

 Universidade de São Paulo

2014-12

Adding diversity to rank examples in anytime

nearest neighbor classification

International Conference on Machine Learning and Applications, 13th, 2014, Detroit.
http://www.producao.usp.br/handle/BDPI/48894

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciências de Computação - ICMC/SCC Comunicações em Eventos - ICMC/SCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37525506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/48894

Adding Diversity to Rank Examples in Anytime
Nearest Neighbor Classification

Cristiano Inácio Lemes and Diego Furtado Silva and Gustavo E. A. P. A. Batista
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

{clemes, diegofsilva, gbatista}@icmc.usp.br

Abstract—In the last decade we have witnessed a huge increase
of interest in data stream learning algorithms. A stream is an
ordered sequence of data records. It is characterized by properties
such as the potentially infinite and rapid flow of instances.
However, a property that is common to various application
domains and is frequently disregarded is the very high fluctuating
data rates. In domains with fluctuating data rates, the events do
not occur with a fixed frequency. This imposes an additional
challenge for the classifiers since the next event can occur at
any time after the previous one. Anytime classification provides a
very convenient approach for fluctuating data rates. In summary,
an anytime classifier can be interrupted at any time before its
completion and still be able to provide an intermediate solution.
The popular k-nearest neighbor (k-NN) classifier can be easily
made anytime by introducing a ranking of the training examples.
A classification is achieved by scanning the training examples
according to this ranking. In this paper, we show how the
current state-of-the-art k-NN anytime classifier can be made more
accurate by introducing diversity in the training set ranking. Our
results show that, with this simple modification, the performance
of the anytime version of the k-NN algorithm is consistently
improved for a large number of datasets.

Keywords—Anytime Algorithm, Nearest Neighbor, Classifica-
tion, Data Stream;

I. INTRODUCTION

In the last decade we have witnessed a huge increase of
interest in data stream learning algorithms. Data streams are
ubiquitous in virtually every application domain, including
finances, industry, robotics and data sensors, just to name a
few.

A stream is an ordered sequence of data records. It is
characterized by properties such as the potentially infinite and
rapid flow of instances. However, a property that is common
to various application domains and is frequently disregarded is
the very high fluctuating data rates. In domains with fluctuating
data rates, the events do not occur with a fixed frequency. This
imposes an additional challenge for the classifiers since the
next event can occur at any time after the previous one.

In those applications, the data rate is unknown and gen-
erated by external factors that are usually completely out of
control of the learning algorithm. A typical example is in
sensor mining, in which the external environment generates
the events that are usually not under control of the sensors.

The high fluctuating data rates cause two main issues. The
first one is how classical learning systems, which typically
have a fixed classification time, can be able to classify all

events, including those that occur with very brief time inter-
vals. The second one is how to make use of the longer time
intervals and avail of the additional time to improve classifi-
cation inference and provide better classification performance.

The classical learning algorithms do not seem to be the
answer in such a scenario. The data analyst may choose the
most efficient classifier in terms of classification time, in order
to minimize the number of events left unclassified due to short
time intervals between events. However, this is not the answer
for every application, since such classifier may not be induced
by the learning algorithm with the most appropriate bias for
the problem.

Anytime classification provides a very convenient approach
for fluctuating data rates. In summary, an anytime classifier
can be interrupted at any time before its completion and
still be able to provide an intermediate solution. Thus, an
anytime algorithm can provide answers to virtually all events.
Additionally, an anytime algorithm is expected to find better
solutions as it keeps running. Therefore, they can make a better
use of the available time between events, using such a time to
improve the output accuracy.

The popular k-nearest neighbor (k-NN) classifier can be
easily made anytime by introducing a ranking of the training
examples. A classification is achieved by scanning the training
examples according to this ranking. At any time, the classifier
can be interrupted and provide an intermediate classification
according to the current class distribution.

In this paper, we show how the current state-of-the-art k-
NN anytime classifier can be made more accurate by introduc-
ing diversity in the training set ranking. Our results show that,
with this simple modification, the performance of the anytime
version of the k-NN algorithm is systematically improved for
a large number of datasets.

