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Insertion of a xylanase in xylose binding 
protein results in a xylose‑stimulated xylanase
Lucas Ferreira Ribeiro1,2, Nathan Nicholes1, Jennifer Tullman4, Liliane Fraga Costa Ribeiro2,3, 
Carlos Alessandro Fuzo7, Davi Serradella Vieira5, Gilvan Pessoa Furtado2, Marc Ostermeier1 
and Richard John Ward6,7*

Abstract 

Background:  Product inhibition can reduce catalytic performance of enzymes used for biofuel production. Different 
mechanisms can cause this inhibition and, in most cases, the use of classical enzymology approach is not sufficient 
to overcome this problem. Here we have used a semi-rational protein fusion strategy to create a product-stimulated 
enzyme.

Results:  A semi-rational protein fusion strategy was used to create a protein fusion library where the Bacillus subtilis 
GH11 xylanase A (XynA) was inserted at 144 surface positions of the Escherichia coli xylose binding protein (XBP). 
Two XynA insertions at XBP positions 209 ([209]XBP-Xyn-XBP) and 262 ([262]XBP-Xyn-XBP) showed a 20% increased 
xylanolytic activity in the presence of xylose, conditions where native XynA is inhibited. Random linkers of 1-4 Gly/
Ala residues were inserted at the XynA N- and C-termini in the [209]XBP and [262]XBP, and the chimeras 2091A and 
2621B were isolated, showing a twofold increased xylanolytic activity in the presence of xylose and kcat values of 200 
and 240 s−1 in the 2091A and 2621B, respectively, as compared to 70 s−1 in the native XynA. The xylose affinity of the 
XBP was unchanged in the chimeras, showing that the ~3- to 3.5-fold stimulation of catalytic efficiency by xylose was 
the result of allosteric coupling between the XBP and XynA domains. Molecular dynamics simulations of the chimeras 
suggested conformation alterations in the XynA on xylose binding to the XBP resulted in exposure of the catalytic 
cavity and increased mobility of catalytic site residues as compared to the native XynA.

Conclusions:  These results are the first report of engineered glycosyl hydrolase showing allosteric product stimula-
tion and suggest that the strategy may be more widely employed to overcome enzyme product inhibition and to 
improve catalytic performance.
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Background
The effective production of fermentable hydrolysates 
from biomass is one of the primary requirements for 
the production of biofuels and other sustainable prod-
ucts from lignocellulosic material [1]. To reduce water 
consumption and the costs of distillation equipment, 
hydrolysis of lignocellulosic material must be con-
ducted at a high concentration of solids [2]. This will 

inevitably generate high concentrations of the final 
reaction products, resulting in inhibition of various 
enzymes involved in the biomass degradation [3, 4] 
(Additional file  1: Fig. S1a). This inhibition can occur 
through different mechanisms and in most cases the 
application of classical enzymology tools is not suf-
ficient to circumvent this problem [4]. Therefore, 
decreasing product inhibition is a major challenge 
facing both industrial process development as well as 
enzyme engineering.

The modification of enzyme properties to either over-
come product inhibition or to introduce stimulatory 
effects by the final products of industrial processes is a 
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significant obstacle that may be overcome by bioengi-
neering [5–7]. Allosterically regulated enzymes present 
spatially distinct locations for regulation and catalysis 
and frequently present oligomeric states in which tertiary 
and quaternary structure changes transmitted across 
protein–protein interfaces can mediate the communica-
tion between allosteric effector binding and the modula-
tion of catalytic activity. These attributes can be exploited 
by protein engineering strategies that aim to introduce 
fine modulation of catalytic activity without modification 
of the active site. A powerful method for constructing 
allosteric proteins is through random domain insertion, 
which is potentially a general strategy for introducing 
coupling between fused domains [8–10].

The endo-β-1,4-xylanase is a key enzyme for biomass 
saccharification by virtue of its hydrolytic activity against 
internal β-1,4 glycosidic bonds in the primary chain of 
xylans [11], polysaccharides that account for approxi-
mately one-third of all vegetal biomass on Earth [12]. 
During the industrial hydrolysis process by a xylanase of 
the family 11 (XynA) the concentrations of the final prod-
ucts can reach up to ~50% xylobiose and ~10% xylose 
[13]. Evidence from recent studies shows that inhibition 
of the xylanase by its final products may limit lignocel-
lulose hydrolysis under conditions of high-solids concen-
tration [14–17].

The xylose liberated by the hydrolysis of xylan by 
xylanolytic complexes can be captured by the bacteria 
Escherichia coli through the ABC (ATP-binding cassette) 
type transporter proteins XylF, XylG and XylH [18]. The 
XylF protein, also known as XBP (xylose binding protein), 
is a periplasmic sugar binding protein with a high affin-
ity for d-xylose [19]. XBP consists of two similar globu-
lar domains that are connected by a flexible hinge region, 
where the d-xylose binding site is situated at the interface 
between the two domains. The XBP may adopt at least 
two different conformations: a ligand-free open form, 
and a closed ligand bound form. These conformations are 
interconverted through a relatively large bending move-
ment around the hinge region [20, 21]. This d-xylose sen-
sitive conformational change in the XBP is a fundamental 
property that may be exploited for the transduction of 
the input signal (increasing concentration of d-xylose) 
to an increased xylan hydrolytic activity by the XynA by 
means of a fusion between the two proteins [22].

This strategy represents a novel platform to engineer 
enzymes for stimulation by the final product of a spe-
cific biotechnological process. The principal goal of this 
strategy is to develop allosteric enzymes that couple 
recognition of the final product with increased enzy-
matic activity (Additional file 1: Fig. S1b). This coupling 
may arise from inter-domain interactions created after 
the fusion between the two proteins, and in the present 

study, the viability of this strategy was demonstrated 
by combining two unrelated proteins with independ-
ent functions. Domain insertion libraries were created, 
in which the xylanase from glycosyl hydrolase family 
11 from Bacillus subtilis (XynA) was fused in a semi-
rational manner to the xylose binding protein (XBP) from 
Escherichia coli K12. Selected chimeric enzymes showed 
a positive allosteric modulation by the final product of 
the process of xylan hydrolysis, d-xylose, and is the first 
application of the concept of random domain insertion 
for the engineering of an enzyme that is stimulated by the 
final product in the degradation of lignocellulose.

Results
Semi‑rational insertion library construction and screening 
for xylose‑stimulation
Initially, 144 positions in XBP were defined as targets 
for insertion of XynA. These positions were determined 
based on previous studies with bifunctional proteins cre-
ated by the fusion of a catalytic β-lactamase domain with 
the homologous ribose binding proteins (RBP, 29% iden-
tity with XBP) and Glucose Binding Protein (GBP, 21% 
identity with XBP) [23]. The insertions were performed 
using the multiplex inverse PCR technique [24] at spe-
cific surface positions in the XBP (Additional file 1: Fig. 
S2).

