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Abstract—Time series are present in many pattern recognition
applications related to medicine, biology, astronomy, economy,
and others. In particular, the classification task has attracted
much attention from a large number of researchers. In such a
task, empirical researches has shown that the 1-Nearest Neighbor
rule with a distance measure in time domain usually performs
well in a variety of application domains. However, certain time
series features are not evident in time domain. A classical example
is the classification of sound, in which representative features are
usually present in the frequency domain. For these applications,
an alternative representation is necessary. In this work we
investigate the use of recurrence plots as data representation
for time series classification. This representation has well-defined
visual texture patterns and their graphical nature exposes hidden
patterns and structural changes in data. Therefore, we propose a
method capable of extracting texture features from this graphical
representation, and use those features to classify time series data.
We use traditional methods such as Grey Level Co-occurrence
Matrix and Local Binary Patterns, which have shown good
results in texture classification. In a comprehensible experimental
evaluation, we show that our method outperforms the state-of-
the-art methods for time series classification.

I. INTRODUCTION

Time series are ubiquitous in almost every human activity.
Time oriented data are present in many application domains
such as medicine, biology, economy, signal processing, among
others. Consequently, the analysis of time series data has
attracted much attention and effort from several researchers
around the world. Time series analysis can be divided in dif-
ferent tasks, such as classification, clustering, motif discovery,
anomaly detection, etc. Among all these tasks, classification
is certainly the most prominent. In classification, empirical
studies have shown that the simple 1-Nearest Neighbor (1-
NN) rule with an adequate distance measure in time domain
presents very competitive results [1].

However, certain time series features are not evident in
the time domain. A classical example is the classification of
sound, in which representative features are usually present in
the frequency domain. In these applications, the classification
accuracy can be improved by the use of alternative represen-
tations for the extraction of more representative features.

We investigate the use of recurrence plots as time series
representation for classification tasks. Recurrence plot is a
widely used technique for qualitative assessment of time series
in dynamical systems. Their graphical nature exposes hidden
patterns and structural changes in data. In particular, recurrence
plots are valuable tools to characterize how the similarity
among subsequences varies according to time.
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Our main hypothesis is that the recurrence plots have
well defined texture patterns that can be properly identified
by texture extraction methods. These texture patterns are
predictive features for time series classifications since they
represent regularities, frequently associated with interesting
behaviors. A recurrent behavior indicates the presence of an
internal mechanism that generates such patterns.

We propose the method Texture Features from Recurrence
Patterns — TFRP. In summary, TFRP uses a Support Vector
Machine (SVM) algorithm with four techniques for extract-
ing texture features from recurrence plots. We show in our
experimental evaluation with 38 time series data sets that
TFRP is very competitive with state-of-the-art methods such
as 1-NN with Euclidean distance, Dynamic Time Warping and
Recurrence Patterns Compression Distance (RPCD) [2]. RPCD
is our previous attempt to classify time series using recurrence
plots and CK-1 [3], a distance measure between images that
uses video compression algorithms.

The remainder of this paper is organized as follows.
Section II presents an overview of time series classification,
recurrence plots and methods of extracting texture features. In
Section III we briefly discuss the related work. In Section IV
we present our proposed method namely Texture Features
from Recurrence Patterns. Section V provides an extensive
evaluation of our method in 38 time series data sets. Finally,
Section VI draws some conclusions and points directions for
future work.

II. BACKGROUND

In this section, we present a brief overview on time series
classification, recurrence plots, and the texture descriptors.

A. Time Series Classification

A time series T = {t1,ta,...,t,} is a sequence of real
numbers obtained through repeated measurements over time.
In classification, we are interested in assigning a class label
to an unknown query time series (). The literature indicates
that a simple 1-NN algorithm, with a proper distance function,
presents very good results, frequently outperforming more
complex classification algorithms [1]. The 1-NN algorithm
consists of assigning to () the label of the most similar time
series T; from a training set TR = {11, 7%, ..., T, } according
to a distance measure D.