II. BACKGROUND AND RELATED WORK

An anytime algorithm is an algorithm capable of providing
a solution to a given problem at any moment after a short
setup time. In other words, regardless of the time available
for the execution of this algorithm, an approximate solution is
provided as soon as it is requested after the setup time.

The setup time is necessary for the algorithm to have
an initial approximate solution for the problem. For most
implementations, this setup time can be extremely short. So
that the algorithm can answer to virtually any request.

2014 13th International Conference on Machine Learning and Applications

978-1-4799-7415-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ICMLA.2014.26

129

2014 13th International Conference on Machine Learning and Applications

978-1-4799-7415-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ICMLA.2014.26

129

Ideally, the quality achieved by an anytime algorithm
should be proportional to its runtime [1], [2]. In other words,
the longer the time available to obtain an answer, the better the
quality of the solution provided by the algorithm, as illustrated
in Figure 1.

Q
ua

lit
y

of
 t

he
 S

ol
ut

io
n

Processing Time

Short setup time

Figure 1. A generic illustration of the desired anytime algorithm performance.
In gray, the setup time of the anytime algorithm, when it cannot be interrupted.
The quality of the answer grows fast in the beginning of the execution and
continue growing until the ending of it, with a smaller increasing rate

In summary, the desirable characteristics for anytime algo-
rithms are [3]:

1) Measurable quality: The quality of an approximate
solution can be evaluated precisely;

2) Recognizable quality: The quality can be measured
at run time. For example, if we need the optimal
solution to measure the quality of partial solution
(such as in optimization problems), the quality cannot
be recognized.

3) Monotonicity: The quality of the answer must be
non-decreasing in a function of time;

4) Diminishing returns: The quality of the results
improves in major steps in the first phases of the
algorithm, diminishing its rate of increase over time;

5) Consistency: The quality of the result is correlated
to computation time and deterministic for a given
amount of time;

6) Interruptability: After a short setup time at the
beginning of the execution, the algorithm can be
stopped and provide an answer at any time;

7) Preemptability: After the algorithm be interrupted it
can resume its execution at a low cost.

This kind of algorithm has been used in many artificial
intelligence applications. One example is the multiple longest
common subsequence (MLCS), used to deal with sequential
data. Since it is a NP-hard problem, the time issue may be
overcome by the use of anytime methods [4]. It also can
be seen in the development of autonomous vehicles where
the terrain is incompletely known. Then it needs a dynamic
navigation algorithm that handle with a time constraint [5].

Due to the importance of this category of algorithms,
several authors have proposed adaptations of traditional ma-
chine learning methods for anytime versions, such as boosting
techniques [6], decision trees [7], support vector machine [8],
nearest neighbor [9] and Bayesian networks [10].

In this paper we focus on the technique proposed in [9],
a modification of the simple and well-known nearest neighbor
algorithm. This technique, called Anytime Nearest Neighbor
(ANN), computes a ranking of the training examples according
to their contribution to the classification. In other words,

the greater the contribution of a training example to the
classification the better it is ranked.

After creating the ranking, the algorithm traverses this list
measuring the distance from the example to be classified to
each training example. When a solution is required, the class
label of the new instance is associated with the class of the
example with the smallest distance calculated so far.

Despite the good results achieved by the ANN algorithm,
it also has some drawbacks. The first is that several instances
of the same class may appear in sequence in the ranking.
Thus, the method can calculate the distance from the example
to be classified to training examples of the same class for a
long period. Thus, the quality of the solution is not improved
throughout this period.

To avoid this problem, Thuong and Anh [11] proposed to
use SimpleRank in different bins, one for each class. Within
these bins, the examples are sorted according to their rank
value. Basically, the method modifies the SimpleRank doing a
round robin regarding to the training example classes. In other
words, the examples are analyzed in cycles, so that all classes
are available in each cycle.

Another difficulty related to this method is the fact that
the SimpleRank method typically produces many ties between
the score value of two or more distinct examples. The method
used by the authors to fix these ties was based on sorting the
instances with the same rank value by their distance to their
nearest neighbor of the same class.

