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ABSTRACT

Spatial database systems and Geographical Information Sys-
tems (GIS) are currently only able to handle crisp spatial
objects, i.e., objects whose extent, shape, and boundary are
precisely determined. However, GIS applications are also
interested in managing vague or fuzzy spatial objects. Spa-
tial fuzziness captures the inherent property of many spa-
tial objects in reality that do not have sharp boundaries and
interiors or whose boundaries and interiors cannot be pre-
cisely determined. While topological relationships have been
broadly explored for crisp spatial objects, this is not the case
for fuzzy spatial objects. In this paper, we propose a novel
model to formally define fuzzy topological predicates for sim-
ple and complex fuzzy regions. The model encompasses six
fuzzy predicates (overlap, disjoint, inside, contains, equal
and meet), wherein here we focus on the fuzzy overlap and
the fuzzy disjoint predicates only. For their computation
we consider two low-level measures, the degree of member-
ship and the degree of coverage, and map them to high-level
fuzzy modifiers and linguistic values respectively that are
deployed in spatial queries by end-users.
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H.2.8 [Database Management]: Spatial databases and
GIS
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1. INTRODUCTION
Increasingly, geoscientists are interested in modeling spa-

tial phenomena that are characterized by the feature of spa-
tial fuzziness. Spatial fuzziness captures the inherent prop-
erty of many spatial objects in reality that do not have exact
locations, strict boundaries, and sharp interiors. However,
spatial database systems and Geographical Information Sys-
tems (GIS) are currently only able to handle crisp spatial
objects, such as points, lines and regions. These spatial ob-
jects are characterized by an exact location and a precisely
defined extent, shape, and boundary in space and hence can-
not adequately represent spatial fuzziness. In the geoscience
and GIS domains, fuzzy set theory has become a popular
tool for modeling such vague or fuzzy spatial objects. Spa-
tial data types for fuzzy points, fuzzy lines, and fuzzy regions
have been provided for representing them. The central idea
is to relax the strict decision of belonging (value 1) or non-
belonging (value 0) of an element to a set. Instead, partial
membership is allowed and expressed by a value in the in-
terval [0, 1].

As for the crisp spatial objects that have spatial opera-
tions (e.g., topological predicates, and geometric set opera-
tions), a number of fuzzy spatial operations has been defined
to handle the fuzzy spatial objects, like fuzzy geometric set
operations (e.g., fuzzy geometric union) and fuzzy numerical
operations (e.g., fuzzy area). While topological relationships
have been largely explored on crisp spatial objects, this is
not the case for fuzzy spatial objects.

In this paper, we focus on this gap in the literature. We
propose a novel model to formally define fuzzy topological
predicates for simple and complex fuzzy regions. The whole
model encompasses six predicates named fuzzy overlap, fuzzy
disjoint, fuzzy inside, fuzzy contains, fuzzy equal, and fuzzy
meet. The advantages of the model can be described as fol-
lows. It handles simple and complex fuzzy spatial regions.
It also provides fuzzy modifiers (e.g. slightly) and linguistic
values (e.g. small) that can be deployed in spatial queries
by end-users. Furthermore, it avoids the drawback of the
use of the supremum membership degree concept (see Sec-
tion 2). Due to space limitations, we here focus only on
the description and use of the fuzzy overlap and the fuzzy
disjoint predicates.

This paper is organized as follows. Section 2 surveys re-
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Figure 1: The problem of the supremum member-
ship degree for the fuzzy overlap between two fuzzy
regions. The core of the fuzzy region B is highlighted
by a dashed white line. Darker areas indicate higher
membership degrees than lighter areas.

lated work. Section 3 presents the fuzzy overlap and the
fuzzy disjoint predicates. Section 4 shows how to transform
these fuzzy predicates into Boolean predicates. Section 5
concludes the paper and presents future work.

