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Abstract—Semi-Supervised Learning (SSL) techniques have
become very relevant since they require a small set of labeled
data. In this context, graph-based algorithms have gained promi-
nence in the area due to their capacity to exploiting, besides
information about data points, the relationships among them.
Moreover, data represented in graphs allow the use of collective
inference (vertices can affect each other), propagation of labels
(autocorrelation among neighbors) and use of neighborhood
characteristics of a vertex. An important step in graph-based
SSL methods is the conversion of tabular data into a weighted
graph. The graph construction has a key role in the quality of
the classification in graph-based methods. This paper explores a
method for graph construction that uses available labeled data.
We provide extensive experiments showing the proposed method
has many advantages: good classification accuracy, quadratic
time complexity, no sensitivity to the parameter k > 10, sparse
graph formation with average degree around 2 and hub formation
from the labeled points, which facilitates the propagation of
labels.

Keywords—graph construction; semi-supervised learning clas-
sification; complex network

I. INTRODUCTION

Labeled data are difficult, expensive and time consuming
to be prepared in contrast to unlabeled data. Because of
this, Semi-Supervised Learning (SSL) algorithms have gained
prominence, due to their ability to learn from limited amounts
of labeled data combined with widely available unlabeled
data. In particular, graph-based SSL algorithms have been
successfully used in different tasks [19], [6]. Graph-based SSL
methods require a data set whose instances are represented
by the vertices of a graph. The labeled vertices are used to
propagate information to the unlabeled ones. These methods
generally use a transductive approach.

Most of the graph-based SSL algorithms concentrate on the
label inference task, i.e. assigning labels to unlabeled nodes
once the graph has already been constructed, with very little
emphasis on the construction of the graph itself. Only recently,
the issue of graph construction has received attention [11],
[13], [16]. Zhu (2005) [19] argues that it is more important
to construct a good graph than to choose among the inference
methods.

Neighborhood graphs have been used in many areas of
Machine Learning to model local relationships between data
points. The most popular algorithm for generating graphs is k-
nearest neighbor (kNN), in which each vertex considers its k
nearest neighbors using a similarity function and instantiates k

undirected edges between itself and these neighbors. There are
also the mutual kNN in which there is a connection between
two vertices only if the rule of nearest neighbor is reciprocal,
i.e. each one belongs to the k-nearest neighbors of the other.
Hence the mutual kNN are considered more restrictive and it
is traditionally used in unsupervised learning [5], [12].

Most of the graph construction methods are unsupervised,
i.e. they do not employ available label information during the
graph construction process. Dhillon et al., (2010) [9] addressed
this problem and explored labeled points to compute similarity
between pair of instances. Rohban and Rabiee (2012) [14]
proposed a supervised graph construction, showing that under
the using of large enough manifold sampling rate, the optimal
neighborhood graph is subgraph of a kNN graph.

Labeled data may be seen as a type of prior information
which can be useful for improving graph construction for the
current learning task. In earlier research we reported a method
for graph construction that uses the available labeled data
[2], denominated here by Graph-based on informativeness of
labeled instances (GBILI). Inspired by the effectiveness of the
approach, we extended it by improving the connectivity and
sparsity of the graph, which is reflected in the label propagation
process.

The approach was demonstrated providing extensive ev-
idence in the following topics: i) The proposed technique
(GBILI) leads to good classification accuracy achieving better
results than the traditional method kNN. By Nemenyi statistics
[8] GBILI is better ranked than kNN. The classification accu-
racy results are measured on various data sets commonly used
in SSL [6]; ii) A detailed complexity analysis shows GBILI
has a quadratic time complexity, the same as kNN graph; iii)
A parameter sensitivity analysis varying k from 1 to 50 shows
that for k > 10 GBILI presents a stability in classification
accuracy. How parameter selection is a problem for many
methods [14], GBILI has an advantage in this point; iv)
Analysis about network density show that kNN graphs become
very dense as k increases. In contrast, GBILI graph converges
for a constant average degre (around 2) independent of the
value k. It is sparse, meaning it reduces the processing cost
and ensure the SSL algorithms remain efficient. Besides, by
using the φ-edge ratio measure, when the parameter k becomes
higher, the number of edges connecting vertices with different
labels increases in kNN graphs, resulting in propagation of
wrong label information. This situation does not happen in
GBILI graphs; v) GBILI method leads the labeled points to
become hubs. It is indicated by calculating centrality measures
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of Complex Network [15], like node degree, betweenness,
eigenvector and pageRank. These measures are related with
diffusion processes in a network, like information or disease
spreading. As the labeled points in GBILI graphs are hubs they
facilitate the label propagation.

