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The changes inmagnetic mineralogy due to the hydrothermal alteration of A-type granitic rocks have been thor-
oughly investigated in samples from the granite of Tana (Corsica, France), and comparedwith other A-type gran-
ites: Meruoca (NE Brazil), Bushveld (South Africa), Mount Scott (Wichita Mountains, Oklahoma, USA) and the
stratoid hypersolvus granites of Madagascar. The altered red-colored samples and their non-altered equivalents
were magnetically characterized bymeans of magnetic susceptibility measurements, hysteresis loops, remanent
coercivity spectra, and Lowrie test. It is shown that hydrothermalization inmagnetite-bearing granites is related
to the formation of fine-grained magnetite and hematite, and to coeval depletion in the content of primary low-
coercive coarse-grained magnetite. These mineralogical changes give typical rock magnetic signatures, namely
lower susceptibilitymagnitudes and anisotropy degrees, prolateAMS (anisotropy ofmagnetic susceptibility) fab-
rics and increased coercivities. Optical microscopy and SEM (scanning electronic microscopy) images suggest
that the orientation of the secondary magnetic minerals is related to fluid-pathways andmicro-fractures formed
during the hydrothermal event and therefore may be unrelated to magma emplacement and crystallization fab-
rics. Changes inmagneticmineralogy and grain-size distribution have also to be considered for any paleomagnet-
ic and iron isotope studies in granites.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A-type granitic rocks, as defined byWhalen et al. (1987), derive from
hot magmas, which are able to ascend through the middle to upper crust
without noticeable cooling. Due to decreasing pressure conditions, these
water-undersaturated magmas become water-saturated and will release
large amounts of water if they crystallize at shallow depths (Burnham,
1979). In the brittle crust, the exsolved magmatic fluids will encounter
fractures, that may connect to the surface, hence the fluids will mix
with surface-derived meteoritic or connate waters. The hydrothermal
convective system thus created hasmajor consequences on both the gra-
nitic rocks and their surroundings.Water–rock interactions are evidenced
by mineralogical and chemical changes, collectively called hydrothermal
alteration. For instance, biotite chloritization is a common piece of evi-
dence for hydrothermal alteration in granitic rocks. In the field,
hydrothermally-altered A-type granites are recognized by their pink to
brick-red color, classically ascribed to the presence of tiny hematite inclu-
sions in feldspars (Hofmeister and Rossman, 1983).

Hydrothermally-induced changes are controlled by a variety of
parameters, such as temperature, oxygen fugacity, fluid composition
and fluid/rock ratio. The nature of the fluids and the intensity of their
action can bemonitored by stable isotope studies (Marks et al., 2003;
Rye, 1993). Hydrothermal processes are extensively studied for their
contribution to the genesis of ore deposits. In addition, their influ-
ence on the granite accessory minerals that can suffer perturbation
of their geochronological memory, such as zircon or monazite, was
also accounted for by Poitrasson et al. (1998, 2000). The present
work is aimed at presenting another effect of hydrothermal alter-
ation, namely the main changes of the nature and content of iron-
oxide accessories, using rock magnetic properties associated with
microscopic observations. The study is focussed on the Tana granite
from Corsica (France), but other granites of different ages, sizes, em-
placement depths and hydrothermalization degrees are also used for
comparison. For consistency, only magnetite-bearing (oxidized) A-type
granites will be considered. These magnetite-bearing A-type granites
form a well identified group (Anderson and Morrison, 2005). Changes
in the magnetic properties will prove to be a very sensible indicator of
interactions with fluids, even before the appearance of any mesoscopic
feature of alteration.
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2. Geological setting of the studied granites

Five A-type granites of various ages and sizes were selected for the
study: the Tana granite (Corsica, France), the Meruoca granite (Brazil),
the Bushveld granite (South Africa), the Mount Scott granite
(Wichita Mountains, Oklahoma), and the alkaline stratoid granites
of Madagascar. Their geological setting, petrography and mineralogy
are described below. All these granites display a more or less pro-
nounced hydrothermalization in relation with shallow to intermedi-
ate emplacement levels.

2.1. Tana granite (Corsica, France)

Located in south-western Corsica, the Tana granite is a small intru-
sion cropping out over 39 km2. It is one of the A-type granitic complexes
that were emplaced in Corsica during the waning stages of the
Hercynian Orogeny. Bonin (1980, 1986) divided the Tana granite in
three geographical units (Fig. 1a). The central part has an elliptic
shape, thatwas suggested to be the roof of a ring-complex. The southern
part of the Tana granite, called Punta di U Carbone, was emplaced as
a wide NE-striking sheet along the small mafic layered intrusion of

Peloso. The northern part, made of narrow dykes, will not be considered
here.

The main rock type is an aluminous subsolvus biotite-bearing
granite (Poitrasson et al., 1994). Bonin et al. (1987) obtained a Rb/Sr iso-
chron age of 267 ± 6 Ma for the Tana granite. A more precise geochro-
nological determination yielded 276 ± 3 Ma (2σ), although two
samples from the Punta di U Carbone did not plot on the isochron
(Poitrasson et al., 1994). However, these Rb–Sr ages have likely been
rejuvenated by subsequent hydrothermal circulations since more
recent U–Pb determinations on zircons led to older ages of 291.2 ±
2.6 Ma (2σ) by SHRIMP for the Punta di U Carbon intrusion and
292 ± 8 Ma by evaporation on the Tana granite main intrusion
(Cocherie et al., 2005). In the central part, the granite is very heteroge-
neous in grain size and its color changes from whitish to pink. In the
Punta di U Carbone, the granite is medium- to coarse-grained and
displays a conspicuous brick-red colormainly due to the feldspar grains.
The magma was emplaced at a shallow level, as witnessed by fined-
grained to microlitic quenched borders. The primary mineral composi-
tion comprises quartz, perthitic alkali feldspar, plagioclase, biotite and
accessories. Hydrothermalization appears to have occurred everywhere
at various degrees. It is revealed by the replacement of primary phases
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by secondaryminerals and coincideswith a reddish color in themost al-
tered samples. Chlorite formed after biotite; it is associated with very
small titaniferous phases and sometimes contains lamellar K-feldspar,
pointing to chloritization in medium- to high-temperature conditions
(Bailey, 1984). Magnetite is present either as small grains in biotite or
as large grains with ilmenite–magnetite trellis exsolutions. Magnetite
grains show peripheral oxidation to hematite in some samples.