In this paper, we propose a new technique to resolve the
tie breaking of instances that obtained the same rank value.
In the next section, we provide a more detailed description of
ANN algorithms.

III. ANYTIME NEAREST NEIGHBOR

The ANN algorithm is composed of two main steps:
ranking training examples and classification phase. In this
section, we describe these steps in detail and the different
methods proposed to generate the ranking of examples.

A. Classification Procedure

The ANN algorithm requires three input parameters: a
training base, a list of sorted indexes of the training examples,
which together represent what we call as the ranking of
training examples, and an object with unknown class label. Its
implementation is relatively simple and similar to traditional
nearest neighbor algorithm, but with two distinct stages.

The first stage of this procedure provides an initial classi-
fication by checking one training example of each class. For
this, the classifier analyzes the first examples of the ranking,
performing the calculation of their distances to the example to
be classified. It is important to ensure that the top positions of
the ranking are occupied by examples belonging to all classes
of the problem. This stage of the algorithm execution is called
setup and the classifier cannot be interrupted during this period.
However, this time is usually very short and does not impair
the use of algorithm in data streams applications where the
events occur in variable time. Thus, at the end of this short

130130

setup period, the algorithm is able to provide a label estimate
to the new example considering all classes of the problem.

After the initial setup, the algorithm is ready to be in-
terrupted at any time. At each step of the second stage, the
method measures the distance from the new example to the
next training example in the ranking. The algorithm keeps a
list of the k current nearest neighbors and updates this list,
if necessary. This step is performed until the algorithm is
interrupted or all examples in the ranking have been compared
to the new object.

Thus, it is evident that a proper ranking of training ex-
amples is very important for the quick improvement of the
solution quality at the beginning of the algorithm execution, a
desirable property for any anytime algorithm.

B. Ranking Strategies

Based on the algorithm presented above, we can produce
an anytime version of the nearest neighbor algorithm by
proposing a new ranking method. There are several ways to
accomplish this sorting.

The most straightforward way to generate the ranking of
examples is randomly. For this purpose, we randomly select
one example of each class as part of the initial setup phase.
After this step, the remaining examples are taken in completely
random order. This ranking method seeks to generate an
uniform scattering of the examples in the input space.

This strategy, although simple, does not take into account
the quality of the examples used for the construction of the
ranking. Thus, the growing of the accuracy in the first steps
of the algorithm execution may be slow.

The method SimpleRank [9] tries to overcome this lim-
itation by sorting the training examples according to their
contribution to classification.. The quality of each example is
measured using the leave-one-out nearest neighbor classifier
on the training data. For each left out example, the algorithm
checks if its nearest neighbor is an enemy or an associate. The
neighbor is considered enemy if its label is different from the
label of the left out instance. Otherwise, it is considered an
associate. The instances considered enemies are “punished”
because they do not contribute to the correct classification
of the left out example. In contrast, the associate instances
are “rewarded” by the ranking method. SimpleRank uses
Equation 1 to provide a score for each example.

rank(xi) =
∑
j �=i

{
1, if class(xj) = class(xi)

−2/(#classes− 1), otherwise
(1)

where xj is a left out instance that has xi as its nearest
neighbor. Once these scores are calculated for all instances in
the training set, sorting the instances according to their scores
generates a rank.

Note that this criterion can generate several draws, since
the number of times that an example is considered associate
or enemy depends on the (limited) number of examples in
which it is the nearest neighbor. In order to empirically
confirm this observation, we performed a simple experiment

with SimpleRank. In this experiment, we used a dataset in
which the number of training examples was 17.118. The total
number of different score values was only 14. In other words,
the 17.118 examples ranked by SimpleRank were divided in
only 14 groups, so that within each group all examples are tied
with the same rank value. On average, each training example
recieved the same rank value than other 1, 221 instances.

The tiebreaking criterion originally proposed to solve this
problem was distance of each tied example to its nearest
neighbor of the same class. However, this tiebreaking may
group examples of very close regions in the space in close
positions of the training ranking.

Another issue related to the strategy of the original
tiebreaker is the fact that if a class have a distribution where the
instances are more spread out in the input space than others,
the algorithm privileges the most compact class.