The remaining of the paper is organized as follows: Section
II introduces definitions, notations and basic quantities used to
describe the topology of a network; Section III presents the
proposed graph construction method; Section IV demonstrates
the complexity analysis; section V reports experimental results
on various data sets commonly used in SSL, besides provides a
parameter sensitivity analysis, a network density analysis and a
network characterization by centrality measures from Complex
Network. Finally, Section VI presents concluding remarks.

II. DEFINITIONS

Given a set of l labeled instances L =
{(x1, y1), . . . , (xl, yl)} and a set of u unlabeled instances
U = {xl+1, . . . , xl+u}, the goal of SSL is to infer labels
for the set of unlabeled instances U . In most cases, the
data instances are assumed to be independent and identically
distributed (i.i.d.). At this point, for applying any label
propagation technique the common practice is first to create
a graph from the data instances, and then to apply one of the
graph-based SSL methods on the constructed graph.

A graph 1 G = (V,E) consists of two sets V and E. The
elements of V = {v1, v2, . . . , vN} are the nodes or vertices
of the graph G where each vertex vi is associated with the
instance xi from the input data X and the cardinality of |V |
is N . The elements of E = {e1, e2, . . . , eM} are links or
edges between nodes and the cardinality of |E| is M . An
edge connecting the vertices vi and vj is denoted by eij .
A graph can be weighted, in this case it is represented by
a set of values (weights) W = {w1, w2, . . . , wM} that are real
numbers assigned to the links.

For a graph G of size N , the number of edges M is at least
0 and at most N(N − 1)/2 (when all the nodes are pairwise
adjacent). G is said to be sparse if M � N2 and dense if
M = O(N2). A graph is said to be connected if, for every
pair of distinct nodes vi and vj , there is a path from vi to vj ,
otherwise it is said disconnected. A component of the graph
is a maximally connected induced subgraph.

It is usually considered a matricial representation of a
graph. A graph G = (V,E) can be described by the ad-
jacency matrix P , a N × N square matrix whose entry
pij (i, j = 1, . . . , N) is equal to 1 when the link pij exists, and
0 otherwise. The diagonal of the adjacency matrix contains
zeros. This is, therefore, a symmetric matrix for undirected
graphs.

The degree gi of a node i is the number of edges incident
with the node, and is defined in terms of the adjacency matrix
P as gi =

∑
j∈N pij . It is is related with the number of edges

and vertices as 〈g〉 = 2|E|
|V | . If a node has a degree much bigger

than the others nodes, it is called hub. The average degree for
a network is defined as 〈g〉 = 1

N

∑
n∈N gn.

1We make no distinction between graph and network.

III. GRAPH CONSTRUCTION BASED ON

INFORMATIVENESS OF LABELED INSTANCES - GBILI

Figure 1(A) illustrates a toy example with two groups
of points forming a square and another one forming a line
of points. If we take into account the visual patterns in the
example, a human clearly would observe the three groups.
However, learning methods based on distance generally have
difficulty in making this pattern recognition. Based on this
fact, the proposed method for graph construction attempts to
recognize certain patterns, especially those related to variations
in data density. For that it makes use of the mutual kNN,
since this method prevents connection between subgraphs of
different groups. Figure 1(A) shows the result by employing
the proposed technique and it identifies three groups of points.
Figure 1(B and C) shows the result by using kNN which do
not identify the groups correctly.