2.2. Meruoca granite (Brazil)

TheMeruoca pluton is oneof the largest A-type late-Brasiliano intru-
sions emplaced at around 523Ma in the Ceara Province of northeastern
Brazil (Santos et al., 2008). According to Sial et al. (1981), this pluton is
made of granites and quartz-syenites. Most rocks are pink to brick-red
alkaline to peralkaline granitic rocks. A green to gray fayalite-bearing
unit is restricted to the northern part of the pluton. The granites contain
quartz, alkali-feldspar, plagioclase, alkali-calcic amphibole, biotite, mag-
netite and minor accessories. Some samples display granophyric tex-
tures indicative of shallow-depth emplacement. The common reddish
colors and turbid feldspars point to a pervasive hydrothermal alteration.
δ18O data (Sial and Long, 1987) follow a concentric pattern inside the
pluton and confirm low-temperature interaction with meteoritic wa-
ters. Major and trace element contents are typical of an A-type suite,
with a dominantly peraluminous character. Samples from an E–Wpro-
file through the southern part of the pluton have been studied in detail
for their magnetic properties (Fig. 1b).

2.3. Bushveld granite (South Africa)

The Bushveld Complex (Daly, 1928) is a huge bimodal intrusion,
made of mafic layered series overlain by a granitic layer reaching 3 km
in thickness and covering an area of about 66,000 km2. Present
exposure is but half due to both erosion and deposition of a younger
sedimentary cover. Nevertheless, the Bushveld granite remains the
largest intrusion of A-type granite in the world. It has been dated at
2055 ± 2 Ma by the Pb evaporation method on single zircons
(Walraven and Hattingh, 1993). The entire granitic mass crystallized
at a shallow level, i.e. at pressures between 100 and 200 MPa.

Two granitic lithologies are recognized and extensively described
by Kleemann and Twist (1989). The main one is the coarse-grained
hypersolvus Nebo Granite, that shows a vertical mineral zonation
characterized by a decreasing hornblende content from bottom to top,
as well as a gradual change in color from gray to red. Accessories
are mainly zircon, allanite, ilmenite and magnetite. Opaque minerals
crystallized rather early as subhedral grains, presently often included
in the interstitial ferro-magnesian minerals. The Nebo Granite was
emplaced as a water-undersaturated, hot, restite-free magma. Its initial
water-content is estimated at around 2 wt.%. In situ fractional crystalli-
zation ended in a saturated residual liquid containing about 5 wt.% H2O,
leading to the separation of a discrete hydrous fluid phase that progres-
sively concentrated towards the roof. The second granite type is
the pink and fine-grained Klipkloof Granite that generally overlies and
sometimes intrudes the Nebo Granite. This granite contains a high
proportion of secondary and hydrothermal phases, but no magnetite.
Robb et al. (2000) recognize three stages of hydrothermalization in
the Bushveld granites. The early one is due to fluid saturation of
the magma and is responsible for cassiterite mineralization and
sericitization. Sulfides crystallize during the second stage, characterized
by lower-temperature fluids of mixed magmatic and meteoric origin.
The last stage occurs more than 50 Myr after granite crystallization
and is characterized by sulfides and hematite precipitated along
fractures by an external fluid.

Studied samples (kindly provided by R.G. Cawthorn) are sections of
a vertical core extracted from the eastern limb of the Bushveld gra-
nitic layer (Fig. 2). The upper part of the core is reddish and coarse-
grained; the lower part is light gray and coarse-grained. Hence, it

appears that the core mainly sampled the Nebo granite with different
degrees of hydrothermal alteration. Nevertheless, a 400 m-high section
in the upper half of the core is made of a pink and finer-grained granite,
that likely represents the Klipkloof granite type.

2.4. Mount Scott Granite (Wichita Mountains, USA)

Mount Scott Granite is the largest granitic sheet of the Wichita
Granite Group that was emplaced in the Southern Oklahoma Aulacogen
in relation to the Cambrian breakup of the Laurentian Supercontinent
(Gilbert, 1983). It extends over 55 km in length and 17 km in width,
but never exceeds 0.5 km in thickness. Mount Scott Granite is a typical
A-type granite with a medium- to fine-grained hypersolvus texture
(Hogan et al., 1992). Mafic minerals (amphibole, biotite andmagnetite)
represent less than 5% of themodal composition. TheMount Scott gran-
ite was emplaced at a very shallow depth corresponding to pressures as
low as 50 MPa (Hogan and Gilbert, 1995). At the exposure level, it is
characterized by a strong reddish color. Samples cored from a deeper
level are pinkish gray. Two representative samples of each granite
type were kindly provided by M.C. Gilbert.

2.5. A-type stratoid granites of Madagascar

The so-called stratoid granites of central Madagascar are shallowly-
dipping sheet-like granites syntectonically emplaced at around 630 Ma
(Paquette and Nédélec, 1998) into upper-amphibolite facies gneisses
and migmatites. In contrast to the other plutonic complexes described
above, the Madagascan sheets were emplaced at mid-crustal levels,
i.e. at depths comprised between 10 and 15 km (Nédélec et al.,
1994).

Two granitic suites were recognized by Nédélec et al. (1995). Only
the strongly alkaline suite made of quartz-syenites and hypersolvus
alkali feldspar granites is retained for the present study. The quartz-
syenites are dark greenish rocks containing perthitic alkali feldspar,
clinopyroxene, amphibole and magnetite as main minerals. The alkali
feldspar granites are light gray to pink fine-grained rocks and contain
quartz, perthitic alkali feldspar, calcic to sodi–calcic amphibole and
magnetite. Despite their leucocratic nature, magnetite is always present
in large amounts: the rocks are therefore typical oxidized A-type
granites that crystallized at relatively high fO2 conditions. Hydrothermal
alteration is restricted to a few samples and most rocks appear unmod-
ified in thin sections. Oxygen isotope data (Nédélec et al., 1995) show
that the syenites and the hypersolvus granites belong to a low δ18O
suite characterized by values at around 6‰, typical of mantle-derived
rocks (Sheppard, 1986). One sample of pink hypersolvus granite (MG
60) displays a value as high as 9.5‰, likely explained by late-interaction
with low-temperature oxidizing fluids (Wenner and Taylor, 1976). It is
worth to notice that not all pink granites are characterized by high δ18O
values.

