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Abstract

Seed-based image segmentation methods have gained
much attention lately, mainly due to their good performance
in segmenting complex images with little user interaction.
Such popularity leveraged the development of many new
variations of seed-based image segmentation techniques,
which vary greatly regarding mathematical formulation and
complexity. Most existing methods in fact rely on complex
mathematical formulations that typically do not guarantee
unique solution for the segmentation problem while still be-
ing prone to be trapped in local minima. In this work we
present a novel framework for seed-based image segmenta-
tion that is mathematically simple, easy to implement, and
guaranteed to produce a unique solution. Moreover, the for-
mulation holds an anisotropic behavior, that is, pixels shar-
ing similar attributes are kept closer to each other while
big jumps are naturally imposed on the boundary between
image regions, thus ensuring better fitting on object bound-
aries. We show that the proposed framework outperform
state-of-the-art techniques in terms of quantitative quality
metrics as well as qualitative visual results.

1. Introduction

Image segmentation is without doubt one of the most

studied topics in computer vision and pattern recognition.

Prominent applications such as medical imaging, machine

vision and object detection have widely inspired the devel-

opment of a large number of methods for segmenting im-

ages. In particular, a growing number of semi-supervised

image segmentation methods have been proposed in the

last few years, motivated mainly by human capability to

recognize and detect patterns. In fact, seeded/compuer-
assisted image segmentation are now considered among the

most relevant image segmentation methods, leveraging the

emergence of new mathematical and computational formu-

lations, particularly those based on graph theory. Seeded-

based image segmentation methods typically rely on a given

set of labeled pixels (the seeds) and on affinity graphs whose

nodes correspond to image pixels and edges reflecting the

neighborhood structure of the pixels. Edge weights en-

coding image attributes such as color variation, texture and

gradients are used to properly drive the propagation of the

seeded labels on the image. Many distinct mathematical ap-

proaches and algorithms have been proposed to perform the

label propagation [21, 13, 5, 24, 10, 14, 25, 1], most of them

making use of energy functional minimization on graphs in

order to be effective.

As pointed out by Couprie et al. [8], most seed-based

image segmentation methods are variations of a small

group of basic techniques such as Graph Cuts [5], Ran-
dom Walker [13] and Watersheds [10], which differ from

each other in terms of their mathematical formulation, pair-

wise pixel distance and weight computation. Moreover,

most existing methods rely on non-quadratic energies, thus

demanding the use of sophisticated and computationally

costly optimization tools. Ensuring accuracy and smooth

solution is also an issue for existing methods.

In this work we present a novel methodology for seed-

base image segmentation, called Laplacian Coordinates,

which relies on the minimization of an novel quadratic en-

ergy functional defined from an affinity graph. The notion

of Laplacian Coordinates has been initially introduced in

[22, 26] to address the problem of surface processing in

the field of Geometry Processing. In contrast to most exist-

ing algorithms, in particular the three basic ones mentioned

above that formally minimize the “distance” between pair-

wise pixels, the proposed approach minimizes the average

of distances while better controlling anisotropic propaga-

tion of labels during the segmentation task. As a result,

pixels sharing similar attributes are kept closer to each other

while jumps are naturally imposed on the boundary between

image regions, thus ensuring better fitting on image bound-

aries as well as a pretty good neighborhood preservation (on

average). Moreover, the proposed formulation is guaran-

teed to have a unique solution, an important trait not always

present in seed-based image segmentation methods.

The Laplacian Coordinates pipeline is very simple and
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comprises four main steps: definition of seeds, affinity
graph building, energy functional construction and solu-
tion, and finally assignment of labels. An important char-

acteristic of the proposed formulation is that the minimizer

of the energy functional is given by the solution of a con-

strained system of linear equations, making the proposed

methodology quite simple to be used and coded. The effec-

tiveness of Laplacian Coordinates is qualitatively and quan-

titatively tested through experiments against several state-

of-the-art approaches using the public “Grabcut” dataset

from Microsoft [5].