A total of 2304 clones from the resulting library were 
analyzed, of which approximately 10% showed clear halos 
around colonies grown on solid agar containing xylan 
and xylose. These clones (denominated as XynA+) were 
inoculated into 384 well plates and stored at −80°C for 
further analysis. After this initial selection, a second 
stage of screening was performed to identify which of 
the XynA+ clones were positively modulated by xylose. 
A total of 225 XynA+ clones were selected for analysis of 
xylanase activity in culture supernatants both in the pres-
ence and absence of xylose. Of these, 69% (155 clones) 
showed lower activity in the presence of xylose and 4% 
(10 clones) showed an activity greater than 10% of the 
wild-type enzyme in the presence of xylose (Additional 
file  1: Fig. S3). The clones that showed an increase in 
xylanase activity of at least 10% in the presence of xylose 
were submitted to nucleotide sequencing (see Table  1; 
Fig. 1). The parental XynA shows a 20% decrease in cat-
alytic activity in the presence of xylose; therefore, the 
increase in activity in these fusion proteins is significant 
and indicates the elimination of xylose inhibition. It is 
observed that the insertions were distributed throughout 
the sequence of XBP (Fig. 1), and the selected clones with 
the highest activation effect showed an increase in XynA 
catalytic activity of approximately 20% in the presence of 
xylose (Table 1). The insertions occurred in the N-termi-
nal domain of XBP, between the end of the helix and the 
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beginning of a loop (A209-210), and also in a loop in the 
C-terminal domain of XBP (Q262-263) (Fig.  1). Two of 
the clones have XynA inserted in the same loop of XBP, at 
positions 262 and 263, and this loop may be a hot spot for 
bifunctional XBP/XynA proteins.

Construction and screening of polypeptide linker libraries
Since the greatest increase with xylose stimulation was 
a modest 20% (see Table 1), two new libraries were cre-
ated from the selected variants A209-210 and D262-263. 

These libraries aimed to vary the distance and relative 
orientation between the XynA and XBP, which we rea-
soned might modulate the communication between 
the domains [25]. The length of the linkers was var-
ied between 0 and 4 glycine and/or alanine residues 
(see Additional file  1: Fig. S4). The linker libraries were 
screened by measuring the stimulation of xylanase activ-
ity on addition of xylose. A total of 2112 clones from 
the pSkunk2_209 library and 1,344 clones from the 
pSkunk2_262 library were analyzed. Approximately 1.3% 
(28) of the clones from the pSkunk2_209 library and 5% 
(67 clones) from the pSkunk2_262 library showed clear 
halos on solid agar plates with xylose when compared 
to plates without xylose (see Additional file 1: Fig. S5a). 
The clones that showed xylose stimulation were selected 
and inoculated into deep well plates for analysis of the 
xylanase activity in the supernatant. Of the clones ana-
lyzed from the pSkunk2_209 library, only one showed 
an increase in the activity of the supernatant above 20% 
in the presence of xylose (see Additional file 1: Fig. S5b; 
Table 2). Of the 67 clones selected from the pSkunk2_262 
library, 7 showed activity greater than 20% (see Addi-
tional file 1: Fig. S5c; Table 2).

The two selected variants from the linker libraries that 
presented the greatest increases were clone 1A (posi-
tion A209-210; activity ratio without linker  =  1.19; 
with linker  =  1.38, hereafter denominated as 2091A) 
and clone 1B (position Q262-263; activity ratio without 

Table 1  Insertion sites of  allosteric clones selected 
from the semi-rational insertion library

a  Xylanase activity in the supernatant (with xylose)/(without xylose). Data 
represent the mean ± SD of 3 repetitions (n = 3).

Clone Position +xyl/–xyl ratioa

XynA parental – 0.80 ± 0.04

1 Q262-263 1.20 ± 0.02

2 A209-210 1.19 ± 0.02

3 E304- 305 1.16 ± 0.01

4 E263-264 1.15 ± 0.02

5 N43-44 1.14 ± 0.02

6 D10-11 1.13 ± 0.01

7 E78-79 1.12 ± 0.02

8 I5-6 1.11 ± 0.02

9 D222-223 1.11 ± 0.03

Fig. 1  Mapping of clones with positive modulation in the insertion library. Structural representation of XBP showing the insertion sites of the xyla-
nase. The orange arrows indicate the insertion points of the xylanase (shown in pink). The residues responsible for binding xylose are represented in 
yellow. The structure to the right represents a rotation of the structure by +45° around the y-axis. The structural representations were prepared using 
the PyMol software [82].
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linker = 1.20; activity ratio with linker = 2.22, hereafter 
denominated as 2621B) (Tables 1, 2). This improvement 
is likely to be a consequence of the increase in the com-
munication between the two domains resulting from the 
modulation of the interdomain contacts. For position 
262, both the length and the composition (clones 3 and 
7) of the linkers affected the modulation of the activity 
by xylose, showing differences of up to 1.8 times in the 
activation effect between the variants 1 and 7 (position 
262). The two clones 2091A and 2621B were selected for 
further characterization.

Biochemical characterization
The parental proteins XynA and XBP together with the 
chimeras 2091A and 2621B were expressed in Escheri-
chia coli Rosetta™ (DE3) cells, and after purification were 

subjected to biochemical and kinetic characterization. 
As shown in Fig. 2a, the optimal pH for the hydrolysis of 
RBB-xylan was 6.5 for both XynA (in MOPS buffer) and 
2621B (in phosphate buffer). The MOPS buffer resulted 
in a decrease of 15% in the activity of the chimeric 
enzyme at this pH. The 2091A chimera showed maxi-
mum activity at pH 6.0 (phosphate buffer). Both chime-
ras, together with the parental xylanase, showed activity 
above 60% over the pH range 5.5–7.5. In pH 5.5 acetate 
buffer the chimeric enzymes showed greater activity 
relative to the parental xylanase (XynA; 72 ± 3%; 2091A; 
81 ± 2% and 2621B; 90 ± 2%). The 2091A showed lower 
activity at pH 9.0 (10%) when compared to XynA (40%) 
and 2621B (26%).

The effect of temperature on the catalytic activity of both 
chimeric enzymes and the parental xylanase was evaluated 
at pH 5.5 in acetate buffer. The chimeric enzymes showed 
a displacement in the maximum activity as a function of 
temperature relative to XynA, which showed a maximum 
at 45°C, where 2091A and 2621B showed maximum activ-
ity at 40 and 50°C, respectively (Fig. 2b).