2. RELATED WORK
In general, the available approaches that model fuzzy topo-

logical predicates for fuzzy regions [1, 2, 6] have several prob-
lems in the practicable applicability and in the support pro-
vided for the end-user in spatial queries. Firstly, the major-
ity of the approaches only deals with simple fuzzy regions
[1, 2], while our proposed model, in the same way as [6],
deals with both simple and complex fuzzy regions. Using
only simple fuzzy regions restricts the expressiveness, since
real-world phenomena commonly have a complex structure.
Secondly, only few approaches [1] provide fuzzy modifiers
that can be deployed in spatial queries by end-users. Our
proposed model also use this concept, which transforms the
non-intuitive and quantitative fuzzy values in the interval
[0, 1] provided by the two low-level measures into intuitive,
fuzzy, qualitative, and equivalent terms that have signifi-
cance for the end-user. The two low-level measure consid-
ered in our model are the degree of membership and the
degree of coverage (e.g. the coverage of overlapping area or
distance). The degree of coverage is not considered in the
available approaches.

The most important drawback of some available ap-
proaches [2, 6] refers to the computation of the supremum
membership degree of the fuzzy geometric intersection be-
tween two fuzzy regions. It does not consider all points of
the overlapping area and does hence not produce realistic
results. Figure 1 illustrates the problem. In this figure, the
supremum membership degree is 1 since there are points in
the overlapping area that have the membership value 1 in
both fuzzy regions. However, it is not sure that the over-
all degree of overlapping is 1, since the fuzzy part (i.e., all
points with membership degree less than 1) of the fuzzy re-
gion B overlaps the core (i.e., all points with membership
degree equal to 1) of the fuzzy region A. Therefore, we can-
not state that there is a fuzzy overlap with a membership
degree equal to 1. Note that this is different from the crisp
case, where the overlapped area of the crisp overlap is com-
posed only by crisp points with membership values equal to
1. To avoid this drawback, our proposed model is not based
on the supremum membership degree.

3. FUZZY TOPOLOGICAL PREDICATES
We first define the concept of fuzzy region object (fre-

gion), since it is the basis for fuzzy topological predicates.

Intuitively, it has a similar areal geometry as a crisp region
object [5] but it may have a vague boundary and/or a vague
interior. A fregion object is represented by a fuzzy point set
Ã in the plane with a membership function µÃ : R2 → [0, 1]
(with particular properties discussed in [3]).

In this paper, we propose a new ad hoc approach that
takes a holistic view, that is, it does not take in consideration
the distinction of components of fuzzy region objects. It is
based on the two low-level quantitative measures of degree
of membership and degree of area or distance coverage.

With respect to the degree of membership, our proposed
model considers the weighted membership degrees of all in-
tersection points of two fuzzy region objects. This leads to
a rather different design of fuzzy topological predicates and
has a positive impact on their correctness and suitability
in practice. For a predicate P , we use a fuzzy predicate
P1 : fregion × fregion → [0, 1] to determine the degree of
membership of P .

With respect to the degree of area or distance coverage,
our model incorporates the ratio of the intersecting area of
two fuzzy region objects to their total area as well as the
ratio of their minimum distance to the maximum distance
in their finite universe of discourse. For P , we use a fuzzy
predicate P2 : fregion × fregion → [0, 1] to determine the

degree of area or distance coverage. Let Ã, B̃ ∈ fregion. We
define a fuzzy topological predicate P as

P (Ã, B̃) = (P1(Ã, B̃), P2(Ã, B̃))

This means that P (Ã, B̃) ∈ [0, 1]× [0, 1] since we consider
two different degree criteria and thus combine two fuzzy
predicates into a single predicate. In case that a fuzzy topo-
logical predicate is applied to two crisp region objects, we
ensure that the same value (out of {0, 1}) is returned as the
corresponding crisp topological predicate would return.

In the following subsections, we formally define the predi-
cates P1 and P2 for each fuzzy topological predicate P ∈
{foverlap, fdisjoint}. The remaining of fuzzy topological
predicates can be derived from these design considerations.
For each predicate we specify when it yields 0, 1, or a value of
the interval ]0, 1[. For this purpose, we will make use of some
further crisp and fuzzy spatial concepts. The overloaded op-
erations ⊗ (geometric intersection) and ⊕ (geometric union)
of two crisp spatial objects [5] and two fuzzy spatial objects
[3] respectively. We also use cluster topological predicates
on crisp spatial data types, overlapc, equalc, disjointc and
meetc [5]. We also employ the metric operations area and
dist to compute the area of a crisp region object and the
minimum distance between two crisp objects. Similarly, we
use the farea and fdist [2] to determine the area of a fuzzy
region object and the minimum distance between two fuzzy
regions. Finally, we also use fuzzy set operations (e.g. fuzzy
set containment) and operations that maps fuzzy sets to
crisp sets, such as core and supp for the support [7].