Contributions In summary, the main contributions of this

work are:

1. A novel and easy-to-implement formulation for seed-

based image segmentation, which we call Laplacian
Coordinates.

2. Laplacian Coordinates bears several important prop-

erties such as boundary fitting, anisotropy, average

neighborhood preservation and unique solution for the

minimizer.

3. The segmentation is reduced to solving a constrained

sparse linear system of equations.

4. A comprehensive set of quantitative and qualitative

comparisons against state-of-art algorithms that shows

the effectiveness of Laplacian Coordinates.

2. Related work
Most seed-based image segmentation methods rely on

energy minimization schemes derived from affinity graphs.

In particular, effort has been concentrated around three main

approaches: Graph Cuts [5], Random Walker [13] and Wa-
tersheds [10].

Graph Cuts The GraphCut framework (GC) was intro-

duced by Boykov and Jolly [6] to address the problem of

interactive N-dimensional image clustering. The rationale

behind GC is to consider the image as a graph and finding

the minimum cut between seeded regions, minimizing the

sum of absolute differences between pairwise pixels. The

GC framework uses a maflox/min-cut algorithm to tackle

the problem of unique solution and reaches a feasible seg-

mentation. Many extensions of GC have been proposed in

the literature, most of them focused on user interfaces such

as [21, 17]. A drawback of Graph Cuts is the generation

of small segmented regions, which naturally appear due to

the underlying mathematical formulation that looks for so-

lutions with minimal boundary length (e.g., see the “car”

segmentation in Fig.6).

Random Walker The Random Walker algorithm (RW)

[13] is a useful and easy-to-implement approach that relies

on standard graph Laplacian formulation Lx = 0, where L
is a matrix built from an edge weight matrix W and a diag-

onal weighted valency matrix D. In [13], Grady presents

an interesting interpretation of the Laplacian formulation

by associating to each unseeded pixel the probability of a

random walker starting on it to reach a background seed

(assuming background seeds are labeled 1). The segmen-

tation is then performed by assigning a background label

to a pixel if the probability is greater than 0.5, otherwise

the pixel is assigned to a foreground label. In terms of us-

age, instead of solving Lx = 0, the RW algorithm solves

D−1Wx = x using the input seeds as constraints, which

ensures uniqueness of solution. Moreover, the solution is

given as the solution of a linear system. However, it was

shown in [27] that the RW methodology does not have an

anisotropic behavior, meaning that the method is prone to

produce “flatter” solutions. Furthermore, the RW is not so

accurate when capturing object boundaries. Our approach

shares serval of the good properties of RW while still pre-

senting better performance with respect to boundary fitting

and anisotropic label transportation.

Watersheds/Maximum Spanning Forest The idea be-

hind Watersheds/Maximum Spanning Forest algorithms
(MSF) [10] is to represent image objects as “catchment

basins”, performing the segmentation by identifying the

“basins” and their watershed lines (points with equally

likely to assume more than one minimum). In [8] a robust

seeded watershed-based framework namely Power Water-
shed (PWS) was proposed, where the outcome relies on the

computation of an MSF algorithm. Although watersheds

are very popular in the computer vision literature, they are

not quite efficient in fitting objects where the gradient is lo-

cally irregular (see the first and second image in Fig.7).

Other methods Many other seed image segmentation

methods have appeared in the literature. The Shortest
Path/Geodesic-based algorithm (SP) [4] sets the pixel la-

beling computing the shorter weighted path from the target

pixel to the foreground or background seeds. The method

is attractive in terms of speeding but it strongly depends

on the position that seeds will be sown. The techniques

presented in [2, 7] perform very well with respect to in-

sertion of seeds, requiring just a small amount of user in-

tervention to achieve the segmentation but they rely on a

pre-segmentation in order to be effective. The method [18]

solves an spectral problem making use of a linear com-

bination of pre-computed eigenvectors constrained to the

prior vector to reach a feasible solution. Couprie et al. [8]

proved that CG, MSF, PWS, RW and SP methods minimize

the same energy functional whose formulation takes into

account only first-order pairwise pixels, differing only in

terms of an exponent value. In contrast, our formulation re-

lies on the minimization of a weighted average of neighbor

pixels, which leads to smoother but accurate solutions.
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3. Laplacian Coordinates-based Energy Func-
tional