3. Material and methods

For the Tana, Madagascar and Meruoca granites, measurements
were performed in a wide collection of samples extracted at evenly
spaced sites covering all the surface of the respective granite bodies.
Sampling location for Tana (98 samples) and Meruoca (91 samples)
are provided in Fig. 1a and b respectively. Location of the sampling
sites for the 43 specimens of hypersolvus stratoid granites and syenites
ofMadagascar is given inNédélec et al. (1994). For the Bushveld granite,
the 15 studied specimenswere redrilled from the vertical core andwere
numbered after their respective depths. At last, for the Wichita Mount
Scott sill, only two representative specimens were considered, namely
a red altered sample (Wa1) and a gray unaltered sample (Wa2).

Magnetic mineralogy was investigated through anisotropy of mag-
netic susceptibility (AMS) measurements, thermomagnetic profiles,
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hysteresis loops, coercivity spectra, isothermal remanentmagnetization
(IRM) acquisition curves, and the Lowrie test (Lowrie, 1990).

Magnetic susceptibility and anisotropy were measured at low-field
(3.8 × 10−4 T, 920 Hz) on a KLY2-bridge. Results are reported for indi-
vidual samples, unlike classical studies, where averages of results for a
variable (usually 3 to 6) number of samples are used for structural
purpose. The frequency-dependent magnetic susceptibilities were
measured in a Bartington susceptibility meter equipped with a MS2B
dual-frequency sensor working at 0.47 and 4.7 kHz. Thermomagnetic
curves were obtained using the same instrument coupled to a CS2/CSL

furnace from −190 to 700 °C. Anhysteretic remanence, its anisotropy
(AAR), and remanent coercivity spectra were obtained using a JR5A
magnetometer (sensitivity of less than 100 A/m) and an LDA3-AMU1
magnetizer/demagnetizer (Agico). AARmeasurementswere performed
for low-coercivity grains (between 0 and 20 mT) and for those with
remanent coercivities comprised between 40 and 60 mT. Remanent co-
ercivity spectrawere determined from0up to 90mT, at 10mT intervals.
IRM acquisition curves up to 3 T were performed on representative
samples of the altered and non-altered facies. The same samples were
further thermally demagnetized after IRM acquisition along three
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orthogonal directions with different peak fields (3, 0.4 and 0.12 T) to
estimate unblocking temperatures of the soft (b0.12 T), medium
(0.12–0.4 T) and hard (N0.4 T) coercivity fractions. Hysteresis curves
for Tana granite were obtained in the LSCE (Laboratoire des Sciences
de l'Environnement et du Climat) by courtesy of C. Kissel. Other hyster-
esis data were acquired in São Paulo University.

For all the studied plutons, a series of polished thin sections was ex-
amined through optical and scanning electronic microscopy to deter-
mine the location of the different magnetic phases.

4. Magnetic fingerprints of hydrothermal changes

4.1. Magnetic susceptibility

4.1.1. Magnetic susceptibility magnitude
Lapointe et al. (1986), Harding et al. (1988) and Just et al. (2004) al-

ready noticed that alteration strongly lowers themagnetic susceptibility
of plutonic rocks, as a consequence of a lowered magnetite content.
Susceptibility magnitudes of the selected A-type granites are presented
in Fig. 2 and Tables 1, 2 and 3. As a whole, they display a wide range of
values. The values for the stratoid granites of Madagascar are one order
of magnitude higher than in the other granites. However, averages for
each granite are high enough to be consistent with the presence of
magnetite in most samples, taking into account the susceptibility limit
defined by Rochette et al. (1992). Indeed, these authors proposed that
susceptibility magnitudes (K) lower than 500 μ SI characterize para-
magnetic rocks devoid of any magnetite.

Three collections of data contain enough samples to enable a statis-
tical analysis of the scalar susceptibility data, namely: the Tana granites,
the hypersolvus stratoid granites (and quartz-syenites) of Madagascar
and theMeruoca granites. Analysis of the distribution of the susceptibil-
ity magnitudes is presented as cumulative frequency curves on a loga-
rithmic scale (Fig. 3). In such a representation, samples plotting on the
same linear segment correspond to a unimodal susceptibility distribu-
tion likely related to magmatic differentiation (Lapointe et al., 1986).
By contrast, recognition of two (or more) linear segments point either
to the co-existence of different magmas or to some overprint by other
processes, such as alteration after magmatic crystallization.

Table 1
AMS data fromTana (Corsica). K: susceptibilitymagnitude; P: anisotropy degree; T: shape
parameter; Kfd: frequency-dependent susceptibility.

Specimen K (10–6SI) P = K1/K3 T Kfd (%)