3.1 Fuzzy Overlap
The fuzzy topological predicate foverlap evaluates the two

fuzzy predicates foverlap1 and foverlap2. The fuzzy predi-
cate foverlap1 determines the degree of overlapping of two

fuzzy region objects Ã and B̃. Two conditions must hold
in order to be definitely sure that Ã and B̃ overlap and
thus foverlap1(Ã, B̃) = 1 holds. The first condition is that
their crisp supports overlap. The second condition is that all
points of the overlapping area have the membership value 1,
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that is, they do all definitely belong to the intersection and
form a crisp area (i.e. its support is equal to its core).

Two conditions must alternatively hold so that Ã and B̃
do definitely not overlap, that is, foverlap1(Ã, B̃) = 0 holds.
The first condition is that there is no geometric intersec-
tion of the supports of Ã and B̃. This means that the two
supports are disjoint or adjacent (i.e meet). The second
alternative condition relates to a fuzzy set containment sit-
uation between Ã and B̃ where Ã is contained in B̃, or B̃ is
contained in Ã, or Ã and B̃ are equal. Note that a set con-
tainment requirement between the supports of Ã and B̃ is a
too weak condition, since if supp(Ã) ⊆ supp(B̃) and Ã 6⊆ B̃
holds, then there are points that have a higher membership
value in Ã than in B̃, and thus a fuzzy overlap situation.

The remaining case is that foverlap1(Ã, B̃) ∈ ]0, 1[ holds.
This situation can be visualized as follows. Each graph of a
membership function of a fuzzy region object determines a
(complex) volume below this graph. We have a fuzzy overlap
situation if the corresponding membership function volumes
of the two fuzzy region objects intersect in a (complex) vol-
ume. For the computation of the degree of overlapping of
Ã and B̃, we first have to compute their fuzzy intersection,
which leads to a fuzzy region object, and then form the ratio
of its fuzzy area with the crisp area of its support. This ratio
is a value in the interval ]0, 1[, and as discussed previously,
Figure 1 shows a fuzzy overlap situation that returns such a
value for foverlap1.

The fuzzy predicate foverlap2 determines the degree of

area coverage of two fuzzy region objects Ã and B̃. If we
have a fuzzy overlap situation from a membership degree
perspective (foverlap1(Ã, B̃) > 0), we compute the ratio of
the fuzzy area of their intersection with the fuzzy area of
their union. Otherwise, we return the value 0.

We are now able to provide a formal definition of the fuzzy
topological predicate foverlap. Let Ã, B̃ ∈ fregion. Then

foverlap(Ã, B̃) = (foverlap1(Ã, B̃), foverlap2(Ã, B̃))

where

foverlap1(Ã, B̃) =






































1 if overlapc(supp(Ã), supp(B̃)) ∧
equalc(core(Ã⊗ B̃), supp(Ã⊗ B̃))

0 if disjointc(supp(Ã), supp(B̃)) ∨
meetc(supp(Ã), supp(B̃)) ∨
B̃ ⊆ Ã ∨ Ã ⊆ B̃

farea(Ã⊗B̃)

area(supp(Ã⊗B̃))
otherwise

and

foverlap2(Ã, B̃) =

{

0 if foverlap1(Ã, B̃) = 0
farea(Ã⊗B̃)

farea(Ã⊕B̃)
otherwise

This definition reveals some interesting aspects and ad-
vantages. First, the property holds that foverlap1(Ã, B̃) =