Kinetic characterization
Since the majority of glycosyl hydrolases have an opti-
mal pH around 5.5 and biomass hydrolysis processes 
involving microorganisms preferentially occur between 
30 and 37°C [26–29], the kinetic parameters were deter-
mined at pH 5.5 at 37°C (Table  3). The values for the 
catalytic efficiency (kcat/KM) of XynA in the absence and 
presence of xylose were essentially the same; however, 
a ~10% decrease was observed in the kcat value in the 
presence of xylose. Additionally, differences between 
the parental xylanase and the xylanase activity in the 
chimeric enzymes were observed (Table 3). The largest 
difference was between the values of the kcat, which in 

Table 2  Length and  composition of  the linkers 
between the N- and C- termini of xylanase and XBP in the 
clones presenting the greatest increase in the xylose stim-
ulation effect

a  The clone numbers refer to those shown in Additional file 1: Fig. S5b, c.
b  Ratio of xylanase activity in culture supernatants (xylose present)/(without 
xylose). Data represent the mean ± SD of three repetitions (n = 3).

Clonea Position N-ter C-ter +xyl/−xyl ratiob

1B 262 GGGG GA 2.22 ± 0.07

2B 262 – GGG 1.50 ± 0.04

3B 262 GAG GGG 1.42 ± 0.04

1A 209 AG GGA 1.38 ± 0.03

4B 262 AA GA 1.33 ± 0.03

5B 262 GG GAG 1.30 ± 0.03

6B 262 GGA A 1.28 ± 0.03

7B 262 AAA GAA 1.23 ± 0.04

Fig. 2  Effects of reaction conditions on xylanase catalytic activity. a The effect of pH. The interconnected points represent the following buffers at a 
final concentration of 50 mM: acetate (pH 4.5–5.5); phosphate (5.5–6.5), MOPS (pH 6.5–7.5) and arginine-NaOH (pH 9.0). b The effect of temperature. 
The symbols in both graphs are filled square, parental XynA; filled circle, 2091A chimera and filled triangle 2621B chimera.
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the absence of xylose was ~2 times greater in the chi-
meric enzymes than that observed for the parental 
XynA. In the presence of xylose, this increase was even 
more pronounced, reaching ~3 times for 2091A and 
~3.5 times for 2621B. The xylose activation effect for 
the pure enzymes (ratio of kcat (+xylose)/kcat (−xylose)) 
was 1.33 for 2091A and 1.71 for 2621B, similar to the 
values obtained during screening with the crude extract 
(Table  2). The catalytic efficiency in the presence of 
xylose of the hybrid enzymes was ~2.5 times greater 
than the value observed for the parental xylanase under 
the same conditions.

Ligand‑affinity measurements
Alterations in the intrinsic tryptophan fluorescence 
emission were used to monitor conformation changes 
on d-xylose binding to XBP and the chimeric enzymes. 
Sugar binding caused an increase in fluorescence inten-
sity of 30% in XBP and a decrease of 15% in the chi-
meras. The Kd values estimated from these data were 
0.15 ± 0.02, 0.16 ± 0.01 and 0.14 ± 0.03 µM for 2091A, 
2621B and parental XBP respectively, demonstrating that 
all three proteins had a similar affinity for xylose.

Enzyme activity against milled sugarcane bagasse
The effect of the chimeric enzymes against a natural lig-
nocellulose substrate was evaluated by measuring the 
total reducing sugar released after treatment of milled 
sugarcane bagasse with the parental enzyme (XynA), with 
an equimolar mixture of the two proteins (XynA + XBP), 
or with the chimeras 2091A and 2621B (Fig. 3). The effect 
of XynA alone was essentially the same as a mixture of 
the XynA  +  XBP, demonstrating that XynA activity 
accounted for all reducing sugar release. The amount of 
reducing sugar release from bagasse by the 2091A and 
2621B chimeras was 67 and 40% greater than the parental 
enzyme, respectively.

Molecular dynamics simulations
Attempts to crystallize the chimeric proteins were 
unsuccessful and, therefore, molecular dynamics (MD) 

simulations were used to gain further insights as to the 
structural basis for the increase in the catalytic efficiency 
of the chimeras. The formation of a stable structure dur-
ing the MD simulations was evaluated by the root mean 
square deviation (RMSD) for the Cα atoms as a func-
tion of time. By this criterion, stability was achieved 
after ~40  ns for the XBP in both the 2091A and 2621B 
chimeras, where RMSD values between 0.30 and 0.35 nm 
were attained. The xylanase domain achieved stabil-
ity after ~20  ns in both chimeras, with RMSD values 
between 0.20 and 0.25 nm (Additional file 1: Fig. S6). A 
visual analysis of the structures generated by the MD 
simulations revealed the formation of a protein–protein 
interface between the XBP and XynA domains for both 
chimera during the first 20  ns and contact which was 
maintained over the course of the simulations (Fig.  4; 
Additional file 1: Fig. S7). These inter-domain interfaces 
were structurally and energetically distinct. In the 2091A 

Table 3  Kinetic parameters of chimeric enzymes compared with parental enzymes

Data represent the mean ± SD of two independent preparations.
a  mg mL−1.
b  s−1.

Parental XynA 2091A 2621B

−Xylose +Xylose −Xylose +Xylose −Xylose +Xylose

KM
a 1.5 ± 0.1 1.6 ± 0.1 1.7 ± 0.2 1.8 ± 0.1 2.1 ± 0.1 2.4 ± 0.2

kb
cat 78 ± 2 70 ± 3 150 ± 8 200 ± 7 140 ± 5 240 ± 8

kcat/KM 52 ± 3 44 ± 1 89 ± 8 111 ± 3 67 ± 1 100 ± 7

Fig. 3  Enzyme activity against milled sugarcane bagasse. The 
bagasse was treated with equal molar concentrations of the parental 
xylanase (XynA), or a mixture of XynA and XBP (XynA + XBP), or the 
chimeras (2091A or 2621B). The control was treated under the same 
conditions but without enzyme. The result shows total reducing 
sugar release in micromoles. Triplicate assays were performed in 
50 mM phosphate buffer (pH 6.0) at 37°C for 2 h (see experimental 
procedures for further details).



Page 6 of 15Ribeiro et al. Biotechnol Biofuels  (2015) 8:118 

chimera, the inter-domain interface was formed by the 
posterior portion of the palm region of the xylanase while 
in chimera 262 the xylanase participates in the inter-
face through the fingers region (Fig. 4a, b). The interac-
tion potential energy (IPE) between the two domains 
as a function of time for both chimeras (Fig. 4c) reveals 
the energetic difference between the two interfaces. The 
total average IPE of the protein–protein interactions 
over the last 100  ns of the MD simulations for the chi-
meras shows values of −117.0  ±  22.2  kcal  mol−1 and 
−188.7  ±  41.4  kcal  mol−1 for the 2091A and 2621B, 
respectively. This shows that the 2621B presents a more 
extensive interface and energetically more favorable pro-
tein–protein contacts in comparison to the 2091A.