Fig. 1. Classification results using the proposed method (A) and kNN (B,
C) for graph construction. (A) k = 3, (B) k = 2, (C) k = 3.

The technique also seeks to exploit a prior information
available (in this case the labels of labeled vertices) for the net-
work construction, prioritizing connections between vertices
that are closer to a labeled point. Such strategy turns labeled
points into hubs, especially when the values of k increase
(more details in Section V).

Since this technique for graph construction considers infor-
mation conveyed by labeled instances and their neighborhood
to make the connections, it is referred as Graph-Based on In-
formativeness of Labeled Instances (GBILI). The method, for
each vertex, chooses the most “informative” node to establish
a connection. Such informativeness is obtained optimizing the
equation: min

∑
i

∑
j (Dij +

∑
l Djl), s.t. Dij ≥ 0, i ∈

{1 . . . n} , j ∈ Mutual kNN of i, l ∈ L, where Mutual kNN is
the set of mutual neighbors of a vertex, L is the set of labeled
vertices and D is the distance matrix.

Algorithm 1 shows the steps to construct the graph G.
Initially, it is necessary to generate a distance matrix D,
Euclidean distance can be employed to generate it. In this
matrix we can find the k nearest neighbors of the elements. It
is necessary to set the parameter K with a natural value and
generate a list of the labeled points L.

In the algorithm, steps 5 to 8 find the k nearest neighbors
for a vertex vi, then, steps 9 to 12 search for the mutual kNN
for vi and store them into a list. Steps 13 to 16 calculate
the sum of the distances from vi to each element of the list
of mutual kNN and from these elements to a labeled point.
It creates a connection between vi and vj that minimizes
this sum. Steps 17 to 22 post-process the graph connecting
isolated components. It is important because mutual kNN
graph, particularly for small values of k, often contain many
disconnected components. These steps perform a Breadth-First
Search (BFS) looking for components in the network. Compo-
nents with no labeled point are connected with a neighboring
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component with labeled point. We limit these new connections
by a reduced number of links in order to avoid the network
become too much dense.

Algorithm 1 GBILI algorithm
1: generate a distance matrix D
2: generate a list of labeled points L
3: set the parameter K
4: For i = 1; i < |V |; i++
5: For k = 1; k < K; k++
6: For j = 1; j < |V |; j++
7: if D(vi, vj) is the k-nearest neighbor
8: Store vj in the kNN-List(vi)
9: For j = 1; j < kNN-List(vi); j++

10: For k = 1; k < K; k++
11: if D(vj , vi) is the k-nearest neighbor
12: Store vj in the M-kNN(vi)
13: For j = 1; j < M-kNN(vi); j++
14: For l = 1; l < |L|; l++
15: if D(vi, vj) +D(vj , vl) is min
16: Store eij in G
17: Do BFS and return Component(G)
18: For i = 1; i < |V |; i++
19: if Component(vi) /∈ L
20: For k = 1; k < kNN-List(vi); k++
21: if Component(vk) ∈ L
22: Store eik in G
23: return G

IV. COMPLEXITY ANALYSIS

Initially, it is necessary to compute a similarity among
all pairs of nodes using a similarity function. This function
generates a full adjacency matrix D ∈ �n×n, where Dij =
d(vi, vj) is computed using Euclidean distance. To calculate

the Euclidean distance it takes
n(n−1)

2 steps, where n is the
number of elements. Its complexity is O(n2).

Subsequently, we construct the graph. In this step the
matrix D is sparsified and reweighted to produce the final
matrix W . The sparsification is important because it improves
the efficiency in the label inference stage. It generates a binary

matrix P̂ ∈ Bn×n, where P̂ij = 1 indicates that there is an

edge between vi and vj , and P̂ij = 0 indicates the edge is

absent (assume P̂ii = 0).