0 ⇔ foverlap2(Ã, B̃) = 0. The “⇒” direction is given by
the first case of foverlap2. The “⇐” direction can be derived
from the observation that if there is no areal intersection
between Ã and B̃, the geometric intersection of their sup-
ports must be empty, which is covered by the second case of
foverlap1. Second, always foverlap2(Ã, B̃) ∈ [0, 1[ holds. If

foverlap2(Ã, B̃) could return the value 1, this would mean

that Ã and B̃ are equal. However, then foverlap1(Ã, B̃)

would return 0 and consequently foverlap2(Ã, B̃) would re-
turn 0 as well, which leads to a contradiction. Third, our
approach takes all intersected points into account. This
is superior to the “supremum” approach, which prioritizes
those points of the overlapping area of Ã and B̃ with the
maximum membership value and ignores all other points.
Therefore, many overlap situations with the same supremum
value cannot be differentiated and lead to the same degree
of overlapping that is often counterintuitive and distorting
the reality.

3.2 Fuzzy Disjoint
The fuzzy topological predicate fdisjoint evaluates the two

fuzzy predicates fdisjoint1 and fdisjoint2. The fuzzy pred-
icate fdisjoint1 determines the degree of disjointedness of

two fuzzy region objects Ã and B̃. The only condition
to be definitely sure that Ã and B̃ are disjoint and thus
fdisjoint1(Ã, B̃) = 1 holds is that their supports are disjoint.
Therefore, the fuzzy predicate fdisjoint1 excludes the fuzzy
predicate foverlap1 since the first condition of this predicate
to return 0 is the disjointedness of their supports.

Two conditions must alternatively hold so that Ã and B̃
are definitely not disjoint, that is, fdisjoint1(Ã, B̃) = 0 holds.

The first condition is that Ã and B̃ definitely overlap. The
second alternative condition relates to a fuzzy set contain-
ment situation between Ã and B̃ (i.e. Ã is contained in B̃,

or B̃ is contained in Ã, or Ã and B̃ are equal).

The remaining case is that fdisjoint1(Ã, B̃) ∈ ]0, 1[ holds.

As in the cases where fdisjoint1(Ã, B̃) ∈ {0, 1}, it is comple-
mentary to the foverlap1 situation. In this case, we take the
degree of foverlap1 as a basis to compute its complement.

The fuzzy predicate fdisjoint2 determines the degree of

distance coverage of two fuzzy region objects Ã and B̃. If
we have a fuzzy disjoint situation from a membership degree
perspective (fdisjoint1(Ã, B̃) > 0), we compute the propor-
tion of the fuzzy distance and the maximum distance of the
selected universe of discourse. The maximum distance is the
Euclidean distance of a predefined rectangle with p and q as
its lower left and upper right vertices respectively. If there
is no fuzzy disjoint situation, we return the value 0.

We are now able to provide a formal definition of the fuzzy
topological predicate fdisjoint. Let Ã, B̃ ∈ fregion. Then

fdisjoint(Ã, B̃) = (fdisjoint1(Ã, B̃), fdisjoint2(Ã, B̃))

where

fdisjoint1(Ã, B̃) =


















1 if disjointc(supp(Ã), supp(B̃))

0 if foverlap1(Ã, B̃) = 1 ∨

B̃ ⊆ Ã ∨ Ã ⊆ B̃

1− foverlap1(Ã, B̃) otherwise

and

fdisjoint2(Ã, B̃) =

{

0 if fdisjoint1(Ã, B̃) = 0
fdist(Ã,B̃)
dist(p,q)

otherwise

Similarly as for the predicate foverlap, we can show that
fdisjoint1(Ã, B̃) = 0 ⇔ fdisjoint2(Ã, B̃) = 0 holds. Addi-

tionally, disjoint2(Ã, B̃) ∈ [0, 1[ holds. This predicate can-

not return the value 1 since Ã and B̃ would degenerate into
fuzzy points with the supports p and q.
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4. DEPLOYING FUZZY TOPOLOGICAL

PREDICATES IN SPATIAL QUERIES
Aiming to transform the non-intuitive and quantitative

fuzzy predicate values in the interval [0, 1] into intuitive,
fuzzy, and qualitatively equivalent terms that have signifi-
cance for the end-user, the proposed model: (i) maps the
degree of membership to fuzzy modifiers; and (ii) maps the
degree of coverage to linguistic values. In this section, we
show how to perform these mappings.