Figure 2 exemplifies both issues. This figure graphically
displays the first ten examples of the rank obtained by Sim-
pleRank and the method proposed in this paper. Figure 2(a)
shows that the examples chosen by the tiebreaking method
are concentrated on a limited region, which does not happen
with our method - Figure 2(b). When a class is more compact
than the other, the original method prioritizes such a class
- Figure 2(c) -, unlike the method proposed in this work -
Figure 2(d).

(a) (b)

(c) (d)

Figure 2. The first ten examples (marked with ∗) chosen according to
SimpleRank - (a) and (c) - and according to the method proposed in this
paper - (b) and (d) - for synthetic datasets with similar spatial distribution for
both classes – top – and with a more compact class than the other – bottom

IV. SIMPLERANK WITH DIVERSITY

The sorting and tie-breaking strategies of the SimpleR-
ank method do not guarantee an uniform coverage of the
input space. We believe that such an uniform coverage will
be advantageous to the anytime nearest neighbor algorithm,
since it will be more likely to find a nearest neighbor that
is truly next to the unknown instance. However, it is still

131131

important to account for the classification relevance of each
training instance, as implemented in SimpleRank. Therefore,
we introduce in this paper the SimpleRank method ranking
using the DiversityTiebreak as the tie-breaking criterion.

Succinctly, our proposal augments the strategy for calcu-
lating the rank scores used by the SimpleRank method with a
novel tie-breaking criterion. Our tie-breaking strategy provides
a better coverage of the input space. Our approach is applied in
two steps. The first one is the ranking of the training instance
using a novel criterion, DiversityTiebreak, described in the
Algorithm 1.

Algorithm 1: Diversity Tiebreak

Input : Training dataset
Output: Sorted list of indexes

1 foreach Class ci do
2 index list ci =<>
3 k = centroid(ci)
4 idx add = index of the nearest neighbor of k that belongs to ci
5 index list ci = index list ci+ < idx add >
6 while |index list ci| < |instances(ci)| do
7 idx add = identify the fartest instance from all instances in

index list ci;
8 index list ci = index list ci+ < idx add >
9 end

10 end
11 diversity list = merge index list ci of each class ci;
12 return diversity list;

This algorithm defines different sorted lists for each class.
The first element of each list is the nearest neighbor of the class
centroid. In order to find such an example, line 3 returns the
geometric center of the examples that belong to the current
class ci. Next, lines 4 and 5 find the index of the nearest
neighbor of this centroid and add it in the first position of the
current class’ list, respectively.

The next instances to be added in the sorted list of the class
are the most distant instance to all the object added in the list
before. In other words, the instance with the largest sum of
distances to the instances earlier added to sorted list should
be the next value to be added in the list. This process repeats
until all examples of the current class are added to the list.

The last step of the algorithm, in line 11, is the merge of
the sorted lists of each class in a list containing the indexes
to the whole training set. The most straightforward method to
do this is to select one instance from each class list alternately
and adding such an instance to the final ranking. But, this
method may be inappropriate when applied to a problem with
imbalanced classes. Thus, in our experiments we adopted an
approach that considers the prior probability of each class. For
instance, if a class a has N examples and a class b has 2N ,
we take one example of the class a and two of the class b in
each merge step.

After the creation of the diversity tiebreaking list, we
calculate the rank value of SimpleRank. The instances that
obtained the same rank value are tiebreaked considering its
position obtained by the DiversityTiebreak ordering. Thus, the
sorted index list used by the ANN algorithm considers the
importance of the examples in the classification and a diversity
of examples in case of ties.

V. EXPERIMENT AND RESULTS

We performed a comprehensive experimental evaluation to
assess the effectiveness of our proposal. We compared the
performance of the ANN using different methods of ranking:
random, SimpleRank and SimpleRank with DiversityTiebreak.

A. Experimental Setup

In order to evaluate our proposal, we used 15 benchmark
datasets, which can be found at the UCI Machine Learning
Repository1. The datasets used in this work have different
characteristics, summarized in Table I.

