share the ‘e’ sound were selected as inliers and 10 observations
from class Y were selected as outliers. Multiple Features and Op-
tical Digits consist of data representing handwritten numerals (0 -
9). Classes 6 and 9 of Multiple Features, and classes 3 and 9 of
Optical Digits were selected as inliers because of the similarity in
shape; and for both datasets 10 observations of class 0 were se-
lected as outliers. In Lymphography, classes 1 and 4 are jointly
considered as outliers, following the common use of this dataset
in the literature [24, 27, 45]. For preprocessing Shuttle, we follow
the procedure of Zhang et al. [41], using classes 1, 3, 4, 5, 6, and
7 as inliers and class 2 as outlier, and selecting 1000 inliers vs.
13 outliers. Following Micenková et al. [25], we adjust Vowel for
outlier detection by choosing class 0 as inliers and selecting one
instance from each of the remaining classes as outliers. The Wis-
consin Breast Cancer (WBC) dataset distinguishes cancer types as
benign (inliers) or malignant (outliers). Instances with missing val-
ues were removed. The outlier class was downsampled to 10 out-
liers, following the procedure of Schubert et al. [34]. The Wiscon-
sin Diagnostic Breast Cancer (WDBC) dataset describes nuclear
characteristics for breast cancer diagnosis, also distinguishing can-
cer types as benign (inliers) or malignant (outliers). We follow the
preprocessing of Zhang et al. [41], downsampling the outlier class
to keep only 10 outliers.

To make values of different attributes comparable, we also normal-
ized the dataset (that did not already have normalized attribute val-

ues) by applying min-max normalization to each attribute indepen-
dently, so all attribute values fall into the range of [0, 1]; we also
removed duplicates from datasets that contained duplicate entries
(Annthyroid, Multiple Features, and WBC).

4.2 Methods and Measures
In our experiments we evaluate results by contrasting the recom-
mendations made by our index IREOS against the ground truth,
i.e., against the labels as provided in the datasets (notice that these
labels are not used by our index in any way). Therefore, we set
n (the number of outliers in the solutions to be evaluated) to the
number of outliers according to the ground truth. We then study
the relationship between the quality assessments of the solutions
with respect to the ground truth and the quality assessments of the
solutions computed by IREOS. To assess the quality of a given so-
lution with respect to the ground truth we compute Precision at n
(prec@n).4

We perform two main types of experiments. The first type is a
controlled experiment in which we produce, for a given dataset,
a collection of candidate outlier detection solutions with prec@n
varying from 1 to zero. We start from the perfect solution given
by the ground truth and iteratively produce new solutions replacing
one of the true outliers with a random inlier. This way, at each iter-
ation prec@n is reduced by one unit and we get a diverse collection
with n solutions to be evaluated. We then measure the goodness of
fit between this ranking of solutions (with decreasing quality w.r.t.
prec@n) and the ranking obtained by assessing the solutions in an
unsupervised way using IREOS. The goodness of fit is measured by
computing the Spearman correlation between these two rankings.
We have performed this experiment for all datasets.

In addition, for the real datasets we have also performed a second
type of experiment involving model selection. For each dataset, we
produced a diverse collection of candidate solutions by running the
well-known algorithms LOF [7], as a representative of local outlier
detection methods, and kNN Outlier [32], as a representative of
global outlier detection methods. LOF has the parameter minPts
for the neighborhood size used in the algorithm, and kNN Outlier
has the parameter k for the number of nearest neighbors considered
when computing the kNN distances. We vary both minPts as well
as k from 2 to 50 in steps of 3. As the set of candidate solutions, we
then take the top-n best scored objects for each value of minPts
(from the solutions produced by LOF), as well as the top-n best
scored objects for each value of k (from the solutions produced
by kNN Outlier). IREOS is then applied to this set of candidate
solutions, and the best solution according to the IREOS score is
selected. This solution, selected by IREOS, is then compared in
terms of prec@n against the best prec@n, the worst prec@n, and
the expected (average) prec@n that can be obtained in the set of
candidate solutions.

We evaluate IREOS withmcl set to both extremes of the valid inter-
val (see Section 3), in order to represent cases with (mcl = n) and
without (mcl = 1) the optional mechanism for modeling clumps.
The number of discrete γ values for the practical computation of
the index was nγ = 100 in all experiments. As previously dis-
cussed, the penalty cost for soft margin violations, C, only needs

4Note that it is not meaningful to use ROC curves in the realm of
top-n outlier detection as we are not evaluating rankings or scor-
ings, but rather binary solutions whose quality is rated considering
solely a subset of n objects labeled as outliers.