Tana (center)
TA 2 A1 1780 1.09 −0.09
TA 2 A2 1590 1.07 0.05
TA 2 A3 1500 1.05 0.19
TA 2 A4 1900 1.11 0.31
TA 2 B1 1720 1.1 0.43
TA 2 B2 1100 1.1 0.35
TA 2 C1 1830 1.03 0.8
TA 2 C2 2210 1.11 −0.13
TA 3 A1 90 1.06 0.09
TA 3 A2 70 1.08 0.27
TA 3 B1 310 1.16 −0.08
TA 3 B2 320 1.08 −0.54
TA 3 C1 50 1.03 0.08
TA 3 C2 180 1.17 −0.32
TA 3 C3 150 1.03 −0.32
TA 4 A1 90 1.03 0.35
TA 4 A2 60 1.02 −0.05
TA 4 A3 80 1.03 0.22
TA 5 A1 540 1.08 −0.1
TA 5 A2 390 1.05 −0.28 0.63
TA 5 A3 1440 1.05 0.51 0.99
TA 5 B1 680 1.09 −0.24 0
TA 5 B2 1130 1.08 −0.58 0.69
TA 5 C1 180 1.07 0.76
TA 5 C2 490 1.05 −0.02
TA 5 C3 720 1.06 −0.35 1.05
TA 6 A1 1090 1.09 −0.16 0
TA 6 A2 2720 1.13 0.35 0.2
TA 6 B1 2000 1.09 0.77 1.31
TA 6 B2 1400 1.09 0.63 1.28
TA 6 C1 1370 1.08 0.21 0.75
TA 8 A1 4520 1.04 −0.65
TA 8 A2 2500 1.05 0.69
TA 8 C1 70 1.03 0.61
TA 9 A1 370 1.08 0.58
TA 9 B1 30 1.01 −0.63
TA 9 C1 30 1.02 −0.04
TA 9 C2 20 1.01 0.13
TA 9 D1 30 1.03 −0.22
TA 25 A1 4520 1.17 −0.18 0.21
TA 25 A2 3770 1.15 −0.03 1.69
TA 25 B1 2870 1.14 −0.25 0.14
TA 25 B2 4000 1.18 0.53 0.04
TA 25 C1 4060 1.13 −0.08 0.63
TA 26 A11 4230 1.05 0.34
TA 26 A21 30 1.01 0.01
TA 26 B11 3140 1.06 0.14
TA 26 B12 4670 1.06 −0.3
TA 26 B21 30 1.01 0.46
TA 27 A1 1880 1.03 −0.16 0.35
TA 27 B1 2340 1.14 −0.16 0.46
TA 27 B2 2170 1.11 0.07
TA 27 C1 110 1.01 0.6
TA 27 C2 110 1.02 −0.26
TA 29 A1 380 1.08 0.2 0
TA 29 A2 320 1.04 0.31
TA 29 B1 910 1.06 0.64
TA 29 B2 920 1.16 −0.02 0.57
TA 29 C1 270 1.03 0.42 3.24
TA 29 C2 430 1.08 −0.23 1.18
TA 33 A1 1470 1.04 0.65 0.35
TA 33 B1 1920 1.05 0.6 0.19
TA 33 B2 2040 1.04 0.79 0
TA 35 B1 3900 1.04 −0.28
TA 35 B2 6870 1.03 −0.45
TA 36 A2 1490 1.07 0.69
TA 36 A3 780 1.06 0.76
TA 36 B1 1230 1.06 −0.33
TA 36 C1 60 1.02 −0.3
TA 36 C2 60 1.02 0.09
TA 37 B1 900 1.1 −0.15
TA 37 C1 180 1.06 0.53
TA 37 C2 300 1.07 −0.13 0.41
TA 37 C3 330 1.06 0.39

Table 1 (continued)

Specimen K (10–6SI) P = K1/K3 T Kfd (%)

Punta di U Carbone
TA 15 C1 3140 1.07 0.02 0.57
TA 15 D1 3410 1.04 0.17 0.47
TA 16 A1 1730 1.03 −0.33
TA 16 B1 1160 1.04 0.56
TA 16 B2 1380 1.05 0.5
TA 16 C1 1280 1.06 0.17
TA 16 C2 1540 1.03 −0.19
TA 17 C1 760 1.02 0.57 0.98
TA 17 D1 730 1.02 −0.19
TA 18 A1 630 1.04 −0.06 1.47
TA 18 B1 660 1.04 0.48
TA 18 B2 680 1.04 0.47
TA 18 C1 280 1.02 0.89 3.62
TA 18 C2 290 1.03 −0.16
TA 19 A1 1720 1.04 −0.59
TA 19 A2 400 1.03 −0.57
TA 19 B1 1200 1.03 −0.22
TA 19 B2 1120 1.03 0.44
TA 19 C1 700 1.02 0.49
TA 19 C2 420 1.03 0.03
TA 20 A1 280 1.05 0.53
TA 20 A2 340 1.03 0.43
TA 20 B1 460 1.04 −0.41
TA 20 B2 400 1.02 −0.24
Average 1267 1.06 0.12
Minimum 22 1.01 −0.59
Maximum 6871 1.10 0.79
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The three studied granites display at least two populations, but the
susceptibility magnitudes separating these populations are different
for each granite (Fig. 3). Two populations are recognized among the
samples from Tana granite as a whole (Fig. 3a). The main population
represents 80% of the samples with K ranging from 250 to 3500 μ SI.
The 20% remaining samples have susceptibility magnitudes lower
than 250 μ SI. Actually, these two populations characterize the central
part of the Tana massif, representing respectively 70 and 30% of the
samples. The southern Punta di U Carbone samples represent a homo-
geneous set with susceptibility magnitudes higher than 250 μ SI,
undistinguishable from the rest of the main population regarding the
distribution of K values, despite its specific brick-red color.

Table 2
AMS data from Meruoca (Brazil). K: susceptibility magnitude; P: anisotropy degree;
T: shape parameter.

Specimen K (10-6 SI) P = K1/K3 T

Me7a1 1799 1.03 0.04
Me7a2 2990 1.01 0.63
Me7b1 970 1.03 0.08
Me7b2 1989 1.05 −0.36
Me8a1 1641 1.02 −0.40
Me8a2 1261 1.02 0.26
Me8b1 3307 1.03 −0.23
Me8b2 2280 1.03 0.52
Me9a1 1565 1.02 0.46
Me9a2 2413 1.04 −0.62
Me9b1 2526 1.04 0.08
Me9b2 2133 1.05 0.39
Me10a1 1163 1.01 0.18
Me10a2 898 1.01 0.10
Me10b1 1052 1.02 −0.52
Me10b2 1587 1.01 0.81
Me19a1 207 1.01 0.03
Me19a2 129 1.02 −0.06
Me19b1 152 1.02 −0.31
Me19b2 209 1.03 0.33
Me22a1 330 1.01 0.76
Me22a2 916 1.03 0.76
Me22b1 1323 1.04 0.50
Me22b2 1611 1.03 0.75
Me24a1 1834 1.02 −0.68
Me24a2 1916 1.01 0.12
Me24b1 353 1.01 −0.06
Me24b2 546 1.02 −0.40
Me20a1 1842 1.03 −0.24
Me20a2 2699 1.03 −0.61
Me20b1 1014 1.01 −0.15
Me20b2 825 1.03 0.06
Me31a1 2922 1.05 0.10
Me31a2 2345 1.04 −0.54
Me31b1 2183 1.04 −0.07
Me31b2 2053 1.03 0.76
Me32a1 2311 1.04 0.03
Me32a2 543 1.02 −0.22
Me32b1 603 1.06 0.02
Me32b2 2244 1.03 0.01
Me33a1 8317 1.03 0.08
Me33a2 11,910 1.03 −0.16
Me33b1 2262 1.03 0.53
Me33b2 5332 1.05 −0.34
Me34a1 1686 1.03 −0.47
Me34a2 2116 1.09 −0.11
Me34b1 8223 1.03 0.47
Me34b2 4008 1.07 0.47
Me36a1 860 1.05 0.10
Me36a2 2646 1.03 −0.10
Me36b1 755 1.02 −0.41
Me38a1 68 1.01 −0.51
Me38a2 79 1.01 0.50
Me38a3 65 1.02 0.30
Me38b2 74 1.01 0.03
Me38b3 71 1.02 0.87
Me39a1 2421 1.07 0.26
Me39a2 3157 1.12 0.06
Me39b1 2389 1.05 0.30
Me44a1 1351 1.04 0.50
Me44a2 2402 1.02 0.37
Me44b1 1038 1.04 −0.39
Me44b2 1787 1.03 −0.09
Me52a1 2377 1.06 −0.37
Me52a2 1988 1.03 0.19
Me52b1 1463 1.03 −0.16
Me52b2 1746 1.04 0.19
Me52c1 32,840 1.05 −0.68
Me52c2 19,450 1.05 0.59
Me53a1 1423 1.03 0.42
Me53a2 1846 1.01 −0.44
Me53b1 1400 1.02 0.88
Me53b2 1825 1.01 −0.33
Me54a1 3877 1.03 0.55