Let I be a color or grayscale image. For a color image

we denote the RGB vector by Ii = (Ri, Gi, Bi), which rep-

resents the luminance of red, green and blue channels at the

pixel Pi ∈ I . For a grayscale image, Ii is the gray inten-

sity. Let G = (V,E,WE) be the weighted graph where V
is the set of nodes i ∈ V corresponding to the pixel Pi ∈ I ,

the edge set E corresponds to pairs of pixels locally con-

nected in an 8-neighborhood, and wij ∈ WE is the weight

assigned to edge (Pi, Pj) of the graph. The set N(i) = {j :
(Pi, Pj) ∈ E} represents the indices of the pixels Pj that

share an edge with pixel Pi and di =
∑

j∈N(i) wij is the

weighted valency of Pi.

3.1. Set up the Graph Weights

There are many different ways to define the weights

WE , such as pixel intensity, gradient, scalability and con-

tour [9, 3, 7, 16]. In order to keep our approach as simple

as possible we only consider pixel intensities to define the

weights. More precisely, the weight wij = w(Pi, Pj) as-

signed to each edge (Pi, Pj) is computed as follows:

wij = exp

(
− β||Ii − Ij‖2∞

σ

)
, σ = max

(Pi,Pj)∈E
||Ii−Ij ||∞

(1)

where β is a tuning constant. Notice that the weights are

positive and symmetric in the sense that wij = wji. In

practice, a small constant ε = 10−6 is added into (1) to

avoid null weights, as suggested by Grady [14].

3.2. Neighborhood Average Preserving Energy
Functional

Given the set of background B and foreground F seeded

pixels and their corresponding labels xB and xF (without

loss of generality, assume that xB > xF ), the following

energy functional is minimized with respect to x:

E(x) = k1
∑
i∈B

‖xi − xB‖22 + k2
∑
i∈F

‖xi − xF ‖22+

k3
∑
i∈V

∥∥∥∥∥dixi −
∑

j∈N(i)

wijxj

∥∥∥∥∥
2

2

(2)

where x = (x1, x2, ..., xn) is the sought solution, that is,

the values assigned to the pixels (P1, P2, ..., Pn) so as to

minimize the functional E(x), n is the number of pixels,

wij is computed as in Equation (1) and k1, k2 and k3 are

positive constants. Once the energy (2) is minimized, the

segmentation is then obtained by assigning background or

foreground labels yi ∈ {xB , xF }, i ∈ V as follows:

Figure 1. Geometric interpretation of the differential operator δi at

vertex i = 5. It measures the deviation between x5 and its center

of mass 1
d5

∑
j∈N(5) wijxj .

yi =

{
xB , if xi ≥ xB+xF

2
xF , otherwise

(3)

Energy functional (2) is made up of two main compo-

nents, one accounting for the constraints imposed by the

seeds in B and F , called data term, and a second component

controlling label spread in the neighborhood of each pixel,

called Laplacian Coordinates energy term. The Laplacian

Coordinates energy term can be rewritten in matrix form as

follows:

∑
i∈V

∥∥∥∥∥dixi −
∑

j∈N(i)

wijxj

∥∥∥∥∥
2

2

= ‖Lx‖22 (4)

where L = D −W is the graph Laplacian matrix, D is

the diagonal matrix where Dii = di and W denotes the

weighted adjacency matrix of the graph,

Wij =

{
wij , if (i, j) ∈ E
0, otherwise

. (5)

Notice that each row in Lx corresponds to the differen-
tial (or average) operator δi = xi− 1

di

∑
j∈N(i) wijxj , that

is, (Lx)i = diδi. In less mathematical terms, δi measures

how much each node deviates from the weighted average of

its neighbors (see Figure 1).

