

 Universidade de São Paulo

2015-04

OntolAD: a formal ontology for architectural

descriptions

Symposium on Applied Computing, 30th, 2015, Salamanca.
http://www.producao.usp.br/handle/BDPI/48982

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Sistemas de Computação - ICMC/SSC Comunicações em Eventos - ICMC/SCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37525615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/48982

OntolAD: a Formal Ontology for Architectural Descriptions

Milena Guessi
∗

Dept. of Computer Systems
University of São Paulo, São

Carlos-SP, Brazil
milena@icmc.usp.br

Dilvan A. Moreira
Dept. of Computer Science
University of São Paulo, São

Carlos-SP, Brazil
dilvan@icmc.usp.br

Gabriel Abdalla
Dept. of Computer Systems
University of São Paulo, São

Carlos-SP, Brazil
gabriel.abdalla@usp.br

Flavio Oquendo
IRISA - University of South

Brittany
Vannes, France

flavio.oquendo@irisa.fr

Elisa Yumi Nakagawa
Dept. of Computer Systems
University of São Paulo, São

Carlos-SP, Brazil
elisa@icmc.usp.br

ABSTRACT
Architecture descriptions have been the focus of several stud-
ies in which they contribute for the design, evaluation, and
evolution of software systems. In parallel, ontologies have
been proposed for sharing and disseminating knowledge on
a particular domain. In this scenario, the ontology proposed
in the ISO/IEC/IEEE 42010 standard for architecture de-
scriptions represents an important effort towards improv-
ing architecture descriptions as it establishes a common vo-
cabulary. Nonetheless, a formal ontology for this standard
could also support automatic conformance validation and
enhance architectural descriptions reuse. However, a for-
mal ontology for this standard is not available yet. There-
fore, the main contribution of this paper is the proposal of
OntolAD, a formal ontology expressed in OWL 2 for the
ISO/IEC/IEEE 42010 standard. We demonstrate the feasi-
bility of our formal ontology by applying it for describing the
service-oriented architecture style (SOA). We conclude this
study with interesting perspectives of using this ontology in
future work.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Documentation

Keywords
Architecture Description, Formal Ontology

∗This author is also with IRISA Research Group at Univer-
sity of South Brittany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695739

1. INTRODUCTION
Software architectures play a central role throughout a

software system’s life cycle. For example, during system
conception, software architectures can ensure quality at-
tributes, such as maintainability, dependability, and interop-
erability [23]. Later, during evolution, software architectures
become the main protection against software system aging
by preserving the architect’s original intent regarding struc-
ture and behavior [17]. While the software architecture is
embedded in the overall system structure, the Architecture
Description (AD) is a tangible artifact expressing a software
architecture [4, 13]. Among others, architecture descriptions
can support reuse of architectural knowledge, assessment of
architectural qualities, and communication of the software
architecture to its stakeholders [5, 9, 15]. Thus, architecture
descriptions greatly contribute for the success of software
systems. Aiming to standardize the main constructs of ar-
chitecture descriptions and disseminate best practices for
their creation, the ISO/IEC/IEEE 42010 standard [13] was
proposed.

In parallel, we observe the proposal of ontologies, which
have been traditionally defined as an explicit specification of
a conceptualization [11]. Overall, an ontology establishes a
common understanding about a giving domain by providing
an accurate and unambiguous communication of meaning
which in turn promotes interoperability, reuse, and shar-
ing [20]. Nonetheless, different kinds of ontology exist and
they can vary from a set of precise, descriptive statements
about the domain of interest to formal models [20]. For ex-
ample, glossaries and taxonomies can be cited as examples
of informal ontologies which are expressed in natural lan-
guage or structured language. Conversely, FOAF1, which
describes human relationships, and Dublin Core2, which de-
scribes documents, can be cited as examples of formal on-
tologies that may be expressed in description logic or first
order logic. While an informal ontology can be useful for
promoting the communication among different stakeholders,
a formal ontology also provides the means for processing it
using computer programs.