Table 2 (continued)

Specimen K (10-6 SI) P = K1/K3 T

Me54a2 5032 1.02 0.46
Me54b1 4276 1.02 0.61
Me54b2 4829 1.03 0.60
Me55a1 2668 1.04 0.53
Me55a2 1683 1.04 0.30
Me55b1 3655 1.04 −0.17
Me55b2 2763 1.04 0.45
Me64a1 2143 1.04 0.89
Me64a2 1452 1.03 0.67
Me64b1 843 1.03 0.55
Me64b2 1132 1.04 0.45
Me65a1 902 1.03 −0.36
Me65a2 1212 1.06 0.21
Me65b1 680 1.09 0.07
Me65b2 1835 1.03 0.19
Me66a1 4518 1.02 0.68
Me66a2 3778 1.02 0.35
Me66b1 3324 1.03 0.03
Me66b2 6252 1.03 −0.12
Me67a1 1762 1.02 −0.05
Me67a2 1641 1.02 0.85
Me67b1 1211 1.01 −0.55
Me67b2 667 1.05 −0.24
Me68a1 905 1.03 0.09
Me68a2 1119 1.03 −0.45
Me68b1 5573 1.02 0.17
Me68b2 3186 1.03 0.08
Me69a1 1507 1.06 0.32
Me69a2 1835 1.04 0.61
Me69b1 4194 1.02 −0.44
Me69b2 2794 1.02 −0.01
Me70a1 1130 1.02 −0.25
Me70a2 1723 1.03 −0.69
Me70b1 3809 1.02 0.07
Me71a1 2296 1.03 −0.00
Me71a2 1435 1.02 0.65
Me71b1 571 1.02 −0.35
Me71b2 636 1.04 −0.37
Me73a1 1533 1.03 −0.59
Me73a2 1966 1.03 0.10
Me73b1 2126 1.03 0.54
Me73b2 1972 1.04 0.36
Me74a1 4018 1.02 −0.83
Me74a2 2364 1.03 −0.18
Me74b1 2366 1.03 0.32
Me74b2 2918 1.02 0.47
Me75a1 1904 1.02 −0.56
Me75a2 1660 1.02 −0.15
Me75b1 5167 1.02 0.52
Me75b2 2314 1.02 −0.27
Me76a1 6041 1.03 0.40
Me76a2 5723 1.04 0.27
Me76b1 4337 1.05 −0.20
Me76b2 1690 1.03 0.38
Me80a1 117 1.01 0.73
Me80a2 97 1.02 0.55
Me80b1 149 1.01 0.26
Me80b2 140 1.01 −0.21
Me80b3 152 1.02 0.34
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The main population of Madagascan granites is characterized by
K higher than 10,000 μ SI; lower K values characterize a second minor
population representing about 30%of the samples (Fig. 3b). It isworth no-
ticing that the samples where fluid–rock interactions were evidenced by
additional chemical data (oxygen isotope or trace element data) belong to
this second population. However, not all of them display a pink color.

The Meruoca granite also displays at least two different populations
(Fig. 3c). Themain population represents about 75% of the sampleswith
susceptibilitymagnitudes between 1000 and 8000 μ SI. The second pop-
ulation amounts to about 20% of the samples with K less than 1000 μ SI.
A few remaining samples with susceptibility magnitudes higher than
8000 and up to 15,662 μ SI (sample ME 52), likely belong to a third
population. Reddish samples are observed in all three populations.

Samples from the Bushveld core (Fig. 2) form two subsets in relation
to their depth: samples shallower than 700 m have susceptibility
magnitudes less than 500 μ SI, whereas deeper samples (with one ex-
ception) display susceptibility magnitudes higher than 1000 μ SI.
These two subsets correlatewellwith the bimodal distribution obtained
by Ferré et al. (1999) from a larger database. In the area corresponding
to the drilling site, Ferré et al. (1999) propose that K values lower than

750 μ SI correspond to hydrothermally altered rocks. Actually, biotite
chloritization is observed in samples with higher susceptibility
magnitudes (Fig. 2). Therefore, although low susceptibility samples
were surely modified by hydrothermal processes, the very beginning
of hydrothermal alteration cannot not be traced using this sole criteria.

A complete susceptibility log for an 87.5 m long core in the Mount
Scott granite is given by Price et al. (1998). The grayish deeper part of
the core corresponds to a magnetic susceptibility of ca 23,400 μ SI. Color
changes to reddish orange from −30 m to the surface and, in the same
time, the magnetic susceptibility decreases by two orders of magnitude.