Computational alanine‑scanning mutagenesis
In these simulations, hot spots at the protein interface 
were identified by mutating all of the residues contribut-
ing the interface of the chimeras were to alanine residues, 
and an increase in the calculated binding free energy is 
an indication of the destabilization of the protein–pro-
tein interface. The residues that showed binding free 

energy, ΔΔGbind  ≥  1  kcal  mol−1, are considered to be 
those defined as potential hot spot residues [30]. Figure 5 
shows the ΔΔGbind for residues together with a structural 
representation of the primary hot spots identified. In the 
2621B chimera the hot spot residues identified showed 
ΔΔGbind values between 2.0 and 5.0  kcal  mol−1 while 
in the 2091A chimera these values are between 1.0 and 
2.0 kcal mol−1. In the 2091A, six residues were predicted 
to play a role in the interdomain interactions (Fig.  5a), 
where each residue makes a similar energetic contribu-
tion. The 2621B chimera shows 11 hot spot residues with 
a predominance of asparagine (36%) and threonine (18%), 
and it is evident that the protein–protein interface (PPI) 
is larger in this chimera (Fig. 5c). The simulation scores 
indicate that T261, W396 and L402 are expected to make 
a more significant contribution to interface stability, and 
these three residues are illustrated in Fig. 5b. According 
to the simulation, T261 in XynA could be involved in 
hydrogen bond formation with the peptide bond between 
L402 and S403 of XBP. The L402 residue of XBP appears 
not to directly interact with XynA, suggesting that the 
effect of mutation to a methyl side-chain group in alanine 

Fig. 4  Representations of the final XynA-XBP chimera structures after MD simulations. a Chimera 2091A; b 2621B. Both panels show details of the 
inter-domain interface, where the XynA domain is shown as a rainbow ribbon, and regions from the surface of the xylose-bound XBP domain are 
shown in gray. c Comparison of the inter-domain interaction potential energy (IPE) as a function of simulation time for xylose bound 2091A and 
2621B chimeras. Short-range potentials (<1.0 nm) between all amino acid residues in the XBP domain and all residues in the xylanase domain are 
shown for the 2091A (gray dots) and the 2621B (black dots) chimeras. The structural representations were prepared using the PyMol software [82].
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may result in an increased solvent accessibility [31]. The 
small side chains of Gly and Ala in the linker appears to 
permit a more favorable orientation of the W396 residue. 
Figure 5d shows four potential hot spot residues for the 
2621B chimera (N249, E253, N318 and N407). The N407 
residue in the xylanase domain in this chimera is inserted 
into a surface pocket of the XBP, so as to maximize its 
interactions with other residues. The majority of the hot 
spot interactions in this chimera involve hydrogen bonds.

Conformational changes of the xylanase domain
In both chimeras, the presence of xylose bound to the 
specific site of XBP generated an increase in the xylanase 
activity of the XynA. With the objective of understanding 
the structural basis of this effect, the volume of the cata-
lytic cavity of the xylanase and the change in the flexibility 
of the residues in the XynA catalytic domain were calcu-
lated from the MD simulations. Figure  6a, b shows the 
volume of the catalytic cavity during a specific portion 

of the simulation, represented by the frame index, and 
the root mean square fluctuation (RMSF) per residue, 
respectively. The domains and catalytic site of the xyla-
nase are shown in Fig.  6c. The conformational changes 
that occurred as a consequence of chimer formation were 
estimated by comparing the volume of the catalytic cav-
ity between the parental xylanase and the xylose-free 
chimeras over the course of the trajectory (Fig. 6a). The 
average volumes of the catalytic cavities were 869, 1,202 
and 1,157  Å3 for XynA, 2091A and 2621B, respectively. 
The fluctuations of the cavity during the simulations were 
±30% for XynA and ±15% for the chimeras. The frames 
shown in Fig. 6a were selected to illustrate the common 
behavior of the catalytic cavity volumes of the XynA in 
the three cases. Between 190 and 250 frames, the XynA 
showed approximately the same volume as the chimeric 
enzymes.

The RMSF calculated for each residue (Fig. 6b) clearly 
shows a large difference in the fluctuation of the positions 

Fig. 5  Hot spot residues at the protein–protein interface between XBP and XynA by MD simulations. Changes in binding free energy (ΔΔGbind) on 
alanine mutation of interface residues for a 2091A and c 2621B. Amino acids with a ΔΔGbind > 1.0 kcal/mol (red dashed line) are considered to be 
critical at the interface. b Three hot spot residues (T261, W396 and L402) in the 2091A chimera. T261 and W396 are inserted into a surface cleft of 
the XBP, and T261 is involved in hydrogen bond formation with a XBP peptide bond (yellow dashed line). d Four hot spot residues (N249, E253, N318 
and N407) of the 2621B chimera. The XynA N407 residue has a large contact area with the XBP, participating in four hydrogen bonds (yellow, dashed 
lines). The interfacial residues are shown as stick representation in yellow, and the XynA moiety as a ribbon. The XBP is shown as a cartoon and solid 
surface (in gray) and the linker region is in pink. The structures representations were prepared using the PyMol software [82].
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of the alpha carbons of the thumb domain residues when 
comparing the XynA domains in the chimeras in the 
presence and absence of xylose. The main chain in the 
thumb domain region of the XynA (between residues 
110 and 125) in both chimeras in the presence of xylose 
shows significantly higher flexibility than in the chimeras 
without xylose. Using the RMSF as a flexibility param-
eter, the thumb domain of the xylanases in the presence 
of xylose is approximately two- to fourfold more flexible 
in the 2091A and 2621B, respectively, as compared to the 
parental XynA.

Discussion
The fusion of two or more enzyme amino acid 
sequences to form a single polypeptide has been widely 
used as a tool in protein engineering and has been 
proven to be advantageous for the development of bio-
catalysts for the treatment and saccharification of bio-
mass [32–36]. The most commonly used approach is 

the simple fusion of the N-terminus of one enzyme with 
the C-terminus of the other (so called “end-to-end” 
fusion), and this domain insertion strategy permits the 
fusion of two proteins in a wide variety of configura-
tions. Alternatively, one enzyme may be inserted at 
a specific amino acid position of the other enzyme. 
Although this limits the number of inter-domain con-
figurations in the case of that specific chimeric protein, 
when fusion is performed at all amino-acid positions 
the result is an increase in the inter-domain confor-
mational diversity. This expansion in the number of 
possible orientations enhances the possibility creating 
chimeras in which structural changes in one domain 
affects the activity of the other. However, since the 
number of possible geometries created by insertion 
fusion is very large, and the consequences of fusion 
are not easily predicted, a more practical approach is 
to evaluate the insertion of one domain into another at 
multiple points in parallel.