Motivated by the benefits brought by ontologies, several
studies have investigated and proposed ontologies in the

1http://xmlns.com/foaf/0.1/
2http://purl.org/dc/elements/1.1/

1417

Software Engineering field. Besides supporting communi-
cation, ontologies could be investigated for enhancing the
interoperability between systems and enriching the specifi-
cation of components, artifacts, and systems [20, 22]. For
example, we can find ontologies addressing the software ar-
chitecture field [2], architectural decisions [16], quality cri-
teria [7], and architectural models [14]. In particular, the
ISO/IEC/IEEE 42010 standard is an example of semi-formal
ontology as it uses UML3 for depicting a conceptual model
of an ontology. As a consequence, there is still no support
for automatically validating the conformance of architecture
descriptions to the ISO/IEC/IEEE 42010 standard, which
still relies on the experience of software architects.

The main contribution of this study is to propose a for-
mal ontology, called OntolAD, for the ISO/IEC/IEEE 42010
standard. Besides contributing for the dissemination of cur-
rent best practices for creating architecture descriptions,
OntolAD can support the creation and validation of archi-
tecture descriptions that aim at complying to this standard.
The rest of this paper is organized as follows. First, Sec-
tion 2 introduces ontologies and further elaborates on the
context where this study is developed. Section 3 presents
OntolAD. Section 4 presents the quality assessment of On-
tolAD. Section 5 demonstrates how OntolAD can be applied
for describing architecture description elements. Section 6
discusses our results and outlines interesting perspectives
for future work. Finally, Section 7 summarizes our contri-
butions.

2. BACKGROUND
Architecture descriptions are important for documenting,

assessing, and sharing knowledge contained in software ar-
chitectures. One of the main contributions of the ISO/-
IEC/IEEE 42010 standard is the definition of primitive con-
structs for architecture descriptions, such as stakeholders,
concerns, viewpoints, and architecture models. Further-
more, this standard also specifies how more complex struc-
tures, such as architecture frameworks, architecture styles,
and Architecture Description Languages (ADLs), could be
specified in terms of these primitive constructs. For exam-
ple, an architecture framework, which guides the creation of
architectural descriptions for a given domain, such as “4+1”
Views [15] and “Views and Beyond” [5], can be defined in
terms of stakeholders, concerns, and viewpoints it selects.
An architecture style, which encompasses a set of common
restrictions to the form and structure of software architec-
tures [8], can be understood as an architecture model in this
standard. Finally, an Architectural Description Language
(ADL), which is any form used for expressing a software ar-
chitecture, such as Wright [1], UML, and SysML4, can be
specified in terms of provided model kinds, framed concerns,
aimed stakeholders, and required correspondence rules.

In parallel, we observe that ontologies have been devel-
oped aiming to support communication, interoperability, and
systems engineering [21]. In regards to communication, on-
tologies can promote a shared understanding on a particular
domain by providing unambiguous and standardized defini-
tions for terms and their relations. In regards to interoper-
ability, we can use ontologies for integrating different tools,
techniques, and platforms. For example, an ontology can

3http://www.omg.org/spec/UML/2.3/
4http://www.omgsysml.org/

either provide a standardized terminology for its different
users to comply with or the semantic foundations for cre-
ating specific translators for its users. Finally, in regards
to systems engineering, ontologies can enrich the specifica-
tion of components, services, and artifacts by specifying con-
straints and relevant assumptions. In this sense, ontologies
could be used together with ADLs, such as UML or SysML,
for providing complementary information to architectural
models.

As stated earlier, ontologies can present different formal-
ism levels [20]. In this study, we focus on formal ontologies
aiming to support consistency checking, model validation,
and reuse. Several languages can be used for describing
ontologies depending on the desired formalism level, expres-
siveness, available tools, and community support [6, 19]. We
can cite RDFS5 (Resource Description Framework Schema)
and OWL6 (Web Ontology Language) as examples of lan-
guages for expressing formal ontologies. Moreover, both of
them are W3C standards for the Semantic Web. In this
study, we selected OWL as it is the most expressive lan-
guage of the two mentioned before. Other important factor
contributing for this decision is the existence of ODM7 (On-
tology Definition Metamodel), an OMG standard bridging
the gap between UML and OWL. Since UML is a broadly
accepted standard for describing software architectures, it
seems interesting to use OWL for expressing a formal ontol-
ogy for the ISO/IEC/IEEE 42010 standard.