3.3. Minimizing the Energy Functional

Without loss of generality, let the tuning parameters in

the energy functional E(x) (2) assume unitary values, that

is, ki = 1, i = 1, 2, 3. E(x) is a quadratic function which

can be modeled in a more general matricial form as follows:

E(x) = xt(IS + L2)x− 2xtb+ c, (6)

where IS is a diagonal matrix such that IS(i, i) = 1, i ∈
S = B ∪ F , and zero, otherwise, b is the vector where

b(i) = xB , i ∈ B, b(i) = xF , i ∈ F , and zero, otherwise,

and c is a constant. The quadratic form (6) has a unique
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minimizer since IS+L2 is symmetric and positive definite.

Moreover, its minimizer vector x is the solution of the fol-

lowing linear system [15]:

(IS + L2)x = b. (7)

Therefore, minimizing E(x) is equivalent to solve the

linear system (7), which, in turn, holds quite attractive prop-

erties such as symmetry, positive definiteness and sparsity.

In fact, equation (7) can be solved efficiently using the su-

pernodal sparse Cholesky factorization algorithm such as

the one implemented in Cholmod [11] or classical MAT-

LAB solvers.

After solving (7), the segmentation is then performed by

trivially assigning a foreground or background label to each

pixel of the image according to (3).

3.4. Laplacian Coordinates: Some Properties

Besides being computationally efficient, easy-to-

implement and ensuring unique solution, the proposed

methodology has additional properties that render it quite

attractive to segment images, as discussed below.

Boundary and Constraint Fitting The main character-

istic that differs Laplacian Coordinates with respect to other

seed-based approaches is its capability to better propagate

the seeds (constraint information). Figure 2 illustrates this

fact by comparing Laplacian Coordinates against the Ran-

dom Walker approach. First row of Figure 2 shows an 1D

graph with 500 nodes ordered from left to right. Second row

in Figure 2 shows two different distribution of edge weights:

on the left, unitary weights are assigned to edges, except

for edges in the middle of the graph, where weights have

a distribution that decreases and gets close to zero increas-

ing again back to 1. On the right, weights are distributed

similarly, but now with two picks isometrically arranged.

Constraints (seeds) are imposed in the yellow and purple

nodes. As one can easily see on the third row of Figure 2,

Laplacian Coordinates spread the constraint information in

a smoother way, taking longer to diffuse the constraint in-

formation when compared with Random Walker approach.

For the sake of illustration, last row in Figure 2 presents

the result of applying Laplacian Coordinates and Random

Walker when all edge weights are set equal 1. The bet-

ter preservation of labels can also be observed in Figure 3.

Figure 3(b) shows that the Random Walker approach was

not able to properly capture the objet contained in the im-

age while Laplacian Coordinates has accurately identified

the objects, as depicted in Figure 3(c). The reason for the

better performance of Laplacian Coordinates is that labels

tend to be preserved in homogeneous regions while Ran-

dom Walker “diffuse” labels quickly according to the dis-

tance from the seeds, as shown in Figure 3(d) and (e).

Figure 2. Comparison between the solution obtained from Lapla-

cian Coordinates and the classical Random Walker algorithm un-

der the same initial conditions. Line graphs are shown in the top

row with seeded vertices in yellow and purple while the corre-

sponding edge weights are shown in the second row. The solution

with and without the mentioned weights are given in the third and

fourth rows.