Based on the similarity matrix it is necessary to find the
k nearest neighbors of each element. For finding the kNN,
the complexity is O(kn2), where n is the number of elements
and k is the number of neighbors considered. But we need to
calculate the mutual kNN, in this case, for each jth neighbor
of an element vi we need to check if vi ∈ kneighbors(vj).
For this reason, it takes k2n more steps. The final complexity
to find the k mutual neighbors is O(kn2 + k2n). Ozaki et al.
(2011) [16] use a Fibonacci heap-based implementation and
construct the mutual kNN graph in O(n2 + kn log n) time.

The proposed method creates a connection between vi and
vj that minimizes the sum of the distances from vi to its mutual
kNN and from this mutual kNN to a labeled point vl. For
each element, we need to access the similarity matrix kl times,
where k is the mutual neighbors of vi and l is the number of
labeled points. This cost is added with the cost of finding the
kNN mutual neighbor.

In the post-processing step it is necessary to find all
components of the network, this can be done by Breadth-
First Search (BFS). This algorithm begins at a root node and
inspects all the neighboring nodes. For each node it inspects
their neighbor nodes which were unvisited, and so on. Its time
complexity is O(|V | + |E|) [7], where |V | is the number of
vertices, and |E| is the number of edges. Since the constructed
graph has average degree 2 (shown in Section V), by the
equation 〈k〉 = 2E

V , the number of edges is equal the number of
vertices. When a component is identified, it is marked if it has
or not a labeled point. If a vertex vi belongs to a component
that have no labeled points, it will connect to one k nearest
neighbors that belongs to a component with labeled point. In
the worst case we need to look for k neighbors for n points.
Its complexity is O(kn).

Finally, the complexity of the proposed algorithm results
in O(kn2 + k2n+ kln) + O(2n+ kn), close to kNN method.

V. EXPERIMENTS

In this section we present extensive empirical results ex-
ploring the GBILI method. Subsection V-A presents the de-
scription of the data sets used and the setup of the experiments;
subsection V-B shows the classification results; subsection V-C
shows a parameter sensitivity analysis, a density analyzes of
the graphs and the φ-Edge Ratio comparison between kNN and
GBILI graphs. It is also provided the network visualization,
which helps to understand the network topology; subsection
V-D presents some centrality measures from Complex Net-
works used to characterize GBILI network.

A. Data sets and experimental setup

The experiments were carried out on six data sets described
in Table I. These data sets are frequently used in SSL literature
and they were proposed by Chapelle et al. (2006) [6].

TABLE I. DATA SETS DESCRIPTIONS.

Data set # Instances # Atrributes # Classes Comment
Digit1 1500 241 2 artificial and balanced
g241c 1500 241 2 artificial and balanced
g241n 1500 241 2 artificial and balanced
COIL2 1500 241 2 real and balanced
COIL6 1500 241 6 real and balanced
USPS 1500 241 2 real and imbalanced

First, we apply Principal Component Analysis (PCA) to
all data sets reducing the dimensions to 50, because in high-
dimensional data, the distance to the nearest neighbor ap-
proaches the distance of the farthest neighbor, degenerating
the quality of the graph. Then, we run experiments using 10
and 100 labeled vertices randomly selected from all the points.

For the graph construction we apply kNN and GBILI
methods. All such methods operate on the distance matrix
D ∈ �n×n, obtained from the Euclidean distance among the

points. This process will result in a matrix P̂ where P̂ij = 1 if

a point j have a connection to i and P̂ij = 0 otherwise. Finally,

this matrix is symmetrized as follows Pij = max(P̂ij , P̂ji). To
generate the weighted graph W we use the binary weighting
approach (W = P ). Some authors use the Gaussian kernel
for weigh the graph. However, they do not have an agreement
about which value apply in the kernel bandwidth parameter σ.
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The algorithm used for the label inference task is Local and
Global Consistency (LGC) [17], which is frequently used in
the literature [11], [16]. LGC solves the optimization problem
F = argminF∈�n×ctr(FTLF +μ(F −Y )T (F −Y )), which
gives the closed-form solution F = (I + L/μ)−1Y . I is the
identity matrix, Y the set of known labels and L is the normal-
ized Laplacian defined by L = D1/2LD1/2 = I−D1/2WD1/2,
where D is the diagonal matrix with elements Dii =

∑
j Wij .