The Euclidean distance (ED) is probably the most known
and used distance to compare time series. It measures the
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similarity between time series considering only observations
at the exact same time index ¢, that makes it very sensitive
to distortions in the time axis. Furthermore, many applications
require a more flexible matching of the observations in which
an observation x in a time index ¢, can be matched with an
observation y at a time index ¢, # t,. The Dynamic Time
Warping (DTW) calculates the optimal nonlinear alignment
between two time series under some constraints. Fig. 1 shows
the difference between the linear alignment obtained by ED
and the non-linear alignment obtained by the DTW algorithm.
The interested reader can find a comprehensible review of
DTW for time series classification in [4].

Fig. 1. Difference in the alignment obtained by ED (left) and DTW (right)

B. Recurrence Plots

The analysis of recurrent behaviors is important in many
applications. However, these behaviors are often very difficult
to visualize in the time domain. To overcome this limitation,
Eckmann et al. [5] created a representation called recurrence
plot (RP). This representation is able to reveal in which points
some trajectories return to a previously visited state. Formally,
an RP can be defined by:

R ; =0(e— |7 — &), Z(-) e R”™,4,j =1.N

where N is the number of states, ; and Z; are the subse-
quences observed at the positions ¢ and j, respectively, || - ||
is the norm (e.g. Euclidean norm) between the observations, €
is a threshold for closeness and © is the Heaviside function.
This function has value 1, case its parameter is lower than 0,
or value 0 otherwise.

The equation indicates that the recurrence plot consists
in a binary image in which dots only indicate if there is a
recurrence of a state or not. What sets the value of each point
in the image is the closeness threshold. However, determining
an appropriate value for this parameter is not intuitive. Addi-
tionally, there may exists loss of information when the matrix
is binarized. However, we can skip the binarization step and
use color information in the image. With this modification, the
RP shall represent the distance between the states in the space,
instead their recurrences [6]. Fig. 2 shows three examples of
unthresholded RPs, in different degrees of randomness.

Fig. 2. Time series with different degrees of randomness (fop) and their
respectives recurrence plots (bottom): totally random noise (left); random walk
(middle); periodic composition of sine and cosine (right)
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C. Texture Analysis

Texture is a concept that has undergone many attempts of
definition by different researchers. In this paper, we understand
an image texture as a function of the spatial variation in
pixel intensities (gray values) [7]. In order to characterize and
quantify a texture, we need a texture descriptor. In this paper,
we use four methods as texture descriptors, described next:

Local Binary Pattern. The LBP is one of the most
used texture descriptors in image analysis [8]. This method
was introduced by Ojala et al. [9] and uses a grayscale
and a LBP operator on a circular neighborhood to describe
the local texture of an image. Basically, the intensity of a
central pixel g. is compared with P pixels g, at the radius
R of a circular neighborhood. In order to guarantee that
the values are independent of changes in the grayscale, it is
considered only the signs of the results rather than the exact
values. In the original version, the LBP operator is defined as
LBPpp = 25;01 s(gp — 9c)2P. In this paper we evaluated
some extensions of the original operator that has shown better
results: uniform operator LBP};?R, rotation-invariant operator
LB I’Df  and rotation-invariant uniform operator LB PI’;%Q. We
performed our experiments with P = 8 and R = {1,2,3}. A
detailed description of these operators can be found in [10].

Grey Level Co-occurrence Matrix. The GLCM [11] is a
statistical way to describe an image using second-order texture
measures. The method uses spatial dependence between pixels
and creates statistics that consider the direction, distance and
relation of pixel pairs. Specifically, it describes the frequency
of one gray tone appearing in a specified spatial linear relation-
ship with another gray tone. The gray co-occurrence matrices
are computed in 0°,45°,90° and 135° directions. In this paper,
we evaluated 20 different relations: angular second moment,
entropy, dissimilarity, contrast, inverse difference, correlation,
homogeneity, autocorrelation, cluster shade, cluster promi-
nence, maximum probability, sum of squares, sum average,
sum variance, sum entropy, difference variance, information
measures of correlation, maximal correlation coefficient, in-
verse difference normalized, and inverse difference moment
normalized. These statistics are computed in all four directions
and with distances d = {1,2,3,4,5}. A detailed description
of these statistics can be found in [11], [12].