3. ONTOLAD OVERVIEW
In this study, we propose OntolAD8, an ontology expressed

in OWL 2 for architectural descriptions based on the ISO/-
IEC/IEEE 42010 standard. Therefore, this formal ontology
describes the domain of interest in terms of classes, individ-
uals, and properties about individuals, classes, or relation-
ships that exist among them. The purpose of this ontology
is to disseminate architectural descriptions and to define a
baseline for integrating different architectural description el-
ements, such as viewpoints, model kinds, and ADLs. We
used the Protégé9 tool for creating the ontology and the
Pellet Reasoner Plug-in (v. 2.2.0)10 for consistency check-
ing and implicit knowledge inference.

The process we followed for creating OntolAD was mostly
straightforward since the ISO/IEC/IEEE 42010 standard al-
ready provides detailed definitions for all architecture de-
scription elements. The definition of each class uses axioms
for determining membership conditions to the class [12].
First, we transformed primitive AD constructs into OWL
primitive classes, i.e., classes with only necessary conditions.
OWL can express three different types of properties, namely:
(i) object properties, which define relationships between in-
dividuals; (ii) data type properties, which define relation-
ships between individuals and literals (e.g., strings, integers,
etc.); and (iii) annotation properties, which can be used to
describe metadata about individuals, classes, and properties,

5http://www.w3.org/TR/2014/
REC-rdf-schema-20140225/
6http://www.w3.org/TR/2012/
REC-owl2-primer-20121211/
7http://www.omg.org/spec/ODM/1.0/
8This ontology is available at https://www.dropbox.com/
sh/58ro0giwi821khw/AACoMg4ZzjJuB8zClAbxg5awa?dl=0
9http://protege.stanford.edu

10http://clarkparsia.com/pellet/protege/

1418

such as translations, comments, and definitions for these
concepts. Many relationships described in the ISO/IEC/-
IEEE 42010 standard are implemented as object properties
in OntolAD, such as has concern between Stakeholder and
Concern, is governed by viewpoint between Architecture

View and Architecture Viewpoint, and is expressed by be-
tween Architecture and Architecture Description. To
simplify our ontology, we did not provide either domain or
range for object properties. Furthermore, we also identified
data type properties, such as author, issue date, version of
a particular Architecture Description. Currently, Onto-
lAD has 47 object and data type properties.

In a second step, we identified which primitive classes
should be transformed into defined classes, i.e., classes with
at least one set of necessary and sufficient conditions. In
other words, a defined class is “equivalent to” the set of suf-
ficient and necessary conditions. Defined classes are impor-
tant since the reasoner only automatically classifies classes
that are defined. To do so, we analyzed the recommenda-
tions of the standard. Even though ISO/IEC/IEEE 42010
standard is a comprehensive semi-formal ontology, some de-
sign decisions had to be made in order to create OntolAD.
For example, a correspondence is a relationship among ar-
chitecture description elements. To map this concept into
OntolAD we could either define it as a class or as an object
property between individuals. Finally, we decided to define
this concept as a class since this would enable creating cor-
respondences that can be reused in other contexts.

In a third step, we added disjoint, closure, and covering
axioms to OntolAD because of the open world assumption,
i.e., if something is not stated does not implies it is not true.
While not stated in the standard, these axioms are required
for the reasoner to function properly. As OWL assumes that
classes overlap unless there is an explicit statement to the
contrary, we added disjoint axioms indicating which classes
are disjoint. Then, closure axioms (i.e., only) were added to
all existential restrictions (i.e., some) in mandatory clauses
of the ISO/IEC/IEEE 42010 standard (i.e., shall or must).
Conversely, recommendation clauses in the standard (i.e.,
should) have universal restrictions (i.e., only). Finally, cov-
ering axioms indicate allowed subclass memberships. For
example, a covering axiom was included in the description
of the class Architecture Description Element for indi-
cating that any individual of this class can only pertain to
one of its subclasses. Table 1 shows the final formal de-
scription of this class in OWL. On the other hand, there is
no covering axiom in the description of class Stakeholder,
shown in Table 2, as any individual of this class can belong
to several of its subclasses (e.g., acquirer, builder, developer,
user, supplier, among others) depicting the several roles a
particular stakeholder can play. Moreover, the operator and
defines a class resulting from the intersection of each restric-
tion whereas the operator or defines a class resulting from
the union.