Average classification accuracy of 30 runs is used as the
evaluation measure.

Any other method based on graph can be applied for the
label propagation task, for example, Gaussian Random Fields
(GRS) [18], Laplacian Regularized Least Squares (Laplacian
RLS) [1], etc. We compare the classification accuracy to the
results presented by Chapelle et al. (2006) [6], for the fol-
lowing algorithms: 1-NN, Discrete Reg., Transductive SVM,
Cluster Kernel, Low-density separation (LDS), Laplacian RLS.
It is worth pointing out that we use 10 and 100 labeled data
randomly selected from all the points, while Chapelle et al.
(2006) split the data into 12 partitions and select 10 and 100
labeled points from these partitions.

B. Classification results

In Tables II and III are the accuracy of the different
methods for 10 and 100 labeled points for g241c, g241, digit1,
COIL6 and USPS data sets.

TABLE II. AVERAGE ACCURACY WITH 10 LABELED POINTS.

g241c g241n digit1 COIL6 USPS
1-NN 55.95 56.78 76.53 34.09 80.18

Discrete Reg. 50.41 50.95 87.36 36.62 83.93
TSVM 75.29 49.92 82.23 32.5 74.8

Cluster-Kernel 51.72 57.95 81.27 32.68 80.59
LDS 71.15 49.37 84.37 38.1 82.43

Laplacian RLS 56.05 54.32 94.56 45.46 81.01

kNN+LGC 55.16 51.69 89.61 41.59 83.54
GBILI+LGC 56.96 56.81 84.37 39.95 85.07

TABLE III. AVERAGE ACCURACY WITH 100 LABELED POINTS.

g241c g241n digit1 COIL6 USPS
1-NN 59.72 62.51 93.88 76.73 92.36

Discrete Reg. 56.35 58.35 97.23 90.39 95.32
TSVM 81.54 77.58 93.85 74.2 90.23

Cluster-Kernel 86.51 95.05 96.21 78.01 90.32
LDS 81.96 76.26 96.54 86.28 95.04

Laplacian RLS 75.64 73.54 97.08 88.08 95.32

kNN+LGC 59.29 57.81 95.6 82.92 85.07
GBILI+LGC 61.77 66.95 95.6 82.92 94.1

We run the Nemenyi post-hoc test [8] to verify if it is
possible to detect significant differences among algorithms
from the results of the Tables II and III. According to the Ne-
menyi statistics, the critical value for comparing the average-
ranking of two different algorithms at 95 percentile is 3.50. The
analysis is shown in Figure 2. The critical difference (CD) is
on the top and the average ranks of measures are in the axis
of the diagram. The lowest (best) ranks are in the left side,
where we note that GBILI is better ranked than kNN. The
methods analyzed have no significant difference, therefore they
are connected by a black line in the diagram.

C. Parameter sensitivity and network density analysis

Since we do not know a priori the optimal parameter k
to construct the graph, we test values of k ranging from 1 to

Fig. 2. Comparison of all classifiers against each other with the Nemenyi
test. Groups of classifiers that are not significantly different are connected.

50 to know how sensitive the graph generation methods are to
this input parameter. Figure 3 shows the classification accuracy
of kNN and GBILI methods for 100 labeled examples. From
these results we observe that kNN method usually leads to
good results for values of k smaller than 10, because higher
values of k turn the graph dense. In contrast, GBILI leads
to better results for values of k bigger than 10, because it
uses mutual kNN that finds less neighbors than kNN method,
so it is necessary a higher value of k to have more mutual
neighbors. In GBILI graphs, we observe the classification
accuracy stabilizes after k > 10, indicating we could use a
fixed value of k bigger than 10.