Fig. 6  Flexibility and catalytic cavity volume fluctuations in the XynA domain. a Time series analysis of the catalytic cavity volume for the XynA 
domain in the parental XynA (light gray dashed line), the 2091A (open, xylose-free, dark gray line) and 2621B (open, xylose-free, black line). b Con-
formational fluctuations of XynA domain in 2091A (gray) and 2621B (black) without xylose (dashed line) and with xylose (solid line). The root mean 
square fluctuations (RMSF) were calculated for all Cα atoms of all XynA domain residues (residue 1–185) over the final 100 ns. c Three-dimensional 
structure of the XynA highlighting the catalytic cavity located between the palm and fingers domains. Access to the active site cleft is determined 
by the orientation of the thumb domain. The structure representations were prepared using the PyMol software [82].
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Using this approach, it has previously been dem-
onstrated that the random insertion of a β-lactamase 
domain into maltose binding protein (MBP) resulted in 
a series of chimeric proteins in which the β-lactamase 
activity was modulated by maltose, thereby introducing 
allosteric behavior into the enzyme [37]. However, ran-
dom insertion libraries are very large, costly to produce 
and generally result in a large number of non-functional 
variants. Furthermore, these libraries show bias towards 
certain insertion points, and even the largest libraries 
sample only a small fraction of the immense possibilities 
in sequence space [38]. A superior strategy is, therefore, 
to design smaller, high-quality libraries using a semi-
rational approach. In the present study, semi-rational 
domain insertion was applied to an enzyme that degrades 
lignocellulosic compounds, with the goal of creating 
a chimera that shows positive modulation by the final 
product.

The semi-rational domain insertion libraries were 
constructed in two steps. The first involved the inser-
tion of the xylanase (XynA) into a xylose binding protein 
(XBP), where the insertion points were chosen based on 
the structures of a PBPs with homology to XBP that had 
previously been shown to accept the insertion of a beta-
lactamase domain while maintaining the binding capac-
ity for their specific ligands [23]. Of the clones analyzed 
in this first stage, ~10% showed xylanase activity, which is 
an improvement when compared to the results of random 
insertion of beta-lactamase into MBP (maltose binding 
protein), in which only 0.8% of the clones showed cata-
lytic activity [8]. However, taking into consideration that 
the ligation efficiency between pSkunk2_XBP and XynA 
was around 80% and that only 50% of the XynA insertions 
were in the correct orientation in relation to the XBP 
reading frame, it was expected that approximately 40% of 
the clones would have xylanase activity. Thus, the smaller 
observed value suggests that in roughly three-quarters of 
the insertion positions, the structure of xylanase was per-
turbed in such a way as to severely prejudice the catalytic 
activity of the enzyme. In this first stage, the stimulatory 
effect of xylose in the allosteric clones was no greater 
than 1.2-fold, and this may be due to limitations imposed 
by the relative orientations between the two domains. 
Previous studies have shown that insertions and dele-
tions are frequently found between the junctions of the 
domains in proteins with a high switching effect [22, 25, 
37, 39, 40]. Therefore, to increase the repertoire of inter-
face contacts between the domains, the inter-domain dis-
tance was altered by creating linker libraries based on the 
two most promising insertion positions (A209-210 and 
D262-263).

Of the total number of clones analyzed from the linker 
library at position 209 in the XBP, ~0.05% showed an 

enhanced activity in the presence of xylose, as compared 
to the same construction without the linker. For the 
linker library at position 262, this percentage was 0.6% 
(12-fold higher in relation to position 209) indicating a 
greater propensity for the creation of allosteric enzymes 
at this position. The increase in the switching effect 
through the addition of linkers between the domains 
confirms recent studies suggesting that inter-domain 
linkers play a crucial role in the creation of allosteric 
protein switches by increasing the inter-domain confor-
mational heterogeneity [41–43]. The optimal tempera-
ture for enzymatic activity of the chimeric enzymes was 
40 and 50°C for the 2091A and 2621B, respectively, as 
compared to 45°C for the XynA (Fig. 2b). The fusion of 
xylanase involves both the N- and C-terminal regions, 
and the differences in the temperature effect profiles 
may be the consequence of the known influence of both 
these regions on the XynA thermostability [44, 45]. The 
higher temperature maximum of the 2621B may also 
be explained by the extended protein–protein interface 
between the XBP and the fingers domain of the xylanase 
(Fig. 4b), a known structural determinant of thermosta-
bility in GH11 xylanases [46]. In this context it is note-
worthy that the formation of a protein–carbohydrate 
interface involving residues in the “fingers” region has 
recently been shown to stabilize glycosylated forms of 
the XynA [47].

The kinetic properties of the xylanase activity of the 
chimeras presented considerable alterations in compari-
son with the xylanase alone, where a ~threefold increase 
in the kcat values for the chimeras was observed in the 
presence of xylose (Table 3). A 1.5-fold increase was also 
observed in the KM value for the 2621B. Previous NMR 
studies on the catalytically inactive XynA E78Q mutant 
have shown that the binding xylo-oligosaccharides not 
only at the active site but also at a secondary binding site 
(SBS) comprised of a surface cleft that is distant from the 
active site. Furthermore, it was demonstrated that the 
SBS acts in a cooperative manner with the active site and 
that mutations in the SBS led to a significant increase in 
the KM value [48]. Alteration of the exposure of the SBS 
in the XynA due to fusion with XBP could explain the 
increase in the KM value. The chimeric enzymes demon-
strated a higher hydrolytic efficiency against the natural 
substrate in relation to the parental xylanase. However, 
the stimulatory effect of xylose on sugar cane bagasse 
hydrolysis was less than with RBB-xylan, and this may 
be due to the complexity of milled sugarcane bagasse, 
which contains 21.7% xylan, 22% lignin and 45% glucans 
[49]. These polymers are interlinked by covalent bonds 
forming a recalcitrant lignocellulosic matrix [50], with an 
effective pore size that hinders enzyme access [51]. Thus 
the larger size of the chimeric enzymes may result in 
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their decreased access to the polysaccharides in the intact 
bagasse.