Throughout the definition of OntoLAD, domain experts
contributed for validating the ontology’s consistency with
the ISO/IEC/IEEE 42010 standard. This task was sup-
ported by Protégé as it automatically generates a graphical
representation for the asserted class hierarchy depicted in
Figure 1. An universal class named Thing, which contains all
individuals, is automatically created by the language. More-
over, OWL 2 also provides an empty class named Nothing.
The later is particularly useful for checking the consistency

Table 1: Formal description of an architectural de-
scription element in OntolAD

Equivalent to
‘Architecture Decision’ or ‘Architecture Description’
or ADL or ‘Architecture Framework’ or ‘Architecture
Model’ or ‘Architecture Rationale’ or ‘Architecture View’
or ‘Architecture Viewpoint’ or Concern or Correspon-
dence or ‘Model Kind’ or Stakeholder
Disjoint with
System, Environment, Architecture

Table 2: Formal description of a stakeholder in On-
tolAD

Equivalent to
‘Architecture Description Element’ and (hasConcern
some Concern) and (isInterestedIn some System) and
(hasConcern only Concern) and (isInterestedIn only Sys-
tem)
Disjoint with
‘Architecture Decision’ or ‘Architecture Description’
or ADL or ‘Architecture Framework’ or ‘Architecture
Model’ or ‘Architecture Rationale’ or ‘Architecture View’
or ‘Architecture Viewpoint’ or Concern or Correspon-
dence or ‘Correspondence Rule’ or ‘Model Kind’ or Stake-
holder

of the ontology. For example, the ontology might be incon-
sistent if Nothing is classified by the reasoner as one of the
defined classes.

Alternatively, Figure 2 shows a graphical representation
for the inferred class hierarchy that is computed by the rea-
soner. The inferred class hierarchy shows implicit knowledge
embedded in the ontology, i.e., assertions that were not origi-
nally included but are nonetheless true. For example, the in-
ferred class hierarchy classified Architecture Description

under Architecture Framework. According to the note in
Clause 6.2 of the standard, an architecture description could
adhere to none, single, or multiple architecture frameworks.
In this sense, the reasoner infers that an architecture de-
scription uses and extends from a particular instance of an
architecture framework, which can possibly be unique in the
domain. Similarly, an ADL is classified under Architecture

Viewpoint. According to the note in Clause 6.3 of the stan-
dard, an ADL can define none, single, or multiple architec-
ture viewpoints. In this sense, a given ADL can be said to
comply with an architecture viewpoint even if this viewpoint
is unique in the domain. Therefore, the assertions made by
the reasoner are still in conformance with the standard.

According to the axioms and properties of OntolAD it has
expressiveness SIF(D) which means:

S : An abbreviation for ALC (where AL stands for attribu-
tive language and C stands for complex concept nega-
tion) with transitive properties. For example, the tran-
sitive property isUsefulFor can relate an individual of
the class Architecture with an individual of the class
System and an individual of the class ‘Architecture

Description’ with an individual of the class Archi-

tecture. Thus, isUsefulFor can be used to infer the

1419

Figure 1: OntolAD asserted class hierarchy. Dark orange ellipses indicate defined classes, whereas light
orange ellipses indicate primitive classes

Figure 2: OntolAD inferred class hierarchy. Dark orange ellipses indicate defined classes, whereas light orange
ellipses indicate primitive classes

1420

relation between an individual of the class ‘Archi-

tecture Description’ with an individual of the class
System;

I : Inverse properties. For example, the property has-
Concern, which relates individuals of the class Stake-

holder with individuals of the class Concern, is the
inverse of isConcernOf, which relates individuals of
the class Concern with individuals of the class Stake-

holder;

F : Functional properties can have at most one value for
each individual. For example, the property hasView
relates each individual of the class ‘Architecture View-

point’ to at most one individual of the class ‘Archi-

tecture View’; and

(D) : Use of data type properties, data values, or liter-
als. For example, the data properties hasTemplate and
hasLanguage relate individuals of the classes Template
and Language to literals respectively.

4. QUALITY ASSESSMENT OF ONTOLAD
The evaluation of ontologies plays an important role in

improving their efficiency and effectiveness. In particular,
the overall quality of ontologies can be assessed in regards
to four different dimensions [3]:

• Syntactic quality: related to how the ontology was
written;

• Semantic quality: related to the absence of contradic-
tory concepts;

• Pragmatic quality: related to the ontology’s content
and usefulness for users, independently of its syntax
and semantics; and,

• Social quality: related to the acceptance of the ontol-
ogy by the community.