Figure 4 shows the comparison of average degree among
kNN, mutual kNN and GBILI. Just GBILI is not affected by k
and achieves a constant number of edges, presenting an average
degree around 2, independent of the k. Hence, the proposed
method generates sparser graphs than kNN.

Fig. 4. Average degree in a kNN, mutual kNN and GBILI graphs built using
the USPS data set.

Figure 5 shows the graphs generated by kNN and GBILI
methods for USPS data set with 10 labeled points. We set the
value of k according to the high accuracy achieved by the
methods. Hence kNN uses k equal 3 and generates a network
with average degree around 4.5 and GBILI uses a k equal 30
and generates a network with average degree around 2. The
quantity of edges in a network is related with the processing
cost and efficiency of the SSL algorithms, so it is interesting
have sparser graphs.

The density affects the methods classification accuracy as
we can see by comparing the φ-edge ratios of kNN and GBILI
methods. We utilize φ-edge ratio as Ozaki et al. (2011) [16] to
measure the quality of a graph. These authors define φ-edge of
a labeled graph (G, y) as any edge (vi, vj) for which yi �= yj ,
and φ-edge ratio of a graph as the number of φ-edge divided
by the total number of edges in the graph.

Since most graph-based SSL classification methods propa-
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(a) digit1 (b) g241c (c) g241n

(d) COIL2 (e) COIL6 (f) USPS

Fig. 3. Average accuracy rates and standart deviations comparisons for (a)digit1, (b)g241c, (c)g241n, (d)COIL2, (e)COIL6 and (f)USPS data sets using 100
labeled examples.

Fig. 5. kNN and GBILI graphs for USPS data set using 10 labeled examples.

gate label information throw the network, edges connecting
vertices with different labels may lead to misclassification.
Hence, a graph with a smaller φ-edge ratio is better.

Figure 6 shows the plots of φ-edge ratios of GBILI and
kNN methods for COIL2 and USPS data sets. We notice that
the same pattern occurs for all data sets. The y-axe denotes the
φ-edge ratio of the constructed graphs and the x-axe denotes
the parameter k used. But the number of edges is different
in the resulting graphs for these methods: as the value of k
increases, the number of edges in kNN increases too, but in
GBILI the number of edges is always the same. This way, kNN
method achieves higher φ-edge ratio than GBILI and a worst
classification accuracy when the value of k becomes higher.

D. Complex networks measures

GBILI method generates hubs from the labeled points
(black nodes in Figure 5). This network approximates to
an “exponential network” since the probability of finding
a node with connectivity (or degree) k different from the

Fig. 6. Average φ-edge comparisons for COIL2 (left) and USPS (right) data
sets using 10 labeled examples with kNN and GBILI graph construction. The
smaller the φ-edge ratio, the better the graph.

average connectivity decays exponentially fast for large k. We
explore centrality measures from the GBILI network and we
demonstrate that labeled vertices are important in the network
topology. The measures explored are node degree, betweenness
[10], eigenvector centrality [3] and pageRank [4].

These measures are presented in Tables: IV (node degree),
V (betweenness), VI (eigenvetor) and VII (pageRank) for
digit1, g241c, g241n, COIL2, COIL6 and USPS data sets with
10 labeled points. We present the 10 highest values from the
GBILI networks. The vertices numerate from 1 to 10 are
labeled and their measures are shown in bold in the tables.
The subscript is the number of the vertex.

In real networks the presence of nodes with a very large
number of connections (hubs) facilitates spreading information
or epidemics, especially if the hubs are infected. The GBILI
algorithm generate hubs from the labeled points, as we can
see in Table IV, where most of the labeled points have the
biggest degree in the network. In Table V many labeled points
have high betweenness, so they belong to many geodesic
paths. It means these points influence many nodes in the
network and are important to transmit information throw the
network. Furthermore, a vertex is important also when it
receives connections from important vertices. Such relevance is
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indicated by Eingenvector centrality and PageRank, see Tables
VI and VII, respectively.