Table 1: Spearman correlation between IREOS and prec@n
for varied soft margin costs (Handl’s data collection [12]).

Cost C mcl = 1 mcl = n

100 0.996 ± 0.009 0.997 ± 0.008
1000 0.998 ± 0.004 0.994 ± 0.02

20000 0.998 ± 0.001 0.995 ± 0.01
800000 0.997 ± 0.003 0.993 ± 0.018

Table 2: Spearman correlation between IREOS and prec@n:
synthetic data collections (top) and real datasets (bottom).

Dataset mcl = 1 mcl = n

Zimek et al. [45] 0.995 ± 0.011 0.996 ± 0.012
Handl et al. [12] 0.998 ± 0.004 0.994 ± 0.02

Annthyroid 0.999 0.999
Diabetes 0.997 0.64

Ionosphere 0.998 0.948
Isolet 1 1

Lymphography 1 1
Multiple Features 0.981 0.99

Optical Digits 1 1
Shuttle 0.52 0.995
Vowel 1 1
WBC 1 0.99

WDBC 1 1

to be big enough. We have experimented with values varying or-
ders of magnitude. The results are very similar and the conclusions
do not change. An example — involving a controlled experiment
of the first type for one of the collections of synthetic datasets —
is shown in Table 1. Notice that the results (correlations) are very
similar across values of C from 100 to 800000. For this reason, in
the following we show results for C = 1000 only.

4.3 Results
The results for the controlled experiments of the 1st type are sum-
marized in Table 2 for all data sets. For the real datasets, which
are individual datasets, the entries denote the value of the Spear-
man correlation between IREOS scores and prec@n for the set of
candidate solutions; for the synthetic datasets, which represent col-
lections of datasets, the entries denote the average and the standard
deviation of the Spearman correlation between IREOS scores and
prec@n. Over a total of 111 datasets, IREOS correlates in almost
all cases extremely high with the ground truth (prec@n), for both
configurations of mcl. An individual, typical example is illustrated
in detail in Figure 3, corresponding to one of the datasets from
Handl et al. [12] (2d-10-no2) and IREOS with mcl = 1. The av-
erage separability curves that are used to compute IREOS are dis-
played for the whole collection of candidate solutions (solid lines),
which are colored according to prec@n. We can clearly see that
the temperature of the color highly correlates with the area under
the curve. In fact, we can see by comparing the values of IREOS
and prec@n (shown on the right) that there is a perfect correlation
in this case. We also display in the figure the curves of values that
are expected by chance (dashed) ±σ (dotted). These values have
been computed in an exact way as described in Section 3.4 and
were used to adjust the index for chance. Based on these statistics,
we have also computed and displayed p-values for each candidate
solution. As expected, notice that solutions with values of Adjusted

Table 3: Monte Carlo simulations (30 runs for varied sample
sizes nMC that lead to different percentages of the number of
classifiers required for the exact computations).

E{I} Estimated E{I} Worst Abs. Difference
1% 0.941 0.940 ± 0.023 0.068
2% 0.941 0.941 ± 0.014 0.044
5% 0.941 0.942 ± 0.007 0.018
10% 0.941 0.941 ± 0.006 0.012
20% 0.941 0.940 ± 0.004 0.01

IREOS around zero are in fact those composed mostly of randomly
selected objects, and are also those with the highest p-values.

For the same example dataset, we have also evaluated the trade-off
between computational cost and accuracy controlled by the sam-
ple size nMC when the adjustment for chance is performed ap-
proximately by Monte Carlo simulations. We compared the results
between the exact and approximate values for the expected index
E{I} with sample sizes nMC corresponding to 1%, 2%, 5%, 10%,
and 20% of the number of classifiers required for the exact compu-
tations. The results are shown in Table 3. Across 30 independent
Monte Carlo simulations for each sample size, the worst case abso-
lute difference between the exact and approximate values of E{I}
were 0.068, 0.044, 0.018, 0.012, and 0.010, respectively. As ex-
pected, the estimate becomes more accurate as nMC increases, and
is, on average, very close to the exact value already for small sam-
ple sizes.

The results for the controlled experiments of the 2nd type (model
selection for varied candidate LOF and kNN Outlier solutions) are
summarized in Table 4, showing prec@n for the worst, the ex-
pected (average), and the best cases among the candidates, along
with prec@n for the solution selected as best according to IREOS;
for each selected solution, the table also indicates which algorithm,
LOF or kNN Outlier (or both), produced this solution (in some
cases the top solution according to IREOS scores was produced by
both algorithms).