Molecular communication between distinct binding 
sites located in different protein domains in allosteric 
enzymes may occur through the formation of a pro-
tein–protein interface [43, 52]. As a consequence of the 
approximation between the XynA and XBP domains, 
the MD simulations suggested such an interface was 
created in both chimeras, and this offers an explana-
tion for the observed activity modulation by xylose. 
The 2621B showed a greater effect of xylose, and the 
predicted protein–protein interface is around 72  kcal/
mol more stable than that in the 2091A. Closer analy-
sis indicates that the 262B interface potential energy is 
dominated by a relatively small number of inter-domain 
residue contacts, which define “hot spots” at the inter-
face. The more extensive protein/protein interface in 
2621B shows a cluster of hot-spot residues and presents 
complementary surfaces rather than simple contacts 
between the residues of both proteins. Hot spot resi-
dues tend to appear as clusters at interfaces [53]; thus 
interactions between buried residues become more 
prominent in comparison with residues on the periph-
ery of the interfacial region [54]. Strong protein–pro-
tein interactions are concomitant with the exclusion of 
water molecules between the binding regions, which 
promotes lower energies in the hot spot residues [55]. 
The MD simulation results provide explanations for the 
structural and energetic basis of the protein–protein 
interface, and open the possibility that the properties of 
the chimera may be further optimized by mutation of 
these hot spot residues.

The MD simulations also revealed that the volume of 
the catalytic cavity of the parental xylanase is reduced 
in comparison with those in the chimeras (Fig.  6a). 
As previously reported [56], opening of the thumb 
domain leads to greater solvent exposure of the cata-
lytic site and this conformation change is correlated 
with an increase in the activity of GH11 xylanases. 
Thus, the increase in the catalytic volumes observed 
in the current work is consistent with the experimen-
tal results. Indeed, the RMSF values suggest that the 
thumb domain of the xylanase domain in the chimeras 
is more flexible when xylose is bound to XBP. Since the 
xylan substrate has direct contact with many residues 
in this domain [57], increasing the flexibility of the 
thumb domain residues may improve the conforma-
tional adaptation of the substrate in the catalytic site. 
Thus, MD simulation results suggest that chimera for-
mation has two distinct effects on the xylanase domain: 
an overall increase in the volume of the catalytic cavity 
and a xylose dependent increase in the flexibility of the 
thumb domain.

Conclusions
The experimental approach used here has been shown 
to be effective for the creation of a glycosyl-hydrolase 
that is stimulated by the product of hydrolysis and rep-
resents the first time that this concept has been used for 
engineering an enzyme for the treatment of biomass. 
The results not only contribute to the understanding of 
the molecular control mechanisms needed for the modu-
lation of the industrial enzymes used in this sector, but 
also suggest that this strategy may be explored to create 
enzymes for various biotechnological applications.

Methods
Plasmid construction
The plasmid pSkunk2_XBP was constructed using cir-
cular polymerase extension cloning (CPEC) [58]. The 
region comprised of the signal sequence (Ss) and the 
xylF gene (XBP) from Escherichia coli (Gene ID: 948090) 
was amplified from the vector pT7T3GFP_XBP [59] 
with primers XBPf (5′-ggaggaaggatccatggcatgaaaataaa-
gaacattctactcaccctttgcacc-3′) and XBPr (5′-ccctgaggttac-
tagtttacagctcgctctctttgtggaatccg-3′). pSkunk2 is a 3.2-kb 
phagemid derived from pDIM-C8 [60], in which the Kan-
amycin resistance marker is substituted with the strepto-
mycin/spectinomycin (Sm/Spec) resistance. This vector 
was amplified with primers pSkunk2f (5′-cggattccacaaa-
gagagcgagctgtaaactagtaacctcagggttatgtatgcacaagg-3′) and 
pSkunk2r (5′-agtagaatgttctttattttcatgccatggatccttcctcct-
gtgtgaaattgttatcc-3′). The overlapping regions of the two 
sets of primers are underlined in the sequence. An equi-
molar mixture of the two amplified fragments (PS-XBP 
and pSkunk1) was submitted to the CPEC reaction and 
used to transform E. coli DH5α cells as described previ-
ously [58], and the correct pSkunk2_XBP construct was 
confirmed by nucleotide sequencing. The xynA gene 
from Bacillus subtilis (GeneID: 939861) was cloned into 
the plasmid pT7T3 18U (2883pb—Amersham Pharma-
cia), as described previously [36], generating the con-
struct pT7T3/XynA.

Library creation by semirational insertion of XynA into XBP
Fragments corresponding to the complete vector 
pSkunk2_XBP (4,181  bp) were generated by multi-
plex inverse PCR [61] starting from specific codons 
of XBP. Based on previous results with ribose bind-
ing protein (RBP) and glucose binding protein (GBP), 
144 codons within the sequence of XBP were selected, 
and 144 primer pairs with melting temperatures (Tm) 
close to 60°C. The PCRs were performed in the follow-
ing conditions: 3 ng of pSkunk2_XBP, 3% DMSO, 1.1 M 
betaine, 50  nM oligonucleotides (forward and reverse) 
and 1X Phusion® High-Fidelity Master Mix (NEB) with 
sterile water to a final reaction volume of 20  μL. The 
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amplifications were performed in a thermocylcer pro-
grammed to generate 98°C for 30 s followed by 30 cycles 
of: 98°C for 10 s, 60°C for 20 s and 72°C for 130 s. After 
30 cycles, a final step at 72°C was performed for 5 min. 
The PCR products were mixed and applied to a 0.8% 
agarose gel in TE buffer, and the 4,181-bp fragment was 
gel purified. The xynA gene was PCR amplified with-
out a stop codon from the pT7T3/XynA vector using 
phosphorylated primers, and ligated to the gel purified 
pSkunk2_XBP plasmid. The ligation reaction contained 
~1 µg of plasmid with a molar ratio of 5:1 insert:plasmid 
and 1,000 U/µg of T4 DNA ligase (NEB), 1× ligase buffer, 
and 5% PEG8000. The reaction was incubated at 22°C 
for 14  h, purified using a DNA Clean and Concentra-
tor™ column (Zymo Research), and eluted with 100  µL 
of water/column. The samples from the ligations were 
concentrated and used to transform electrocompetent 
kanamycin resistant JW3538-1 E. coli cells carrying the 
XBP gene (xylF) knockout (strain from the Coli Genetic 
Stock Center, USA). After incubation and regeneration 
for 1  h/37°C, the cells were plated on LB-agar contain-
ing 34 µg/mL kanamycin and 50 µg/mL streptomycin, on 
bioassay plates (245 × 245 × 25 cm). After growth, colo-
nies were harvested in storage media [LB + 50% glycerol 
(vol/vol)] and stored in cryotubes at −80°C.