Table I. BRIEF DESCRIPTION OF THE BENCHMARK DATASETS USED IN

THE EXPERIMENTAL EVALUATION

Dataset # of Attributes # of Classes # of Examples

EEG Eye State 15 2 14980
Image Segmentation 19 7 2310
Ionosphere 34 2 351
Letter Recognition 16 26 20000
MAGIC Gamma Telescope 11 2 19020
Mfeat - Factors 216 10 2000
Mfeat - Fourier 76 10 2000
Mfeat - Karhunen 64 10 2000
Mfeat - Morphological 6 10 2000
Mfeat - Zernike 47 10 2000
Optical Recognition of Digits 64 10 5620
Page Blocks Classification 10 5 5473
Pen-Based Recognition of Digits 16 10 10992
Spambase 57 2 4601
Waveform Generator (Version 2) 40 3 5000

We used the stratified 10-fold cross validation to estimate
the classification performance of the methods in the selected
datasets. We also linearly normalized each attribute in the
range 0 to 1.This is a standard procedure in nearest neighbor
classification in order to make the distance function invariant
to the attribute scales.

Our evaluation procedure interrupts the ANN algorithm
after the processing of each training instance following the
ordering provided by the ranking methods. At each interrup-
tion, we take note of the performance in the test set assuming
the ANN had time to process just the first j instances in the
ranking. We vary j from the number of classes up to the total
number of training examples.

The setup period is the time necessary to process as many
instances as classes. That occurs because we guarantee that
we have one instance of each class in the top of the ranking.
This is the minimum amount of information provided to the
algorithm so it can make an informed decision. We note that
the setup time, during test processing, is very small and can be
neglected in most practical situations, as the number of classes
is usually quite small compared to the number of instances.

Such an evaluation procedure characterizes the perfor-
mance of the methods with a set of performance scores for all
possible interruption times. As we discuss in the next section,
we can graphically compare these scores using a performance
curve plot. We can also summarize such a performance curve
in a single score calculating the area under this curve.

1https://archive.ics.uci.edu/ml/datasets.html

132132

B. Ties in ANN using SimpleRank

The first step of our experimental evaluation is an experi-
ment in which we calculate the number of ties obtained by the
SimpleRank. Obviously, if the number of ties is insignificant,
the proposal of a new tiebreaking criterion for the SimpleRank
is useless.

Earlier, we anticipated a result obtained with a similar
experiment on a specific dataset. In this section, we describe
the results obtained in all the benchmark datasets used in this
work.

Table II shows a summary of the number of ties for
each dataset used in this study. The item “Number of distinct
ranks” represents the average number of different rank value
obtained within the training folds. The value of “Number of
instances with the same rank” represents the average number
of examples that obtained the same score with SimpleRank.

Table II. ANALYSIS OF NUMBER OF TIES OBTAINED BY SIMPLERANK

Dataset
Number of Number of instances

distinct ranks with the same rank

EEG Eye State 11.70 1152.30
Image Segmentation 11.90 174.71
Ionosphere 12.30 25.68
Letter Recognition 30.10 598.00
MAGIC Gamma Telescope 14.40 1188.80
Mfeat - Factors 15.20 118.42
Mfeat - Fourier 20.70 86.96
Mfeat - Karhunen 13.70 131.39
Mfeat - Morphological 12.30 146.34
Mfeat - Zernike 16.10 111.80
Optical Recognition of Digits 14.10 358.72
Page Blocks Classification 13.70 359.54
Pen-Based Recognition of Digits 12.10 817.58
Spambase 21.10 196.25
Waveform Generator (Version 2) 24.40 184.43

We can observe that even in problems with a few train-
ing examples, SimpleRank generated a significant amount of
repeated rank values.

C. Evaluation

In this paper we use two main forms to assess our results.
The first one is a plot of performance versus processing time.
We use the ubiquitous accuracy as the main performance
measure in our evaluation. As we want to characterize the
performance of the methods for all possible interruption times,
we chose to interrupt the ANN after the processing of each
training instance, as discussed in the previous section.