4.1.2. Anisotropy degree
The anisotropy degree P is the ratio of maximum versus minimum

susceptibility magnitudes (K1/K3). The range of values for the selected
granites is given in Table 1. Once again, the alkaline stratoid granites
of Madagascar differ from the other granites by a highermean anisotro-
py degree of 1.45 and a wider range of values (1.05–1.87). These values
are among the highest values encountered in ferromagnetic plutonic
rocks (see Bouchez, 2000, for comparison). In these syntectonically
emplaced magmas, Grégoire et al. (1998) established that such values
reflect high shape ratios of primary magnetite grains. By contrast, the
Meruoca and Bushveld granites display low anisotropy degrees, consis-
tent with their emplacement as nearly undeformed shallow intrusions.

Variations of the anisotropy degree are analyzed in P vs. K diagrams
(Fig. 4) with respect to the different populations of susceptibility magni-
tudes recognized above. In the Tana granite, samples from the southern
Punta di U Carbone display a small range of values in-between 1.02 and
1.07 (Fig. 4a), whereas samples from the central part of the massif
have a wider range of anisotropy values in-between 1.01 and 1.18 with
a rough positive correlation with log K. The anisotropy degree of the
main population of the stratoid granites is higher than 1.35, whereas
the anisotropy degree of the second population (K b 10,000 μ SI) is
lower than 1.60. Moreover, this latter population displays a
rough positive correlation of P and K, especially clear in samples from
sites (MG 60 and MG 64) that experienced fluid–rock interaction after
geochemical data (Fig. 4b). No such correlation exists in the main
population.

In the case of the Meruoca granite, the population having low
susceptibility magnitudes also display very low anisotropy degrees (ca
1.02 in average), noticeably lesser than the remaining samples.

4.1.3. Shape parameter
The T parameter of Jelinek (1981) calculated as:

T ¼ 2 lnK2− lnK3ð Þ= lnK1− lnK3ð Þ½ �−1

quantifies the shape of the AMS ellipsoid. Most granitic rocks are charac-
terized by positive T values in agreement with their dominantly oblate
magnetic fabric. Fig. 5 displays the T vs log K diagrams for Tana, Meruoca
andMadagascar granites. Whereas most Madagascan granites plot in the
positive T field, almost one third of the other granite samples plot in the
negative field, pointing to a corresponding oblate magnetic fabric.

4.1.4. Frequency-dependent susceptibility
The frequency-dependent magnetic susceptibility is expressed as a

percentage by

Kfd %ð Þ ¼ 100 Khf−Klfð Þ=Klf½ �

where Khf and Klf are the magnetic susceptibilities respectively mea-
sured at high- and low-frequency (Dearing et al., 1996). It is an easy
method to identify the presence of superparamagnetic (SP) magnetite
grains, that correspond to very small grain sizes (b0.02 μm), sometimes
abundant in soils and sediments (Font et al., 2006; Jackson et al., 1993;
Maher, 1988). The specimens from the Bushveld core and a selection of
specimens from Tana were selected for measurements and the results

Table 3
AMS data from the hypersolvus stratoid granites of Madagascar. K: susceptibility magni-
tude; P: anisotropy degree; T: shape parameter.

Specimen K (10–6 SI) P = K1/K3 T

Granites
MG 36 A1 11,960 1.54 0.39
MG 36 A2 6310 1.47 0.68
MG 36 B1 12,880 1.53 0.68
MG 36 B2 12,830 1.53 0.63
MG 94 A1 1080 1.26 0.28
MG 94 A2 1930 1.36 0.51
MG 94 B1 6790 1.59 0.04
MG 94 B2 45,380 1.81 0.43
MG 60 A1 1170 1.05 −0.09
MG 60 A2 2040 1.08 −0.03
MG 60 B1 2070 1.08 0.02
MG 60 B2 5620 1.18 0.16
MG 74 A1 18,090 1.51 0.7
MG 74 A2 20,560 1.5 0.85
MG 74 B1 13,400 1.34 0.79
MG 74 B2 16,410 1.47 0.7
MG 64 A1 31,580 1.67 0.52
MG 64 A2 23,930 1.67 0.39
MG 64 B1 20,720 1.56 0.3
MG 64 B2 22,990 1.59 0.52
MG 64 C1 300 1.06 −0.13
MG 64 C2 270 1.06 0.08
MG 9 A1 36,210 1.55 0.79
MG 9 A2 36,150 1.56 0.65
MG 9 B1 26,070 1.37 0.81
MG 9 B2 27,860 1.37 0.79
MG 14 A1 4050 1.31 0.48
MG 14 A2 4500 1.29 0.71
MG 14 B1 18,320 1.87 0.47
MG 14 B2 13,930 1.74 0.39
MG 100 A1 27,450 1.57 0.34
MG 100 A2 25,780 1.5 0.31
MG 100 B1 12,070 1.33 0.54

Quartz-syenites
MG 91 A1 64,870 1.56 0.54
MG 91 A2 63,580 1.57 0.51
MG 91 B1 66,750 1.49 0.64
MG 91 B2 63,700 1.5 0.5
MG 72 A1 32,800 1.67 0.34
MG 72 A2 47,530 1.63 0.34
MG 72 B1 37,360 1.55 0.42
MG 93 A1 48,990 1.43 0.73
MG 93 A2 65,410 1.37 0.33
MG 93 A3 58,610 1.42 0.47
Averages 24,658 1.45 0.45
Min 270 1.05 −0.13
Max 66,750 1.87 0.85
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are presented respectively in Fig. 2 and Table 1. There is a rough tenden-
cy for increased frequency-dependent susceptibility towards the sur-
face in the Bushveld core and at least one sample (Kfd = 8%) displays
a significant contribution of superfine grains. Conversely, the studied
specimens of Tana granite display no or a small contribution of super-
fine particles without any peculiar spatial distribution.

4.2. Magnetic remanence and magnetic mineral carriers

4.2.1. Hysteresis parameters and remanent coercivity spectra
Hysteresis loops were performed for thirty samples from the

Tana granite, comprising altered and non-altered rock-types. The
shapes of the loops (Fig. 6a) correspond either to MD behavior
in non-hydrothermalized granites or to wasp-waisted loops in
hydrothermalized granites; this latter type of loop is typical of amixture
of magnetic grains (2 mineral phases or 2 grain-size populations of the
same phase). In Day's diagram (Day et al., 1977, revised by Dunlop,
2002), the different rock-types plot into two distinct groups. Assuming
that magnetite is present in all cases, Day's diagram enables a size-
dependent interpretation of hysteresis properties for Bushveld, Tana,
Mount Scott and Meruoca granites. Hydrothermalized granites usually
show anomalously high hysteresis ratios, and plot very often in the
pseudo-single domain field of the diagram (Fig. 6b). In contrast, non-
altered granites are characterized by the predominance of a multi-
domain behavior. The new curves relating the hysteresis parameters
for different grain sizes of magnetite and their mixtures of Dunlop
(2002) enable the refining of this conclusion. The hydrothermalized
Tana, Mount Scott and Bushveld granites plot close to the mixing
curve of SD and MD grains of pure magnetite. The Meruoca samples
plot slightly off this line to the right.