By using IREOS with mcl = n one would select the most accurate
solution according to the ground truth in 7 out of the 11 datasets.
IREOS with mcl = 1 makes the best choice for 3 out of the 11. In
the other cases, the choice is better or competitive when compared
with the expected value, often much better and close the quality
of the best possible selection according to the ground truth. In
all cases the worst solutions are avoided by a large margin, which
could not be guaranteed without any validation index. To get a bet-
ter sense where the selected solutions are located within the distri-
bution of the prec@n values for all candidate solutions obtained by
LOF and kNN Outlier, we also show box plots of the distributions
for each dataset in Figure 4. The position of the solutions selected
by IREOS are indicated by special symbols in the plots.

Comparisons of performances of IREOS for different values ofmcl

must be taken with a grain of salt, though. The ground truth (i.e.,
labels based on some sort of semantic) can be seen as a particular
perspective of what outliers should be in each dataset. According
to this particular perspective, modeling clumps (mcl = n) may be
better than not modeling (mcl = 1) or vice versa, but the result
could be the reverse if the perspective was different. The Vowel
dataset might in fact be an example: not modeling clumps, i.e.,
mcl = 1, leads to the selection of the best possible solution while
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Figure 3: IREOS separability curves for controlled solutions: colors reflect the ground truth (hotter for higher prec@n).

Table 4: Prec@n for LOF and kNN Outlier solutions with varied parameters (minPts and k).

Dataset Min Max Avg IREOS (mcl = 1) IREOS (mcl = n)
1 Ann_thyroid 0.0538 0.3118 0.241 0.2473 KNN 0.2473 KNN
2 Diabetes 0.3881 0.5597 0.4966 0.5522 KNN 0.5522 KNN
3 Ionosphere 0.6349 0.8492 0.7386 0.8492 KNN 0.8492 KNN
4 Isolet 0 1 0.8353 0.8 LOF 1 KNN
5 Lymphography 0.1667 0.6667 0.4606 0.6111 KNN 0.6667 KNN
6 Multiple Features 0.1 0.5 0.3882 0.4 KNN 0.5 LOF
7 Optical Digits 0 0.8 0.5765 0.2 KNN 0.8 KNN
8 Shuttle 0.0769 0.3846 0.1855 0.3077 LOF|KNN 0.3846 LOF
9 Vowel 0.1 0.9 0.5324 0.9 KNN 0.4 LOF|KNN

10 WBC 0 0.9 0.5265 0.8 KNN 0.8 KNN
11 WDBC 0.1 0.9 0.8324 0.9 LOF|KNN 0.9 LOF|KNN



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p
re

c
@

n

   
   

Ann
th

yr
oi
d

   
   

  D
ia
be

te
s

   
   

Io
no

sp
he

re

   
   

   
 Is

ol
et

   
 L

ym
ph

og
ra

ph
y

M
ul
tip

le
 F

ea
tu

re

  O
pt

ic
al
 D

ig
its

   
   

   
Shu

ttl
e

   
   

   
  V

ow
el

   
   

   
   

 W
BC

   
   

   
   

W
D
BC

KNN (mcl = 1)

LOF (	mcl = 1)
KNN (mcl = n)

LOF (mcl = n)

Figure 4: Distribution of the prec@n values for all candidate
solutions obtained by LOF and kNN Outlier for the real data
sets. The position of the solutions selected by IREOS for differ-
ent mcl = 1 and mcl = n are indicated by symbols of differ-
ent shapes (encoding the method that generated the solution —
possibly both) and different colors (encoding the two values of
mcl). Some symbols are superposed.

(mcl = n) result in a much inferior selection. As discussed in
Section 3.3, the choice of modeling clumps is application or user
dependent.

5. CONCLUSIONS
We tackled in this paper the long-term open problem [43] of in-
ternal and relative evaluation of outlier detection results, that is,
the assessment of the quality of results of unsupervised outlier de-
tection methods without refering to external information (such as
class labels). In the typical application scenario of outlier detec-
tion (other than evaluating new algorithms in the literature), such
external information is not available and results need to be assessed
by domain experts. IREOS is the first measure to allow such qual-
ity assessment of solutions automatically and, as a consequence,
to select better solutions (models, parametrizations) for a given
problem. We discussed the properties of IREOS, including derived
statistics, p-values, and adjustment for chance. Experiments with
synthetic and real data, with controlled rankings, and with results of
outlier detection algorithms (LOF [7] and kNN Outlier [32]), show
the high correlation of IREOS with the true quality of results.

For this first approach to internal evaluation of outlier detection re-
sults, we chose the setting as a top-n outlier problem. An interest-
ing research question for future work will be, how to automatically
determine n or how to internally evaluate the ranking of outliers
independent of a choice of n. Both questions represent long-term
open problems too, and we are already working on possible alter-
natives to tackel these more general problems.
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