This procedure generates a graph that evaluates the classi-
fication accuracy in terms of the number of training examples
analyzed before an interruption. Ideally, this analysis should be
done in terms of processing time. However, processing time
is heavily dependent on code optimization and the hardware
in the benchmarking, making it difficult to compare different
methods. Therefore, it is a standard procedure in the literature
to replace the processing time by other piece of information
that allows a generic way to evaluate the performance of the
anytime algorithm. In our evaluation, we used the number of
processed example, similarly to [9].

We also provide a single numeric score that represents the
general performance of each method, as a second form of
evaluation. Such a score typically provides less information
than the curves; however, it is a very convenient to summarize

the results over several datasets. For this score, we use the
area under the anytime performance curve. Formally, this area
is defined by the Equation 2.

AUCanytime =
1

n−#classes

n∑
i=#classes

acci (2)

where acci is the accuracy obtained when the algorithm
interrupted at the i-th example and n is the number of training
examples. Due to the setup stage, the initial value of i is the
number of classes.

D. Classification Results

Table III shows the areas under the curves obtained using
the ANN with the three ranking methods for the 15 datasets
considered in this work.

Table III. AREA UNDER THE PERFORMANCE CURVE OF THE ANN
ALGORITHM USING THREE DIFFERENT RANKING METHODS

Dataset Random SimpleRank
SimpleRank with
DiversityTiebreak

EEG Eye State 0.7986 0.7992 0.8028
Image Segmentation 0.9388 0.9417 0.9441
Ionosphere 0.8444 0.8721 0.8821
Letter Recognition 0.9106 0.9083 0.9173
MAGIC Gamma Telescope 0.7972 0.8177 0.8173
Mfeat - Factors 0.9399 0.9414 0.9472
Mfeat - Fourier 0.7684 0.7834 0.7883
Mfeat - Karhunen 0.9288 0.9297 0.9382
Mfeat - Morphological 0.6749 0.6842 0.6824
Mfeat - Zernike 0.7737 0.7857 0.7920
Optical Recognition of Digits 0.9767 0.9773 0.9806
Page Blocks Classification 0.9480 0.9518 0.9538
Pen-Based Recognition of Digits 0.9857 0.9852 0.9872
Spambase 0.8791 0.8810 0.8825
Waveform Generator (Version 2) 0.7178 0.7585 0.7556

Wins 0 3 12

The results indicate the effectiveness of the proposed
method. When analyzing the area under the performance curve
of different versions of the ANN algorithm, the SimpleRank
with DiversityTiebreak obtained the best results in 12 of the
15 datasets used.

To ensure the effectiveness of the proposed method, we
realized a hypothesis test. We chose the Friedman with and the
Li’s post-hoc test and 95% as confidence level, as suggested
in [12]. The test rejected the null hypothesis that SimpleR-
ank with DiversityTiebreak has similar performance with the
opponent methods.

For sake of space, we do not show the curves for all
datasets. However, we created a website that contains detailed
results of our experiments2. In this paper, we show some plots
that summarizes the results. Figure 3 shows the results obtained
by the proposed method applied on the Mfeat - Karhunen
dataset.

In this figure, we can see that the curves are according to
the expected results for an anytime algorithm. More specifi-
cally, the accuracy gain at the beginning of the execution is
quite remarkable, especially for SimpleRank with diversity. We
note also that SimpleRank with DiversityTiebreak provided

2http://sites.labic.icmc.usp.br/clemes/diversityrank

133133

Random
SimpleRank
SimpleRank
with Diversity

0.6

0.7

0.8

0.9

1

0.5
0 300 600 900 1200 1500 1800

Number of Instances

A
cc

ur
ac

y

Figure 3. Results obtained for the Mfeat - Karhunen dataset

more consistent accuracy results, with less variability than
SimpleRank.

Although the performance difference is not very large, it
is consistent during entire curve. In general, SimpleRank with
DiversityTiebreak presented results with less variability than
the other methods. For instance, there are a few moments
that SimpleRank is outperformed by the Random approach.
It rarely happens with our proposal.