Construction of the linker library
The clones from the pSkunk2_XBP library with the xyla-
nase inserted between Ala 209 and residue 210 of XBP 
(A209-210) and between Gln 262 and residue 263 of 
XBP (Q262-263) selected presented the xylose activa-
tion effect (see next section) and were used for the con-
struction of a linker library. Primer pairs were designed 
to insert random combinations of 0-4 glycine and/or 
alanine residues at the junctions between the XynA and 
XBP coding regions. For the complete randomization of 
the linkers, 0–4 repetitions of the codons GSC or GSG 
(S represents a guanine or a cytosine) were added to the 
5′ and 3′ ends of the primers (Additional file  2: Table 
S1), and an equimolar mixture of the phosphorylated 
primers was used to amplify the xynA by PCR from the 
pT7T3/XynA vector. In parallel, two PCR reactions were 
performed to amplify and linearize the pSkunk2_XBP 
plasmid at the two selected positions (see Additional 
file  2: Table S1 for the two pairs of primers used). The 
amplification products (xylanase gene: ~555 bp and lin-
earized plasmid: 4,181 bp) were gel purified and ligated, 
and used to transform E. coli JW3538-1 ΔxylF cells. 
After plating on LB-agar containing 34  µg/mL kana-
mycin and 50  µg/mL streptomycin, in bioassay plates 
(245  ×  245  ×  25  cm), the colonies were harvested in 
storage media [LB +  50% glycerol (vol/vol)] and stored 
in cryotubes at −80°C.

Screening for the catalytic activity of xylanase (XynA)
A 10 µL aliquot of cells from the libraries stored at −80°C 
was plated on LB media containing 34  µg/mL kanamy-
cin and 30 µg/mL streptomycin. After incubation at 37°C 
for 16 h, individual colonies were transferred to 384-well 
micro plates containing 60  µL selective tryptone broth 
(TB) (per liter, 10 g of tryptone and 5 g NaCl) using an 
automated colony picker (Kbiosystems-K6). The plates 
were incubated at 37°C/24 h and replicated on bioassay 
plates (245 mm × 245 mm × 25 mm) containing TB-agar 
media, supplemented with 0.6% (m/v) xylan, 1% (m/v) 
xylose; 34  µg/mL kanamycin; 30  µg/mL streptomycin 
and 1 mM IPTG. For linker libraries, cells were replicated 
on bioassay plates (245 mm × 245 mm × 25 mm) con-
taining TB-agar media, supplemented with 0.02% (m/v) 
RBB-xylan (Remazol Brillian Blue Xylan) (Sigma), 34 µg/
mL kanamycin, 30 µg/mL streptomycin and 1 mM IPTG, 
with and without 1% (m/v) xylose. After incubation of the 
plates at 37°C for 24 h, the clones expressing xylanase in 
the semirational insertion library of xylanase into XBP 
were located using the formation of pale halos after stain-
ing with Congo Red [62]. The clones expressing xylanase 
in the linker libraries were identified by the formation of 
halos around the colonies, resulting from the degrada-
tion of the RBB-xylan. In both libraries, those colonies 
presenting clearer halos on the plates with xylose were 
selected and were denominated as XynA+ clones.

Measurement of xylose stimulated catalytic activity
The XynA+  clones were grown in TB supplemented 
with 34  µg/mL kanamycin, 50  µg/mL streptomycin and 
0.5 mM IPTG for 48 h in 96-well plates (deep well). The 
supernatants were analyzed for hydrolysis of RBB-xylan 
(Remazol Brilliant Blue Xylan, Sigma), using a modifica-
tion of the protocol developed by Biely et al. [63]. In this 
protocol, 50 µL of supernatants was mixed with 50 µL of 
a solution containing RBB-xylan (4 mg/mL), in 100 mM 
acetate buffer (pH 5.5), in the presence or absence of 
1% (m/v) d-xylose (Sigma), and incubated at 37°C for 
12  h. After incubation, the reaction was stopped by the 
addition of two volumes (200  µL) of 96% (v/v) ethanol. 
The insoluble material was removed by centrifugation 
(2,000g/2 min), and the increase in the absorbance of the 
supernatant was monitored at 595  nm. The clones that 
showed the highest activity in the presence of d-xylose 
compared to the absence of d-xylose were selected.

Expression and purification of the recombinant enzymes
The XynA and the chimeric enzymes were expressed in 
E. coli [Rosetta™ (DE3)] transformed with pET28a (+) 
(Novagen) carrying XynA or 2091A or 2621B grown 
in HDM medium containing (per liter) 25  g of yeast 
extract, 15 g of tryptone, 1.2 g of MgSO4, supplemented 
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with 34 µg/mL kanamycin and 40 µg/mL chlorampheni-
col. The cells were grown at 37°C to OD600 of 0.6, and 
expression was induced with 1 mM isopropyl-d-thioga-
lactopyranoside for 4 h. Cells were harvested by centrif-
ugation (8,000g, 4°C, 10 min). Whole-cell extracts were 
prepared from cell pellets by ultrasonication in 4% (v/v) 
of the original culture volume of lysis buffer (100  m  M 
HEPES (pH 7.5), 300 mM NaCl, 0.5 mM phenylmethyl-
sulfonyl fluoride, 1% (v/v) Triton X-100, and 20 mM imi-
dazole). The cell extracts were cooled on ice and cleared 
of cell debris by centrifugation (10,000g, 4°C, 30  min). 
The supernatants were loaded on an immobilized metal 
affinity column Ni–NTA (Amersham Biosciences) pre-
equilibrated with a buffer containing 100  mM HEPES, 
300 mM NaCl, and 20 mM imidazole (pH 7.5). The col-
umn was washed with buffer containing 100 mM HEPES 
(pH 7.5), 300 mM NaCl, and 40 mM imidazole until no 
further reduction in the A280 was observed. Protein was 
eluted with 300  mM imidazole, and protein samples 
were dialyzed against 20  mM Tris–HCl (pH 8.0) and 
200 mM NaCl and stored at 4°C for future use. The pro-
tein concentrations were determined by measurement of 
the A280.