Each of these dimensions have their own associated met-
rics. These metrics could be either absolute (i.e., varying
between zero and one) or relative (e.g., showing an aver-
age value). As a consequence, before calculating the overall
quality of OntolAD, relative metrics will be normalized for
fitting in the range between zero and one. Moreover, we also
assume that all dimensions and metrics have equal impor-
tance to the overall quality of OntolAD.

First, Syntactic (S) quality can be measured by an equally
weighted function composed by: (i) lawfulness (SL), which
indicates correctness of the syntax; and (ii) richness (SR),
which indicates the proportion of OWL 2 features that were
actually used in OntolAD. In regards to the first metric, we
can assume that SL is 1 since the syntax of OntolAD was
automatically validated by Protégé. Moreover, according to
the set of metrics automatically calculated by Protégé, On-
tolAD presents 14 of the 35 possible axioms types including
class, individual, and properties. Thus, SR is equal to 0.4
(i.e., 14/35) in our ontology.

Second, Semantic (E) quality can be measured by an equally
weighted function composed by: (i) interpretability (EI),
which is the meaningfulness of the terms used; (ii) consis-
tency (EC), which indicates if the terms have a consistent
meaning throughout the ontology; and (iii) clarity (EA),

which reflects the average number of different meanings for
the terms used. In order to calculate EI, we calculated the
proportion of the terms used by OntolAD that also had a
definition listed in WordNet11, a lexical database for the En-
glish language. As WordNet only recognizes single words,
we analyzed separately each part of a composite name for
classes, data properties, and object properties. From a total
of 65 unique terms used in OntolAD 63 of them were found
in WordNet which resulted in EI being equal to 0.97 (i.e.,
63/65). Since we frequently checked the inferred class hier-
archy using the reasoner, we assume that OntolAD has EC
equal to 1. For calculating EA, we divided the quantity of
terms used with only one meaning in WordNet by the quan-
tity of terms used in OntolAD that are listed in WordNet.
As a result, EA is equal to 0.13 (i.e., 8/63) in our ontology.

Third, Pragmatic (P) quality is related to the content
and usefulness of OntolAD. In this sense, this quality can
be measured by an equally weighted function composed by:
(i) accuracy (PU), which is the proportion of axioms defined
in the ontology that are true in the standard; (ii) relevance
(PR), which indicates the degree to which the ontology pro-
vides information that may be useful for different applica-
tions; and (iii) comprehensiveness (PO), which is a measure
of the size of the ontology. We assume that OntolAD has PU
equal to 1 since it was subjected to several discussions and
revisions with domain experts during its construction and
revision. In order to calculate PO, we compared OntolAD
with the average class and properties size of the ontologies
aggregated by the Linked Open Vocabularies (LOV) end-
point12. OntolAD has 35 classes and 47 properties while an
average ontology has 41 classes an 58 properties. Thus, PO
is equal to 0.83 (i.e., 82/99). Since OntolAD is still recent,
its PR is still undetermined.

Finally, Social quality (O) can be measured by an equally
weighted function composed by: (i) authority (OT), which
is related to the number of other ontologies linking to On-
tolAD; (ii) and history (OH), which indicates the number
of times the ontology was accessed. Since OntolAD have
been recently introduced, there is still no data available for
directly assessing this dimension. Despite that, we antici-
pate that OntolAD has a good potential as it builds upon
the ISO/IEC/IEEE 42010 standard, which is broadly recog-
nized by the Software Architecture community. Moreover,
we intend to contribute for the social quality of OntolAD by
making it permanently and freely available.

Therefore, the overall quality (Q) of OntolAD can be rep-
resented by an equally weighted function composed by its
syntactic, semantic, and pragmatic qualities. Table 3 sum-
marizes the results obtained for each dimension. This eval-
uation highlighted strong aspects of OntolAD, such as its
lawfulness, consistency, and comprehensibility. In this sense,
the participation of experienced software architects and on-
tologists in the construction and revision of OntolAD was
certainly important for its semantic and pragmatic quality.
Nonetheless, these results also point out directions where
OntolAD needs improvement, such as clarity and relevance.
Since our ontology is based on the ISO/IEC/IEEE 42010
standard, its clarity should be improved by complying with
this standard’s terminology. Moreover, relevance should im-
prove with community feedback and new applications for

11http://wordnetweb.princeton.edu/perl/webwn
12http://lov.okfn.org/endpoint/lov_aggregator