Gabor filters. A gabor filter bank [13] is a pseudo-wavelet
filter bank where each filter generates a near-independent
estimate of the local frequency content. Gabor filter acts as
a local band-pass filter with certain optimal joint localization
properties in the spatial domain and spatial frequency domain.
To extract the Gabor features of a given input image, the image
is convolved by a Gabor Wavelet Transform with a set of
Gabor filters of different orientations and spatial frequencies
that cover appropriately the spatial frequency domain. The
convolution output at each point is the information about the
spatial relationship between pixels and their neighborhoods.
Texture feature vector is made up of the results from all
wavelet transforms [14]. We performed our experiments with
5 wavelets scales and 6 filters orientations.

Segmentation-based Fractal Texture Analysis. The
SFTA [15] consists in decomposing the input image into a
set of binary images from which the fractal dimensions of the
resulting regions borders are computed in order to describe



segmented texture patterns. In the analysis of texture, the
fractal dimension, which is a measure of the irregularity degree
of an object, describes a certain property of the texture. The
fractal model is essentially based on the estimation by spatial
methods of the fractal dimension of the surface representing
the grey levels of the image. Although it is a recent approach,
the authors show that the method outperformed other texture
feature descriptors such as GLCM and Gabor filter banks,
achieving higher precision and accuracy for image classifica-
tion and content-based image retrieval tasks.

III. RELATED WORK

To the best of our knowledge, there are only two papers
in the literature that extract texture features from recurrence
plots. However, these studies address specific applications and
perform a limited texture analysis from a single method or do
not use more sophisticated machine learning classifiers.

For instance, in [16] is presented a method for detecting
environmental changes in the reinforcement learning. The
proposed method uses recurrence plots of state transitions of
the system, and quantifies changes of the recurrence plot by a
texture analysis, more specifically using GLCM.

In a particular application of human activity recognition
[17], the use of geometric properties of high-dimensional video
data and the quantification of this geometric information is
proposed in terms of recurrence textures. Basically, the human
activities recorded by cameras are represented by recurrence
plots and these activities are classified by an 1-NN classifier
based on LBP features from these plots.

Even without extracting texture features, the most similar
work to ours is presented by Silva et al. [2] with the Recur-
rence Patterns Compression Distance (RPCD) for time series
classification. The RPCD applies a video compression based
distance measure (CK-1) in an 1-NN algorithm to estimate the
similarity between two time series represented by recurrence
plot. Unlike other methods of the literature that extract explicit
features directly related to the image texture, the distance mea-
sure applied by RPCD is based on the Kolmogorov complexity
to compare the texture similarity between two images. To do
this, CK-1 exploits the resultant compression of a synthetic
video created from the two images to be compared [3].

IV. PROPOSED METHOD

The main idea of the proposed method for time series clas-
sification is based on the use of recurrence plot representation
and the extraction of texture features of these images. We can
see in Fig. 3, an illustrative scheme of our method.

The texture features are used as input attributes for a
machine learning algorithm, specifically the Support Vector
Machine (SVM) [18]. The choice of SVM is justified by
the fact of that this algorithm has demonstrated excellent
performance in a variety of pattern recognition problems, such
as image classification [19]. In addition, SVM has shown good
capability of generalizing in high-dimensional spaces, such as
our texture patterns [20].

The texture features were extracted using Local Binary
Patterns (LBP), Grey Level Co-occurrence Matrix (GLCM),
Gabor filters, and Segmentation-based Fractal Texture Analysis
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Fig. 3. [Illustrative scheme of our method Texture Features from Recurrence
Patterns — TFRP.

(SFTA). We propose the combination of all extracted texture
features, since our preliminary results showed that no single
approach presented superior performance compared to the
others. We also evaluated the accuracy performance of our
method with a reduced number of features. Along the text,
we use the term Texture Features from Recurrence Patterns —
TFRP - to refer to the proposed method'.

V. EXPERIMENTAL EVALUATION

We performed our experimental evaluation using a large set
of time series classification data from different domains. All
data sets can be found at the UCR Time Series Archive [21].
These data sets have standard partitions of training and testing,
further facilitating the execution of experiments and the com-
parison of results. Similarly to [2], we decided to exclude all
synthetic data sets since they were generated for a specific
purpose or algorithm. Thus, we use 38 data sets in our
experiments. The use of benchmark data sets facilitates the
reproduction of our results and the direct comparison with
other methods proposed in the literature.