Solution in Terms of Extended Neighborhood An in-

teresting interpretation of the solution of Laplacian Coor-

dinates is that each pixel xi is written not only in terms of

the first-order neighbors but taking distant neighborhoods,

instead. In mathematical terms, in an unconstrained pixel

Pi we have that (Lx)i = 1
di

∑
j∈N(i) wij(Lx)j . There-

fore, the solution xi takes into account an extended neigh-

borhood, mathematically expressed by (see Fig.4 for an il-

lustration) the equation:

xi =
1

di

∑
j∈N(i)

wij

(
xj +

δj
di

)

=
1

di

∑
j∈N(i)

wijxj+
1

d2i

∑
j∈N(i)

wij

⎛
⎝ ∑

p∈N(j)

wjp(xj − xp)

⎞
⎠

Therefore, information coming from the constraints

takes longer to be diffused by the Laplacian Coordinates

approach.
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Figure 3. Random Walker and Laplacian Coordinates image boundary fitting capability. (a) Seeded images, (b)-(c) the segmentation results

obtained from Random Walker and Laplacian Coordinates, and (d)-(e) graphs of the solution associated to (b) and (c), respectively.

Figure 4. Geometric sketch showing the solution xi (i = 7) in

terms of its neighborhood pixels. In the example, the purple circle

illustrates the points used for calculating the differential coordinate

δi at pixel i = 11.

4. Results, Comparisons and Evaluation

In this section we provide comparisons against various

existing state-of-the-art techniques. Input seeds are set as

xB = 1 and xF = −1 in Eq.(3) while σ = 0.1 in Eq.(1).

In [21], a popular seeded image segmentation database

called “Grabcut” dataset was introduced containing 50 im-

ages, their ground-truth, and seeded maps marking fore-

ground and background regions of the images. The bench-

mark data set is available on the Microsoft Cambridge web-

site and also includes 20 images from the Berkeley Image
Segmentation Benchmark Database [3]. We use this bench-

mark dataset to compare the proposed Laplacian Coordi-

nates approach (LC) against the five classical seed-based

segmentation techniques described in Sec.II: Graph Cuts

(GC)1 [21], Power Watershed (PWS)2 [8], Maximum Span-

ning Forest with Kruskal’s (MSFK) and Prim’s (MSFP)

algorithms2 [10, 8] and Random Walker (RW)3 [13]. Quan-

titative evaluations are performed comparing the quality in

terms of segmentation region refinement as well as the ac-

curacy in preserving ground-truth boundaries.

Region Quality We make use of three distinct region qual-

ity metrics to gauge the quality of Laplacian Coordinates,

namely,

• Rand Index (RI): measures the closeness between the

output segmentation and the ground-truth by counting

the number of pixel pairs that have the same label [23].

The higher the value the better.

• Global Consistency Error (GCE): computes how

much a segmentation can be viewed as a refinement

of other [19]. Lower values are better.

• Variation of Information (V oI): quantifies the dis-

tance between ground-truth and segmentation in terms

of their relative entropies [20]. Values close to 0 are

better.

1available at http://grabcut.weebly.com/code.html
2available at http://powerwatershed.sourceforge.net
3available at www.cns.bu.edu/∼lgrady/
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Method RI (↑) GCE (↓) VoI (↓)
GC 0.9714 0.0268 0.1877

MSFK 0.9690 0.0292 0.2013

MSFP 0.9689 0.0293 0.2018

PWS 0.9704 0.0278 0.1931

RW 0.9700 0.0280 0.1934

LC 0.9715 0.0262 0.1836

Table 1. Comparison of six seed-based segmentation methods re-

garding to region quality metrics. The proposed Laplacian Coor-

dinates framework outperforms all other five evaluated techniques.

Boundary Quality The harmonic average score F-score
summarizes the Recall and Precision image segmentation

benchmarks [12, 3], measuring how much the segmentation

matches the ground-truth boundaries. Recall can be viewed

as the proportion of boundary pixels in the segmentation for

which it is possible to find a matching boundary pixel in the

ground-truth image. Precision holds the opposite situation.

The matching is established in terms of the boundary pixel

proximity for different values of radius R, as proposed in

[12].

Table 1 shows the scores obtained by each method tak-

ing into account the three region quality metrics for the Mi-

crosoft “Grabcut” dataset. Laplacian Coordinates clearly

outperforms the other five methods in all quality metrics.