1421

Table 3: Result of quality assessment

Metric Dimension Description Result
Syntax (S) Lawfulness (SL) Percentage of correct syntax 1.00

Richness (SR) Percentage of available syntax used 0.40
Total 1/2 SL + 1/2 SR 0.70

Semantic (E) Interpretability (EI) Percentage of terms used that exist in WordNet 0.97
Consistency (EC) Consistent meaning of terms throughout the ontology 1.00
Clarity* (EA) Average precision of words in OntolAD 0.13
Total 1/3 EI + 1/3 * EC + 1/3 * EA 0.69

Pragmatic (P) Comprehensibility (PO) Size in comparison to other ontologies 0.83
Accuracy (PU) Correspondence of terms in OntolAD to ISO/IEC/IEEE 42010 1.00
Total 1/2 PO + 1/2 PU 0.92

Overall Quality (Q) Q = 1/3*S + 1/3*E + 1/3*P 0.76
*0 represents extreme ambiguity and 1 represents no ambiguity

OntolAD.

5. CASE STUDY: DESCRIBING AN ARCHI-
TECTURE STYLE IN ONTOLAD

In this section, we investigate the potential of OntolAD13

for creating architecture description elements in conformance
to the ISO/IEC/IEEE 42010 standard. In particular, we
select the SOA (Service-Oriented Architecture) as it is an
important and widespread style in our domain. This archi-
tecture style defines a loosely coupled structure of multiple
autonomous services [10]. Instead of having clients access-
ing services directly (as in a client-server architecture style),
SOA provides a broker to mediate the communication be-
tween services and clients. In this sense, it is essential that
services and clients agree upon the communication protocol,
which basically comprises the service’s name, location, and
exchanged data requirements used by the broker.

A new defined class named SOA was added to OntolAD for
describing this style. We chose to describe it as a class and
not an individual since we understand that this style can be
referenced by several concrete architectural descriptions in
our domain. By defining SOA under Architecture Style,
we inherit all conditions that SOA must comply with. Fur-
thermore, SOA must also comply with the conditions of an
Architecture Model, i.e., it must have at least one relation-
ship frames to an individual of the class Concern and at least
one relationship is governed by model kind to an individual
of the class Model Kind. In OntolAD, a Model Kind could
be expressed by a Language, a Metamodel, an Operation,
or a Template with at least one relationship frames to an
individual of the class Concern. In this case study, we only
created a new class for the SOA Metamodel. Nonetheless,
SOA style could also be realized by other model kinds.

Next, we created individuals for the classes required for
the definition of SOA and SOA Metamodel classes. This activ-
ity can also be understood as the instantiation of the classes
defined in the ontology. Relevant concerns addressed in SOA
are [10]:

• Autonomy: related to minimal or absent dependence
of one service to others;

13The ontology referred in this study case is also avail-
able at https://www.dropbox.com/sh/58ro0giwi821khw/
AACoMg4ZzjJuB8zClAbxg5awa?dl=0

• Composability: related to the ability of being com-
posed into a larger structure, possibly providing a more
complex service;

• Reusability: related to the ability of being reused in
different contexts;

• Statelessness: related to minimal or absent dependence
of state related information of the client or other ser-
vices; and

• Discoverability: related to the existence of an external
description that can ease the discovery of a service in
a search mechanism.

According to OntolAD, a metamodel must have at least
one has entity relationship to some Entity individual and
a has relationship to some Relationship individual. The
individuals created for the class Entity encompass [10, 18]:
(i) Service Provider, which is the element that publishes a
service; (ii) Service Client, which is the element that requests
a service; and (iii) Service Broker, which is the element that
permits service discovery. Meaningful relationships among
services in the SOA style can be summarized as Communi-
cate, Listed In, Register, and Sign Up. Finally, we also added
some data type properties (i.e., relationships between indi-
viduals and literals) for these individuals. For example, the
Service Provider has an attribute named “Communication
Protocol” indicating the communication standard or vocab-
ulary. Table 4 shows the final formal description of the SOA
style while Table 5 shows the description of the SOA meta-
model. Figure 3 shows a fragment of OntolAD with the new
classes added.