The remanent coercivity spectra (RCS) acquired for the Tana and
Wachita cases also reveal that major differences exist between altered
and non-altered specimens (Fig. 7). The non-altered specimens have
low-coercivity patterns typical of MD (multi-domain) magnetite. By con-
trast, significant shifts to high coercivity values are noticed in the

altered specimens Ta18, Ta20 andWa1 (Trindade et al., 2001). These dif-
ferences in remanent coercivity distributions are attributed to changes in
grain-size distributions ofmagnetite (Jackson et al., 1988), suggesting that
these specimens contain a higher proportion of fine-grained particles.

4.2.2. Isothermal remanent magnetization (IRM) acquisition curves
The IRM acquisition curves for the different facies of the Meruoca

granite are given in Archanjo et al. (2009). The greenish granite can be
saturated at fields lower than 130 mT, hence only a soft (low coercivity)
component is present. By contrast, some reddish granite samples are
not saturated at 2.5 T, pointing to the existence of a second hard compo-
nent. The IRM-acquisition curve for the hydrothermalized Tana granite
also corresponds to two different (soft and hard) components, that can
be identified using the fitting method of Kruiver et al. (2001). The pres-
ence of hematite, the high coercivity component, can be recognized by
the bi-modal aspect of the GAP curve (the gradient of IRM acquisition
curve) as well as the standardized acquisition plot (using a probability
scale), as can be seen in Fig. 8.

4.2.3. Thermomagnetic curves and Lowrie test
Thermomagnetic curves presented by Ferré et al. (1999) for a few

Bushveld specimens enabled discriminating the magnetite-rich unal-
tered granite (with a clear susceptibility drop at 580 °C and reversible
heating and cooling curves) from hydrothermalized specimens with
an ill-defined susceptibility drop and an increased susceptibility after
heating, likely due to the formation of new magnetite from mag-
hemite or hematite. However, none of the experiments yielded a Curie
temperature typical of the presence of hematite. Indeed, small contents
of hematite may not be evidenced by this method, because this
mineral has a much lower susceptibility than magnetite. Changes in
susceptibility magnitude with an increasing temperature (−190 °C
to 700 °C) for the reddish Meruoca granite display a distinct drop at
580 °C, evidencing the presence of puremagnetite as themainmagnetic
carrier (Archanjo et al., 2009). A final small drop just before 700 °C is
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often observed in theseMeruoca specimens, evidencing the presence of
hematite.

Changes in susceptibility magnitude on heating of two specimens
(altered: Ta20, and non-altered: Ta8) of Tana granite were not able to
evidence hematite (Fig. 9a). Both specimens present a similar pattern,
with inflections around −150 °C (Verwey transition) and around 580
°C typically due to Ti-poor to pure magnetite, although their bulk mag-
netic susceptibilities at room temperature differ by one order of magni-
tude. No inflections around−15 °C and 675 °C, that would be related to
hematite, are observed in these curves. However, the altered sample
yields a hard remanence, not removed after AF demagnetization up to
100 mT, a feature attributed to a small fraction of hematite, a
mineral indeed identified by microscopic studies and microprobe anal-
ysis (see below). Therefore, in order to prove the presence of hematite,
the Ta19 sample was submitted to the Lowrie test (Lowrie, 1990). The
sample is remagnetized in successively smaller fields along orthogonal
directions and then thermally demagnetized. Results for each orthogo-
nal component is plotted separately in Fig. 9b. The component with
the highest remanent coercivity is demagnetized only at about 650 °C,
close to the Curie temperature of hematite. However, this component
contributes only for about 10% of the total remanence.

5. Microscopic study

All studied granites display primary (magmatic) grains of Fe(-Ti) ox-
ides in thin sections. Their textural relationships point either to an early
crystallization, as in the stratoid granites of Madagascar (Nédélec et al.,
1995), or to a later, but still magmatic, formation as in the Bushveld
granite (Ferré et al., 1999). Large primary grains of iron oxides obviously

of magmatic origin were recognized in the Meruoca granite; they dis-
play typical magnetite–ilmenite exsolution features (Fig. 10a). In the al-
tered Meruoca samples, the same oxide grains display more or less
pronounced resorption of the magnetite-rich domains, whereas the
ilmenite-rich exsolutions remain free of any alteration (Fig. 10b). An-
other generation of smaller oxide grains is associated to tiny fractures
(Fig. 10c). Archanjo et al. (2009) also identified titanohematite with
Ti-poor and Ti-rich exsolutions as small grains in chloritized biotite.

In the gray unaltered Wachita granite, iron oxides are observed as
small inclusions in perthitic alkali feldspar (Fig. 10d). Microprobe anal-
yses, sum of cations and calculation of structural formulae evidence that
the larger inclusions (50 μm) are made of titanomagnetite and the
smaller inclusions (10 μm) are actually made of titanohematite. Very
similar Ti and Mn contents in all grains point to an origin of hematite
by oxidation of former magnetite. According to the compositions,
magnetite is likely of magmatic origin and the change of magnetite to
hematite may be due to O-atom diffusion possibly due to some oxygen
fugacity change in themagma, without any influence of a hydrous fluid
phase as their alkali feldspar host is unaltered. By contrast, in the
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hydrothermalized Tana granite, scanning electron microscope images
show that tiny (5–15 μm) hematite crystals appear to have crystallized
in vugs in the alkali feldspar grains (Fig. 10e) and are therefore surely
related to water–rock interactions, as discussed by Putnis et al. (2007)
for other reddish granites. At last, the brick-red color of the altered
Wachita sample is due to a high content of hematite and/or iron hydrox-
ides, either inside the grains, or in microfractures or as grain coatings
likely due to surficial weathering (Fig. 10f).