We use the notion of the trapezoidal fuzzy set to map
low-level measures to high-level concepts. Let a, b, c, d
∈ R. Then a trapezoidal fuzzy set T̃ is defined as a tuple
(a, b, c, d), denoting that a low-level measure increases lin-
early from a to b, is constant and equal to 1 from b to c,
and decreases linearly from c to d. For each low-level mea-
sure, a set of trapezoidal fuzzy sets is created to classify a
value in [0, 1]. Each classification, which is represented by
a qualitative linguistic description, is in the form (a, b, c,
d). We assume that the qualitative linguistic descriptions
are either predefined in the spatial query language or user-
defined.

For the degree of membership, the qualitative linguistic
descriptions are represented as fuzzy modifiers. For example,
for a given application domain, an end-user could specify a
high-level classification for the degree of membership that
has seven fuzzy modifiers, a little bit = (0, 0, 0.03, 0.08),
somewhat = (0.03, 0.08, 0.2, 0.26), slightly = (0.2, 0.26,
0.39, 0.45), averagely = (0.39, 0.45, 0.62, 0.69), largely =
(0.62, 0.69, 0.82, 0.89), mostly = (0.82, 0.89, 0.93, 0.95),
and quite = (0.93, 0.95, 1, 1).

For the degree of coverage, the qualitative linguistic de-
scriptions are represented as linguistic values. For instance,
a spatial query language can predefine a high-level classi-
fication for the degree of coverage that has five linguistic
values, tiny = (0, 0, 0.07, 0.09), small = (0.07, 0.09, 0.35,
0.45), medium = (0.35, 0.45, 0.65, 0.75), large = (0.65, 0.75,
0.87, 0.92), and huge = (0.87, 0.92, 1, 1).

Aiming to allow that the high-level concepts can be used
in a spatial query language as a crisp Boolean predicate,
we propose to define a function for each fuzzy topological
predicate, which returns a crisp Boolean value (true or false).

Let Ã, B̃ ∈ fregion. We specify a fuzzy topological predicate
FP in a spatial query language as

FP(Ã, B̃, C1(P1(Ã, B̃)), C2(P2(Ã, B̃)))→ {false, true}

C1 is a function to perform a classification for the degree
of membership, and C2 is a function to perform a classi-
fication for the degree of coverage. These functions take
as parameters the degree of membership and the degree
of coverage and then return its respective classification ac-
cording the trapezoidal fuzzy sets (e.g. the value 0.8 for
the degree of coverage is classified as large). For example,

foverlap(Ã, B̃, slightly , large) returns true when “Ã slightly

overlaps B̃ and the overlapping area is large”.
The definitions presented in this section allow the defini-

tion of SQL statements with fuzzy topological predicates.
For instance, considering the attribute geo of type fregion
in two table schemas fish and lake, a query to return only
the species name whose its habitat area averagely overlap
with a hunting area and its overlapping area is huge can be
written as

SELECT S.name
FROM species S, hunting H
WHERE foverlap(S.geo, H.geo, averagely, huge)

5. CONCLUSIONS AND FUTURE WORK
This paper provides a new approach to modeling the fuzzy

topological predicates fuzzy overlap and fuzzy disjoint for
fuzzy regions from low-level quantitative measures to high-
level fuzzy modifiers and linguistic values for end-users. The
main advantages of our approach are that (i) it can handle
complex fuzzy spatial objects, (ii) all intersection points of
two fuzzy regions are considered for evaluation so that re-
alistic fuzzy topological predicate results can be obtained,
(iii) fuzzy topological predicates yielding values in the in-
terval [0, 1] can be mapped to suitable Boolean topological
predicates by deploying the concepts of fuzzy modifiers (e.g.
slightly) and linguistic values (e.g. small), and (iv) these
Boolean predicates can be embedded in spatial queries.

Future work will deal with the definition for the remain-
ing fuzzy topological predicates, such as fuzzy inside, fuzzy
contains, fuzzy equal and fuzzy meet. Additionally, their
implementation and their mappings to Boolean topological
predicates will be studied as well. Our goal is to perform the
implementation in the context of the Spatial Plateau Algebra
[4], which provides a general concept for the implementation
of fuzzy spatial data types.
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