Table 4: Formal description of SOA style in Onto-
lAD

Equivalent to
‘Architecture Style’ and (frames some Autonomy,
Reusability, Composability, Statelessness, Discoverabil-
ity) and (frames only Autonomy, Reusability, Compos-
ability, Statelessness, Discoverability) and (isGoverned-
ByModelKind some SOAMetamodel) and (isGoverned-
ByModelKind only SOAMetamodel)

1422

Figure 3: OntolAD showing SOA style asserted class hierarchy

Table 5: Formal description of SOA metamodel in
OntolAD

Equivalent to
Metamodel and (hasEntity some Service-
Provider,ServiceBroker,ServiceClient) and (hasRela-
tionship some SignUp,Register,Communicate,ListedIn)
and (hasEntity only Service-
Provider,ServiceBroker,ServiceClient) and (hasRela-
tionship only SignUp,Register,Communicate,ListedIn)

6. DISCUSSION AND FUTURE PERSPEC-
TIVES

Ontologies constitute an important research line in the
Software Architecture field. Besides exploring ontologies
for disseminating knowledge in this domain, there are sev-
eral applications where ontologies can be useful. For exam-
ple, ontologies could be investigated for integrating different
tools, techniques, and platforms. In addition, ontologies can
provide richer specifications of components, services, and
artifacts, including both documents and models. Our study
aims at contributing to the later by providing a formal on-
tology expressed in OWL 2 for the ISO/IEC/IEEE 42010
standard that could be processed and analyzed with soft-
ware tools.

Using OWL 2 to express a formal ontology for architec-
tural descriptions brings additional advantages: (i) it is a
comprehensive approach for describing architecture descrip-
tions, which could be extended and reused; (ii) it can be
used as an interchange format between ADLs, viewpoints,
and frameworks; (iii) it can be processed by both machines
and humans; and (iv) it is not bound to a particular plat-
form, technology, or technique.

The case study presented in Section 5 demonstrates how

OntolAD could be used in practice to describe an archi-
tecture style in conformance to the ISO/IEC/IEEE 42010
standard. Because SOA is by itself a comprehensive topic in
the Software Architecture domain, it was out of the scope of
this paper to further detail this architecture style. Nonethe-
less, this case study showed that an architecture description
element could be created using this ontology. Motivated by
this preliminary result, we anticipate four main perspectives
for advancing this ontology in future works:

• Addition of new classes for describing well-known ar-
chitecture styles, patterns, frameworks, and ADLs aim-
ing to create a broader body of knowledge;

• Addition of new individuals aiming to populate the
ontology and establish concrete relationships among
them. This knowledge will help to clarify the different
roles played by stakeholders and, as a consequence,
indicate how the architecture description could be tai-
lored for a given audience;

• Application of OntolAD to describe concrete architec-
ture descriptions. This study will provide more evi-
dences on the use of this ontology for exposing breaches
in the design with the assistance of reasoners;

• Integration of OntolAD into modeling tools for sup-
porting automatic validation and consistency checking.

Regarding limitations of this study, it is important to no-
tice that the creation of OntolAD required additional as-
sertions from the developers. We documented our asser-
tions and design decisions in the description of the classes
aiming to gather the community feedback for validating its
construction and, as a result, improving OntolAD’s social
quality.

1423

7. CONCLUSIONS
Several informal and semi-formal ontologies have been

proposed in the Software Architecture field mostly aiming to
enhance knowledge sharing. But, formal ontologies should
also be explored in this domain aiming to provide the means
for transforming current architecture descriptions into mod-
els that can be automatically processed, assessed, and reused.
This study presents a first step towards formalizing archi-
tecture descriptions of software systems based on the recom-
mendations of the ISO/IEC/IEEE 42010 standard. More-
over, our ontology called OntolAD is expressed in OWL 2.
Besides demonstrating the feasibility of OntolAD in a case
study, where it was used for expressing an architecture style,
we also outline several research lines where OntolAD can be
of assistance. For example, this formal ontology can be used
for expressing all kinds of architecture description elements,
such as architecture frameworks, patterns, and viewpoints.
In future work, we intend to continue investigating how On-
tolAD can be integrated to current modeling tools for sup-
porting the creation and validation of architecture descrip-
tions. As a result, we expect that OntolAD could support
both practitioners and researchers in creating architecture
descriptions that comply with current best practices.

Acknowledgments
This study is supported by grant 2012/24290-5, São Paulo
Research Foundation (FAPESP). Furthermore, the Protégé
resource used in this study is supported by grant GM10331601
from the National Institute of General Medical Sciences of
the United States National Institutes of Health.