6. Discussion and conclusions

6.1. Changes in magnetic properties and magnetic mineralogy

Hydrothermal alteration of magnetite-bearing A-type granites is re-
sponsible for lowering of themagnetic susceptibilitymagnitudes due to

a decrease in magnetite contents. Hysteresis parameters generally
follow a linear trend straddling the so-called PSD domain in the Day
diagram, actually corresponding to a mixture of MD and SD magnetite
grains. The proportions of SD grains is observed to be higher in the
altered than in the unaltered samples. Hence, hydrothermal alteration is
responsible for the dissolution of some of the primaryMDmagnetites as-
sociated to the crystallization of secondary SD grains. Besides, the
formation of superfine (SP) particles seems not to be significant, with
the exception of some very shallow Bushveld granite. Such SP Fe-oxides
are regarded as the consequence of surficial weathering (Dideriksen
et al., 2010). Fe-oxides of deeper origin, either hydrothermal or due to a
late-magmatic oxidizing event, had time to grow to SD sizes or larger.

Modification of the magnetite grain-size distribution has an impor-
tant consequence on the remanence properties of the altered rocks.
The remanent coercivity spectra are consistent with the development
of a hard coercivity component in the hydrothermalized granites, that
could be either SD magnetite or hematite. The IRM acquisition curves
confirm this interpretation. The thermomagnetic curves and especially
the Lowrie test are the best means to identify hematite. The formation
of hematite is generally related to fluid–rock interaction. Hematite
appears in the hydrothermalized rocks even before these rocks acquire
a pronounced reddish color. Actually, the change in color only appears
when there is enough hematite and/or iron hydroxides. The first
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appearance of hematite may sometimes occur before any substantial
decrease of the magnetic susceptibility.

6.2. Implications for fabric analyses

The decrease in magnetic susceptibility associated to hydrothermal
alteration also corresponds to a decrease in the anisotropy degree and,
especially, to a change in the shape of the AMS ellipsoid as evidenced
by an increasing number of negative values of the T parameter. These
negative values correspond to an oblate AMS ellipsoid that reflect the
shape fabric and/or distribution anisotropy of the magnetic mineral
carriers. Since granite plutons are generally characterized by oblate
magnetic fabrics, the few cases of prolate fabrics retained some atten-
tion, but received different interpretations. For instance, Riller et al.
(1996) proposed that prolate susceptibility ellipsoids in theMurray plu-
ton derive from the superposition of two (sub-)fabrics corresponding to
different deformation events. Zák et al. (2005) interpreted prolate ellip-
soids and the weak anisotropies in the core of the Sázava pluton as a
preserved early magmatic fabric. In the present case studies, no super-
posed deformations have been evidenced. Moreover, it is impossible
to consider the fabrics of hydrothermalized granites as early fabrics.
Hence none of the previous interpretations can be retained.

The question arises of the coaxiality of the prolate fabrics of
hydrothermalized granites with an earliermagmatic fabric. It is possible
to answer comparing partial anhysteretic remanence anisotropy
(pAAR) data acquired at field interval appropriate to separate the
coarse-grained (low coercivity) magnetite fabric and the fine-grained

(high coercivity) magnetite fabric. Indeed, this approach was already
attempted by Trindade et al. (2001) for Ta20 and Wa1 specimens with
contrasting results. The Tana specimen yields coaxial fabrics, whereas
the Wachita specimen yields orthogonal fabrics. Indeed, the effect of
the hydrothermal fluid was likely coeval with the emplacement of the
Punta di U Carbone granitic magma as a single event. In many other
cases, the fluid phase, either of magmatic or external origin, leaves its
imprint after magma emplacement and just before or after full crystalli-
zation. In this case, the fine-grained fabric is acquired during hydrother-
mal alteration and mimics the fluid pathways, either channelized along
foliation planes or along microfractures orthogonal to the foliation
planes. Comparison of the AMS fabric with the mineral fabric acquired
by an independent method may be also worth considering. This com-
parison has been attempted by Archanjo et al. (2009) for the Meruoca
pluton, where mafic minerals define a subhorizontal magmatic folia-
tion, while AMS of the reddish units show considerable scattering. Con-
versely, for the non-altered green to gray granites they found a good
correspondence between magnetic and magmatic foliations. The inter-
pretation is that the magnetic fabric of the hydrothermalized samples
records (re)crystallization of iron oxides during secondary processes.

6.3. Perspectives

Hydrothermal alteration is generally responsible for the weakening
of the magmatic fabric and for the possible acquisition of a secondary
fabric. In this case, AMS-based structural studies have to be undertaken
with caution. However, development of fine-grainedmagnetite and he-
matite in granites may be of great interest for paleomagnetic studies,
because of the highly coercive nature of these minerals, provided that
the hydrothermal event can be dated. Finally, the magnetic properties
can offer a quick semi-quantitative estimate of fluid–rock interactions
and may be of invaluable importance in the interpretation of stable iso-
topic data. Whereas modification of oxygen and hydrogen isotope sig-
natures by fluid–rock interaction is already well known (e.g., Taylor,
1978), the discovery of heavy iron isotope signatures in some highly
silicic A-types granites (Poitrasson and Freydier, 2005) is still a matter
of debate. There are currently four hypotheses to account for this obser-
vation: 1) it may result from the exsolution of reduced fluids releasing
isotopically light iron (Heimann et al., 2008; Poitrasson and Freydier,
2005; Telus et al., 2012). 2) This could be due to the fractional crystalli-
zation of specific oxides towards the end of the magma evolution
(Schoenberg and von Blanckenburg, 2006; Schuessler et al., 2009;
Sossi et al., 2012). 3) This may trace thermodiffusion in the silicic
melts (Huang et al., 2010; Lundstrom, 2009). 4) More recently, a poly-
merization mechanism at the end of the magma evolution has been
put forward (Dauphas et al., 2014). However, those mechanisms are
not mutually exclusive and they may occur depending on the type of
magmatism (Telus et al., 2012). Weatheringmay eventually complicate
the message (Saunier et al., 2010; Wiederhold et al., 2007). It is thus
suggested that future iron isotope studies in granites may benefit from
concomitant magnetic studies as an efficient way to unravel the respec-
tive influence of magmatic, hydrothermal and supergene processes.
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