SVM have some parameters that can significantly influence
its performance. Therefore, the first step of our experiments
consists in a search for the parameters values that maximize
the classification accuracy. We varied the parameters ¢ and -y
using the Grid Search technique [22], and the choice of kernel
(Polynomial and RBF). Given values of minimum, maximum
and step size, we evaluated the accuracy of each combination
of parameters using a cross-validation approach in training set,
since the use of test data is restricted to the final classifier
evaluation.

Given the significant amount of features (we have 823
features in total) and the presence of potentially redundant
information, we also conducted a feature subset selection step.
Thus, we have a reduced number of features that contemplate
different views of texture analysis. We employed two well
known filter methods for this step: Correlation-based Feature
Selection (CFES) [23] and ReliefF [24]. The thresholds used for
ReliefF were 5%, 10% and 20% of all 823 attributes.

Our results are reported in Table I. In this table, TFRPy
represents the accuracy achieved with 20% (or 164) of all fea-

Tn order to facilitate the reproduction of this work, we created a web
page in which we made available all detailed numerical results and codes:
http://sites.labic.icmc.usp.br/vsouza/ICPR2014/



tures selected by the ReliefF. Among all the feature selection
settings, this one showed the best results. TFRP represents the
accuracy rates achieved by our method with all features. These
results are compared with two state-of-the-art methods: 1-NN
with Euclidean distance (ED) and Dynamic Time Warping
(DTW). We also compare our method against Recurrence
Patterns Compression Distance (RPCD).

TABLE 1. ACCURACY RATES ACHIEVED BY OUR PROPOSED METHOD
WITH 20% OF ALL FEATURES (TFRP3p) AND TFRP WITH ALL
EXTRACTED FEATUES AGAINST 1-NN CLASSIFIER USING EUCLIDEAN
DISTANCE (ED), DYNAMIC TIME WARPING (DTW), AND RECURRENCE

PATTERNS COMPRESSION DISTANCE (RPCD).

Data set ED DTW RPCD TFRPy, TFRP
50words 63.10  69.00 77.36 51.87 56.26
Adiac 61.10  60.40 61.64 79.54 79.54
Beef 5330  50.00 63.33 50.00 63.33
ChlorineConcentration 65.00 64.80 51.09 70.89 70.00
CinC_ECG_torso 89.70  65.10 97.90 8522 86.96
Coffee 75.00  82.10 100 96.43 96.43
Cricket_X 5740  71.70 70.77 63.33 64.10
Cricket_Y 6440  79.20 73.85 58.72 63.85
Cricket_Z 62.00  79.20 70.77 64.10 63.33
DiatomSizeReduction 93.50  96.70 96.41 92.16 92.48
ECG200 88.00  77.00 86.00 83.00 83.00
ECGFiveDays 88.00  77.00 86.41 84.55 89.55
FaceAll 7140  80.80 80.95 62.60 71.01
FaceFour 7840  83.00 94.32 75.00 78.41
FacesUCR 76.90  90.49 94.15 67.22 79.17
Fish 7830  83.30 87.43 84.57 88.00
Gun_Point 91.30  90.70 100 97.33 98.00
Haptics 37.00  37.70 38.64 51.62 46.75
InlineSkate 3420 3840 32.00 46.18 48.36
ItalyPowerDemand 95.50  95.00 84.26 93.29 93.78
Lighting2 7540  86.90 75.41 81.97 85.25
Lighting7 5750  72.60 64.38 58.90 68.49
Medicallmages 68.40 73.70 71.05 79.08 77.11
MoteStrain 87.90  83.50 79.71 78.59 82.51
OliveOil 86.70  86.70 83.33 90.00 86.67
OSULeaf 51.70  59.10 64.46 89.67 92.98
Sony AIBORobotSurface 69.50  72.50 79.70 87.85 86.86
SonyAIBORobotSurfacell ~ 85.90 83.10 84.26 88.67 90.77
StarLightCurves 84.90  90.70 88.17 97.91 97.81
SwedishLeaf 78.70  79.00 90.24 92.64 95.04
Symbols 90.00  95.00 90.45 95.78 94.67
TwoLeadECG 7470 90.40 87.36 98.07 98.86
uWaveGestureLibraryX 73.90 72.70 59.30 58.21 58.74
uWaveGestureLibrary’Y 66.20 63.40 62.12 59.94 62.31
uWaveGestureLibraryZ 65.00 65.80 61.67 64.91 64.43
Wafer 99.50  98.00 99.66 99.94 99.98
WordsSynonyms 61.80 64.90 72.41 50.47 50.31
Yoga 83.00  83.60 86.60 87.33 85.87
Average accuracy 73.27 76.29 71.57 76.78 78.71
Wins 5/38 7/38 9/38 9/38 10/38