References
[1] R. J. Allen. A Formal Approach to Software Archi-

tecture. PhD thesis, Carnegie Mellon University, Maio
1997.

[2] T. L. Babu, M. S. Ramaiah, T. V. Prabhakar, and
D. Rambabu. ArchVoc: Towards an Ontology for Soft-
ware Architecture. In SHARK/ADI’2007, pages 1–5,
Minneapolis, USA, 2007.

[3] A. Burton-Jones, V. C. Storey, V. Sugumaran, and
P. Ahluwalia. A semiotic metrics suite for assessing the
quality of ontologies. Data & Knowledge Engineering ,
55(1):84 – 102, 2005.

[4] P. Clements. A survey of architecture description lan-
guages. In IWSSD’ 1996, pages 1–10, Germany, 1996.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, P. Merson, R. Nord, and J. Stafford. Doc-
umenting Software Architectures: Views and Beyond.
Addison-Wesley, 2 edition, 2011.

[6] O. Corcho, M. Fernández-López, and A. Gómez-Pérez.
Methodologies, tools and languages for building ontolo-
gies. Where is their meeting point? Data & Knowledge
Engineering, 46:41–64, 2003.

[7] R. C. de Boer, P. Lago, A. Telea, and H. van Vliet.
Ontology-driven Visualization of Architectural Design
Decisions. In (WICSA/ECSA’2009), pages 51–60,
Cambridge, UK, 2009.

[8] D. Garlan and D. Perry. Introduction to the special
issue on software architecture. IEEE Transactions on
Software Engineering, 21(4):269–274, 1995.

[9] D. Garlan and M. Shaw. An Introduction to Software
Architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge En-
gineering, volume 1. World Scientific Publishing Com-
pany, 1993.

[10] H. Gomaa. Software Modeling Design. Cambrigde Uni-
versity Press, 2011.

[11] T. R. Gruber. A translation approach to portable ontol-
ogy specifications. Knowledge Acquisition, 5:199–220,
1993.

[12] M. Horridge. A Practical Guide To Building OWL On-
tologies Using Protégé 4 and CO-ODE Tools. Technical
report, The University of Manchester, 2011. http:

//130.88.198.11/tutorials/protegeowltutorial/

resources/ProtegeOWLTutorialP4_v1_3.pdf.

[13] ISO. ISO/IEC/IEEE 42010 - Systems and Software En-
gineering — Architecture Description, December 2011.

[14] H. H. W. Jing Sun and T. Hu. Design Software Archi-
tecture Models using Ontology. In SEKE’2011, pages
1–6, Miami, USA, 2011.

[15] P. Kruchten. Architectural Blueprints - The “4+1”
View Model of Software Architecture. IEEE Software,
12(6):42–50, 1995.

[16] P. Kruchten. An ontology of architectural design de-
cisions in software intensive systems. In II Groningen
Workshop on Software Variability, pages 54–61, 2004.

[17] P. Kruchten, H. Obbink, and J. Stafford. The Past,
Present and Future of Software Architecture. IEEE
Software, 23(2):22–30, 2006.

[18] M. P. Papazoglou and W.-J. Heuvel. Service oriented
architectures: approaches, technologies and research is-
sues. The VLDB Journal, 16(3):389–415, 2007.

[19] J. R. G. Pulido, M. A. G. Ruiz, R. Herrera, E. Cabello,
S. Legrand, and D. Elliman. Ontology languages for
the semantic web: A never completely updated review.
Knowledge-Based Systems, pages 489–497, 2006.

[20] M. Uschold. Building ontologies towards a unified
methodology. In Expert Systems’ 1996, Cambridge,
UK, 1996. http://www.aiai.ed.ac.uk/project/

pub/documents/1996/96-es96-unified-method.pdf

(09/14/2014).

[21] M. Uschold and M. Gruninger. Ontologies: Principles,
Methods and Applications. Knowledge Engineering Re-
view, 11(2), 1996. Also available as AIAI-TR-191 from
AIAI, The University of Edinburgh.

[22] W3C. Ontology Driven Architectures and Potential
Uses of the Semantic Web in Systems and Software En-
gineering. [On-line], 2006.

[23] A. I. Wasserman. Towards a discipline of software en-
gineering. IEEE Software, 13(6):23–31, 1996.

1424