Figure 4 presents the results for the Optical Recognition
of Digits. In this dataset the performance differences are very
small. This is due to the fact that Random already achieved
very good performance results, leaving very little space for
performance improvement. Note how the curve is very steep
even for the first ranked examples. Even tough, SimpleRank
with DiversityTiebreak achieved consistently better results than
the other two methods;

Random
SimpleRank
SimpleRank
with Diversity

0.6

0.7

0.8

0.9

1

0.50 1000 2000 3000 4000 5000 6000
Number of Instances

A
cc

ur
ac

y

Figure 4. Results obtained for the Optical Recognition of Digits dataset

Figure 5 shows the results for the Ionosphere dataset. This a
smaller dataset in which the performance differences are more
noticeable. Once again, SimpleRank with DiversityTiebreak
presented better results than the competing methods for the
entire range of number of training instances.

VI. CONCLUSION

In this paper, we presented a new tiebreaking method to
be used as part of the Anytime Nearest Neighbor algorithm.
Such a method considers the diversity in the space between
examples of the same class as tiebreaking criterion.

Our method better covers the space of training examples,
since it prioritizes distant examples to construct the ranking.

0.5

0.6

0.7

0.8

0.9

1

Random

Number of Instances

SimpleRank
with Diversity

A
cc

ur
ac

y

0 50 100 150 200 250 300 350

SimpleRank

Figure 5. Results obtained for the Ionosphere dataset

Furthermore, the procedure for merging the lists by diversity
of different classes considering the class distributions avoids
long sequences of examples from a single class.

We showed that the proposed method is able to consis-
tently improve the performance of the SimpleRank algorithm.
Considering the 15 benchmark datasets used to evaluate our
proposal, our method outperformed the SimpleRank in 12 of
them. In fact, the hypothesis test demonstrated the superiority
of the proposed method.

As future work, we intend to apply the proposed method
to a larger number of application domains. We believe the
proposed method can be particularly fruitful in applications in
sensor data.

REFERENCES

[1] J. Grass and S. Zilberstein, “Anytime algorithm development tools,”
ACM SIGART Bulletin, vol. 7, no. 2, pp. 20–27, 1996.

[2] S. Zilberstein and S. Russell, “Approximate reasoning using anytime
algorithms,” Imprecise and Approximate Computation, pp. 43–62, 1995.

[3] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI
magazine, vol. 17, no. 3, p. 73, 1996.

[4] Y. Shang, G. Chen, and Y. Xu, “A space-bounded anytime algorithm for
the multiple longest common subsequence problem,” IEEE Transactions
on Knowledge and Data Engineering, p. 1, 2014.

[5] W. Yue, J. Franco, Q. Han, and W. Cao, “Improved anytime d* algo-
rithm,” in IAENG Transactions on Engineering Technologies. Springer,
2014, pp. 383–396.

[6] K. Myers, M. Kearns, S. Singh, and M. A. Walker, “A boosting approach
to topic spotting on subdialogues,” Family Life, vol. 27, no. 3, p. 1, 2000.

[7] S. Esmeir and S. Markovitch, “Interruptible anytime algorithms for
iterative improvement of decision trees,” in International Workshop on
Utility-Based Data Mining, 2005, pp. 78–85.

[8] D. DeCoste, “Anytime interval-valued outputs for kernel machines: Fast
support vector machine classification via distance geometry,” in ICML,
2002, pp. 99–106.

[9] K. Ueno, X. Xi, E. Keogh, and D.-J. Lee, “Anytime classification using
the nearest neighbor algorithm with applications to stream mining,” in
ICDM, 2006, pp. 623–632.

[10] T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann, “Indexing
density models for incremental learning and anytime classification on
data streams,” in International Conference on Extending Database
Technology: Advances in Database Technology, 2009, pp. 311–322.

[11] N. C. Thuong and D. T. Anh, “Comparing three lower bounding meth-
ods for dtw in time series classification,” in Symposium on Information
and Communication Technology, 2012, pp. 200–206.

[12] B. Trawiński, M. Smetek, Z. Telec, and T. Lasota, “Nonparametric
statistical analysis for multiple comparison of machine learning regres-
sion algorithms,” International Journal of Applied Mathematics and
Computer Science, vol. 22, no. 4, pp. 867–881, 2012.

134134