Enzyme activity assays
The effect of pH on xylan hydrolysis by the purified 
enzymes was determined at 40°C in 50  mM with 0.2% 
(w/v) RBB-xylan substrate (Sigma) buffered with ace-
tic acid/acetate (pH 4.5–5.5), potassium phosphate (pH 
5.5–6.5), MOPS-NaOH (pH 6.5–7.5) and Arginine-
NaOH (pH 9.0). The effect of temperature on xylanase 
activity was conducted at temperatures between 30 and 
55°C in 50  mM acetate, pH 5.5. The xylanase kinetic 
parameters were determined using the RBB-xylan sub-
strate in concentrations ranging from 0.5 to 10  mg/mL, 
with and without 1% (w/v) d-xylose (Sigma). The reac-
tions were initiated by the addition of 20 nM of the puri-
fied enzyme to acetate buffer (pH 5.5) at 37°C. After 
15  min, the enzyme was inactivated by incubation at 
80°C for 10 min, followed by incubation at 4°C for 5 min. 
Five hundred microliter of ethanol was then added and 
the mixture incubated at 25°C for 15 min. The samples 
were centrifuged at 13,200 rpm for 2 min and 580 µL of 
each sample were transferred to a 1-cm cuvette for meas-
urement of the absorbance at 595 nm [64]. The absorb-
ance values were converted to μmols of released dye 
(ε  =  8,266  M−1  cm−1) [65] to determine the catalytic 
constants. All enzymatic activities were determined in 
triplicate, and the maximum velocity (Vmax), Michaelis 
constant (KM), and catalytic constant (kcat) were calcu-
lated by nonlinear regression fitting of the data to the 
semi-logarithmic form of the Hill equation using the 
SigrafW software [66].

Determination of the equilibrium dissociation constant 
with xylose
XBP and chimeric enzymes at a concentration of 3 μM 
were titrated with xylose (Sigma–Aldrich, St. Louis, MO, 
USA) over the concentration range 0–1  μM in buffer 
containing 20 mM Hepes (pH 7.5). The changes in fluo-
rescence emission were measured with a Hitachi F-4500 
spectrofluorimeter at 25°C, using a stirred 1  cm opti-
cal path length quartz cuvette. Excitation and emission 
wavelengths were set to 295 and 310–345  nm, respec-
tively. The equilibrium dissociation constant (Kd) for each 
xylose/protein complex was estimated by nonlinear curve 
fitting with a sigmoidal dose–response function using the 
OriginPro 8 software (OriginLab Corporation, North-
ampton, MA, USA).

Enzyme assays using natural substrate
Milled sugarcane bagasse (particle size 0.2  mm) was 
treated with 80% ethanol and washed thoroughly with 
50  mM phosphate buffer (pH 6.0) to remove residual 
soluble sugars. A 1% w/v suspension of the treated and 
washed substrate was prepared in the same buffer and 
mixed with either 25  nmol of purified chimeras, with 
25 nmol of individual purified xylanase or with an equi-
molar mixture of 25  nmol of xylanase and 25  nmol of 
XBP, in a final reaction volume of 50  mL. The reaction 
was incubated at 37°C for 2  h in a shaker at 200  rpm 
to avoid substrate precipitation, and the total reduc-
ing sugar release was measured by the DNS method as 
described previously [35].

Modeling and molecular dynamics simulations
Initial atomic coordinates of the chimeras were obtained 
from the structures of xylanase from B. subtilis (PDB code 
1XXN [56]) and XBP from E. coli (PDB code 3M9W for 
open xylose-free and 3MA0 for closed xylose-bound [67]) 
as templates for building the structural models of the 
chimeras by comparative modeling techniques with the 
program MODELLER 9.13 [68]. The structural models 
were validated utilizing the program Procheck [69]. Initial 
3D model of the chimeras were submitted to an energy 
minimization step using the steepest descent algorithm 
[70]. Subsequently, each chimera was solvated with SPC 
water molecules [71] at a concentration of approximately 
53.0 mol/L in dodecahedral simulation boxes. The proto-
nation state of the ionizable residues at pH7 was deter-
mined by Poisson-Boltzmann based pKa calculations 
using the H++ program [72]. Three sodium ions were 
inserted into the simulation boxes at the most electrostat-
ically favorable positions to ensure the electroneutrality of 
the systems. Systems were equilibrated for approximately 
400  ps by position restrained MD at 300K to eliminate 
remaining repulsive energies. All systems were simulated 
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in the NVT ensemble at pH 7.0 and 300K, in which the 
temperature was controlled using the V-rescale thermo-
stat [73]. LINCS [74] and SETTLE [75] algorithms were 
used to restrain the covalent bonds involving hydrogen 
atoms in protein and water molecules, respectively. The 
leap-frog integration algorithm [76] was employed to 
solve the Newton’s equations of motion with a time step of 
2.0 fs. The initial velocities were obtained from Maxwell–
Boltzmann distribution at 300K. The long-range interac-
tions were treated using particle-mesh Ewald sum (PME) 
method [77], with a cutoff equal to 1.2 nm and updated 
every 10 time-step intervals. The total time of each sim-
ulation was determined based on the root mean square 
deviation (RMSD) behavior in time. Approximately 100 ns 
were achieved in each MD simulation. All MD runs and 
analyses were performed with the GROMACS 4.6 toolkit 
[78] using the GROMOS-96(53A6) force field [79]. The 
Interaction Potential Energies (IPE) were calculated as 
the sum of all interaction energies (Eij) between all atoms 
from Protein A (i) and all atoms from Protein B (j) accord-
ing to the following equation:

where NA and NB are the total number of protein A and 
B atoms, respectively. Computational alanine scanning 
was performed by ROBETTA software [80] to identify 
the energetically important residues at the protein–pro-
tein interface. The volume of xylose binding cavity of 
xylanase was monitored along the MD trajectories with 
the Eyrisch and Helms tool [81] EPOSBP (http://gepard.
bioinformatik.uni-saarland.de/software/epos-bp). The 
default parameters of EPOSBP were employed for the 
measurement of cavity properties such as volume and 
the residues lining the cavities. Due the large dimension 
of the target cavity and its dynamic motion during the 
simulations, the cavities detected were divided into more 
convenient subcavities, and the reported volumes of the 
target cavity is the sum of all subcavities defined by the 
residues lining the substrate binding cavity of xylanase.

IPE =

NA∑

i

NB∑

i

Ei,j ,

Additional files

Additional file 1:  Screening of the effect of xylose on the xylanase activ-
ity of the 225 XynA+clones. The xylanase activity in culture supernatants 
of each clone was measured in the presence and absence of xylose, and 
the activity ratio in the presence (+ xylose) as compared to the absence 
(−xylose) was calculated. A ratio (+xylose/−xylose) of 1.0 indicates no 
difference in the activity in the presence of xylose. Of the 225 clones, 69% 
(155 clones) showed lower activity in the presence of xylose and 4% (10 
clones) showed an increased activity greater than 10% in the presence of 
xylose. See “Methods” section for further experimental details.

Additional file 2:  Table S1. Oligonucleotides used for the construction 
of the linker libraries at XBP positions 209 and 262.

Abbreviations
GH11: glycosyl Hydrolase family 11; 2091A: chimeric enzyme in which the 
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