The network topology is related to information propagation
on Complex Networks. GBILI method construct networks
exploring the labeled vertices and these points can become
hubs. The centrality measures, calculated here, indicate these
vertices are important in the network, in this way, GBILI
topology can facilitate the label propagation task.

TABLE IV. NODES DEGREE.

digit1 g241c g241n COIL2 COIL6 USPS
302 3210 316 9417 3010 281
296 319 288 865 281 266
277 2577 241491 569 255 254
263 253 241348 501 239 257
235 224 212 4510 218 235
221 191060 1920 434 21402 212
184 191205 191 4050 173 198
1710 18468 171456 2811 17257 1910
169 1732 16192 2665 164 16936

12612 168 16769 2538 12682 14398

TABLE V. NODES BETWEENNESS.

digit1 g241c g241n COIL2 COIL6 USPS
3209722 3740969 3182446 2353755 1294598 2900771
2311526 36374310 2645278 156545337 76138130 2571685
2010535 2452903 22614520 15166536 717485 186240581
1842643 2012354 1753951348 14007517 714371142 1806727
1791109 1405625 16757263 1323531 59952286 1794144

167644133 13578832 1667801 12872392 58196379 1603606
1548811 12799177 162047631 1020448 50977658 15475910
1417614 9775323 14935933 6524391 508041069 149967398

1371021040 94256113 1402871491 56913144 49324189 1494088
127247114 884801205 137298410 5623370 4931424 138086983

TABLE VI. EINGENVECTOR CENTRALITY.

digit1 g241c g241n COIL2 COIL6 USPS
1.0002 1.0009 1.0006 1.00017 1.000402 1.0001
0.8376 0.86210 0.8708 0.8635 0.919257 0.6996
0.4973 0.5843 0.3931348 0.4709 0.512682 0.6874
0.4947 0.45277 0.350234 0.41250 0.4879 0.6675
0.3885 0.39932 0.34366 0.21438 0.44310 0.6097
0.3461 0.3914 0.32814 0.187158 0.3875 0.3072

0.2461275 0.343468 0.293969 0.168218 0.381403 0.30110
0.2351219 0.305461 0.29146 0.16715 0.381495 0.2938
0.23334 0.2815 0.267232 0.167929 0.372219 0.282398

0.2221158 0.2791063 0.2661456 0.16790 0.37236 0.251823

TABLE VII. PAGERANK.

digit1 g241c g241n COIL2 COIL6 USPS
0.0082 0.00810 0.0076 0.01617 0.00810 0.0071
0.0076 0.0079 0.0078 0.0155 0.0081 0.0076
0.0077 0.0063 0.0071491 0.0111 0.0065 0.0074
0.0073 0.00677 0.0062 0.01010 0.0058 0.0077
0.0065 0.0061060 0.0061348 0.0109 0.0059 0.0062
0.0061 0.0054 0.0051 0.0084 0.0053 0.0065
0.00510 0.0051205 0.0051456 0.00750 0.004402 0.0058
0.0054 0.0051450 0.005769 0.0068 0.0044 0.00510
0.0049 0.005468 0.004192 0.0052 0.003257 0.004936

0.0041002 0.0048 0.00420 0.00511 0.002809 0.004398

VI. CONCLUSION

In this paper we explore how labeled instances, available
in the SSL setting, can be used to construct a better graph
for classification in SSL. We provide extensive empirical
evidence that this technique called GBILI leads to good
classification accuracy. Furthermore, we provide a detailed
complexity analys in which we show GBILI has the same
time complextiy of kNN graphs. We show that kNN gen-
erates more dense networks than GBILI and by using the

φ-edge ratio measure we confirm that when the parameter
k increases, the quantity of edges connecting vertices with
different labels increases too, propagating wrong information.
We also apply centrality measures from Complex Network to
characterize GBILI networks. The exploited measures were
node degree, betweenness, eigenvector and pageRank. These
measures confirm the labeled points in GBILI graph are hubs
and important in network topology. So, they can facilitate the
label propagation process.
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