In a general analysis, considering the average accuracy
on 38 data sets evaluated, we can see in Table I that both
TFRP and TFRPy, outperforms state-of-the-art methods such
as 1-NN using ED and DTW. TFRP also slightly outperforms
RPCD. In some data sets, we can note a significant difference
between our proposed method and the second best method.
For instance, we can note a difference of almost 30% between
the accuracy of TFRP and RPCD for the OSULeaf data set.
For Adiac, the difference is close to 20% and for Haptics,
InlineSkate, StarLightCurves, and TwoLeadECG, we outper-
formed the second best method with almost 10% of margin.

In terms of number of wins/ties/losses, TFRP also outper-
forms all other methods, as can be seen in the last row of
Table I. Considering the amount of wins of each method in
pairwise comparisons, we can see in Table II that in 38 data
sets, the TFRP is the competitor method that have the largest
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number of wins against RPCD (22 wins) and TFRPy has the
largest number of wins against DTW (21 wins).

TABLE II. AMOUNT OF WINS OF EACH METHOD CONSIDERING
PAIRWISE COMPARISONS ON 38 DATA SETS EVALUATED. IN EACH ROW,
THE BEST RESULT IS IN BOLD.

Competitor
ED DTW RPCD TFRPy, TFRP
Wins against ED — 24 27 22 25
Wins against DTW 13 — 20 21 20
Wins against RPCD 11 18 — 18 22
Wins against TFRP>( 16 16 20 — 24
Wins against TFRP 13 18 15 11 —

In order to facilitate the visualization of our results, we
also present a graphical representation of the results in Table I.
In these plots, each data set is represented by a point where
the y coordinate is the accuracy obtained by TFRP and the
x coordinate represents accuracy obtained by a competitor
method. Thus, points above the main diagonal represent data
sets in which TFRP outperformed the competing method. In
Fig. 4 we can see ED as competitor method and in Fig. 5 the
results against DTW. The number of points above or below
the diagonal can be found in Table II.

100
In this area, ° g, K
TFRP is better o o® ose
80 o .
> o °
[ X
g 60 o
§ ®e °
& 40
[T
=
20
In this area,
ED is better
0
0 20 40 60 80 100

ED accuracy

Fig. 4. Graphical representation of results achieved by TFRP versus 1-NN
with Euclidean distance (ED). Each point represents a different data set. The
points above the diagonal represent data sets which TFRP outperformed ED.
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0
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DTW accuracy

Fig. 5. Graphical representation of results achieved by TFRP versus 1-NN
with Dynamic Time Warping distance (DTW).

The results achieved by TFRP against ED and DTW are
very competitive. It is important to note that these methods are
considered state-of-the-art in time series classification area and
hard to outperform [1]. We can see some points far above the



diagonal, mainly when we consider TFRP against ED. They
represent specific data sets where TFRP are far superior to the
competing method.

The results against RPCD, the most similar method to ours,
can be seen in Fig. 6. The RPCD was recently proposed and
showed competitive results against traditional methods.

100 N L)
In this area, ° e ® o
TFRP is better e2° O
80 ° o [
° °
§ - oo
g 60 O
& 40
w
=
20
In this area,
RPCD is better
0
0 20 40 60 80 100

RPCD accuracy

Fig. 6. Graphical representation of results achieved by TFRP versus
Recurrence Pattern Compression Distance (RPCD).