Regarding F-score, the Laplacian Coordinates also presents

very good performance, specially when the parameter R in-

creases. As one can see from Figure 5, the proposed ap-

proach shows a better F-score than other techniques, out-

performing all for R equal or bigger than 7. These quantita-

tive results show the effectiveness of Laplacian Coordinates

as a seeded image segmentation method.

0.81

0.83

0.85

0.87

0.89

0.91

R = 6 R = 7 R = 8 R = 9

GC
MSFK
MSFP
PWS
RW
LC

Boundary Quality Assessment

Radius

Fs
co

re

Figure 5. F-score quality metric. Laplacian Coordinates is consid-

erably better than other methods when parameter R increases.

Figure 6. From left to right: Ground-truth, the tri-map images

(seeds and the unknown region) provided by the Grabcut dataset,

the segmentations resulting from GC, MSFK, MSKP and our ap-

proach.

Figures 6 and 7 present qualitative results comparing

GC, MSFK, MSFP, PWS and RW against Laplacian Co-

ordinates. One can see that, besides accurately capturing

boundaries, Laplacian Coordinates tends to simultaneously

generate smoother and fitter boundary curves, a character-

istic not present in the other approaches, which are less ac-

curate while still producing more jagged boundary curves.

Seeding Flexibility and Adaptability Figure 8 shows

the robustness of Laplacian Coordinates in producing differ-

ent segmentations by just selecting new targets in the image.

Notice from the two initial configurations (left and middle

columns) of Figure 8 that both objects (the boys) are ac-

curately segmented, attesting the accuracy of the proposed

approach. In fact, an even more general solution can be

obtained by simultaneously seeding the two targets of the

image, as depicted in the last column of Figure 8.

Multiple-Region Segmentation We conclude this sec-

tion showing that Laplacian Coordinates can easily be ex-

tended to segment an image in several parts. This extension

is carried out by simply solving N system of linear equa-

tions similar to Equation (7):

(IS + L2)x(j) = b(j), (8)

but setting IS(i, i) = 1 for all seeded pixels in the image

and specifying different b(j) for each one of the given labels
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Figure 7. From left to right: Ground-truth, the tri-map images

(seeds and the unknown region) provided by the Grabcut dataset,

and segmentations resulting from PWS, RW and our approach.

Figure 8. Selecting different objects from the image by exploiting

the seed sensitivity of the Laplacian Coordinates. First row: mul-

tiple selections are given as input to the method. Bottom row: the

corresponding segmentations.

Kj ∈ K = {K1,K2, ...,KN}, instead. Assuming that C is

a positive constant, we set b
(j)
i = C, i ∈ Kj , b

(j)
i = −C,

i ∈ (K\Kj), zero, otherwise. Finally the segmentation y(j)

(a binary image) is performed by

y(j) =
⋂

p=1,...,N
p �=j

(x(j) > x(p)),

where > is computed for all pixels of the image.

Figure 9 depicts the result of applying Laplacian Coor-

dinates to segment multiple regions. Color strokes mark

the objects (strokes with the same color correspond to the

same region), from which Laplacian Coordinates generates

the segmentation in multiple regions.

Figure 9. Extension of the Laplacian Coordinates (2) for multiple

segmentation. First row: multiple seeds are sketched as colored

strokes, from which Laplacian Coordinates produced the multiple

segmented regions. Middle and bottom row: sketched seeds, the

final segmentation and the six solution vectors x(j) that give rise

to the multiple segmentation.

5. Conclusion

In this paper we introduce Laplacian Coordinates, a

novel seed-based image segmentation technique which has

several advantages when compared with existing methods.

Besides its simple mathematical formulation, Laplacian Co-

ordinates is easy to implement, guarantees a unique so-

lution, and outperforms existing methods with respect to

well established quantitative measures popularly used in the

context of image segmentation. Laplacian coordinates also

holds high accuracy in terms of image boundary fitting ca-

pability for the object segmentation task. All those proper-

ties render Laplacian Coordinates an interesting and com-

pelling seed-based image segmentation technique.
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