Considering a reduced amount of features of TFRP, we can
see in Fig. 7 that TFRPy( presents worse results compared of
TFRP, but still shows very competitive results against RPCD.
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Fig. 7. Graphical representation of results achieved by TFRP with 20% of all
features (TFRP2g) versus Recurrence Pattern Compression Distance (RPCD).

A. The Texas Sharpshooter Fallacy

Many papers in the time series classification literature
affirm that their proposed method is useful since it outper-
formed the state-of-the-art in some data sets. However, as noted
in [25], it is not useful to have an algorithm that can be accurate
on some problems unless you can tell in advance on which
problems it will be more accurate.

A simple way to show that we can predict when our method
will have superior accuracy ahead of time is to use the Texas
Sharpshooter plot [25]. To do this plot, we test the accuracy
of both TFRP and the competitor method looking only at the
training set. We use this information to choose which algorithm
will classify the objects from the test set. In order to do that,
we can calculate the accuracy gain as:

accuracy(TFRP)
accuracy(competitor)

gain =

We call expected gain the gain calculated over the training
set and actual gain the gain over the test set. Recall that the
UCR archive provides data sets with standard training and
testing splits, and we used these data partitions to calculate the
gain values. In order to calculate the gain inside the training
set (expected gain) we used leaving-one-out cross-validation,
since frequently the training sets have reduced sizes. The Texas
Sharpshooter plots are divided in four regions:

e TP In this region we claimed ahead of time that TFRP
would improve accuracy, and we were correct;

e TN. In this region we correctly claimed ahead of time
that TFRP would decrease accuracy;

e  FN. In this region we claimed ahead of time that TFRP
would decrease accuracy, but the accuracy actually in-
creased. This represents a lost opportunity to improve,
but note that we are no worse off than if we had not
tried TFRP;

e FP. This region is the only truly bad case for our
method. Data points falling in this region represent
cases where we thought we could improve accuracy,
but did not.

The plots of TFRP against ED and DTW are presented in
Fig. 8 and Fig. 9, respectively. In Fig. 8 we can see only two
data sets in the FN region, Haptics and SonyAIBORobotSur-
facell. This means that for these data sets we could use the
TFRP rather than ED for achieve best results. However, we
were not able to conclude this from the training set.

14 -
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FN / o, TP
°
S °
1,2 1 oo ©
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0,6 0,8 1 12 14

Expected gain

Fig. 8. The Texas Sharpshooter plot for TFRP against ED.
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Expected gain

Fig. 9. The Texas Sharpshooter plot for TFRP against DTW.
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In other hand, we can see both in Fig. 8 and Fig. 9 that
no data set is located in FP region. This result is very positive
for our method, once, based on training data, we never expect
that the TFRP achieves better results without it being really
true. Thus, we have more confidence in suggesting a particular
method for classify an unknown time series data set.

A similar behavior can be seen in Fig. 10 when we
comparing TFRP against RPCD. But, in this case, we have a
few number of data sets in the FP region. However, these data
sets are located very close to border areas that do not represent
bad cases. More specifically, we have 30 data sets (78.95%)
located in TP and TN regions and 8 data sets (21.05%) located
in FN and FP regions.
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Expected gain

Fig. 10. The Texas Sharpshooter plot for TFRP against RPCD.

VI. CONCLUSIONS

We presented in this paper a method for time series clas-
sification based on texture features extraction from recurrence
plots. We evaluated the combination of all extracted features
and the use of a reduced amount of features in a SVM
algorithm.

In an experimental evaluation performed on 38 data sets,
we can note that our proposed method TFRP outperformed the
main known competitors in the literature. In many cases, the
TFRPyq also achieves competitive results even with a reduced
amount of features. These results are relevant, as they can be
obtained at a lower processing cost.

In future work, we will explore the characteristics of the
data sets that showed a high difference between our method
and rivals in terms of accuracy. This information can be
used in a meta-learning classifier that assists in the choice
of the best method according to the data characteristics. This
is particularly important when it comes to real applications
with unknown data. We will also evaluate the use of ensemble
methods in which each classifier is learned over a different
feature set, such as a different texture descriptor.
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