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Abstract—Graph-based semi-supervised learning (SSL) algo-
rithms perform well on a variety of domains, such as digit recogni-
tion and text classification, when the data lie on a low-dimensional
manifold. However, it is surprising that these methods have not
been effectively applied on time series classification tasks. In
this paper, we provide a comprehensive empirical comparison of
state-of-the-art graph-based SSL algorithms with respect to graph
construction and parameter selection. Specifically, we focus in this
paper on the problem of time series transductive classification on
imbalanced data sets. Through a comprehensive analysis using
recently proposed empirical evaluation models, we confirm some
of the hypotheses raised on previous work and show that some of
them may not hold in the time series domain. From our results, we
suggest the use of the Gaussian Fields and Harmonic Functions
algorithm with the mutual k-nearest neighbors graph weighted
by the RBF kernel, setting k = 20 on general tasks of time series
transductive classification on imbalanced data sets.

I. INTRODUCTION

In the last few years, we have witnessed a huge increase of
interest on time series mining. Such an interest is justified by
the innumerous applications that generate data across time. The
recent advances in technology have made available a myriad
of data acquisition equipment at a fraction of the cost of one
decade ago. For instance, low-cost electrocardiogram and elec-
troencephalogram equipment has reached the US$100 mark;
motion tracking sensors, such as accelerometers, gyroscopes
and GPS devices are available in virtually every mobile phone;
etc. These digital devices are collecting huge amounts of time
series data at increasing rates.

Unfortunately, most of these time series are unlabeled by
nature. Due to time and cost constraints, human experts can
label just a tiny fraction of these huge data volumes. However,
semi-supervised methods can avail of labeled and unlabeled
examples to leverage off classification performance. One of
the most prominent approaches for semi-supervised learning
(SSL) are the graph-based transductive classifiers. These me-
thods learn from a weighted graph generated using both labeled
and unlabeled examples without providing generalization for
the entire sample space. Theoretically speaking, these methods
are incapable to perform induction. However, by applying
classifiers based on k-nearest neighbors (kNN) in the transduc-
tive solution, we can easily classify out-of-sample examples.
For simplicity, we assume in this paper that transductive
classification is a synonym of SSL; hence, the transductive
classifiers are called here as SSL algorithms. A comprehensive
discussion about transductive vs. semi-supervised learning can
be found in [1].

Graph-based SSL algorithms have been effectively applied
in a variety of domains [2]. However, it is surprising that
these methods have not been extensively evaluated in the time
series domain. Since similarity-based methods (using, e.g., the
Dynamic Time Warping (DTW) distance) are effective for time
series classification [3]–[4], the use of graph-based methods
can also be effective in this domain because the weighted graph
encodes similarities between neighbored examples.

In this paper, we show that graph-based SSL algorithms
are effective in the time series domain. In order to do this,
we provide experiments using kNN-based graphs with DTW,
frequently beating the 1NN classifier with this same distance.
Specifically, we provide a comprehensive empirical compari-
son of state-of-the-art graph-based SSL algorithms with respect
to graph construction and parameter selection on time series
transductive classification tasks on imbalanced data sets.

Although the literature has several studies comparing
graph-based SSL algorithms [2], [5]–[8], very few articles
draw conclusions for imbalanced1 data sets. In general, con-
clusions concerning the performance of these methods on
imbalanced data are made based on the observation of a very
restricted number of data sets. Therefore, we ask in this paper
whether some of these hypotheses hold for time series data,
and analyze them in the light of a large number of data sets
from different application domains. Specifically, we analyze
the hypotheses raised on [2] for imbalanced data sets.

Hypothesis 1: The graphs generated by the mutual kNN
(mutKNN) graph show high instability for relatively small
values of k.

Hypothesis 2: The graphs generated by mutKNN tend to
give better results than those generated by other adjacency
graph construction methods.

Hypothesis 3: The Robust Multi-class Graph Transduc-
tion (RMGT) [8] algorithm may not be effective on imbalanced
data sets.

Through a comprehensive analysis, we concluded that: (1)
Hypothesis 1 may not hold in general because the graphs
generated by mutKNN showed good stability in many data
sets, even for small values of k; (2) Hypothesis 2 holds on
most data sets; and (3) Hypothesis 3 may only holds for
data sets with high imbalanced ratio because RMGT achieved
competitive results in many data sets.

1In this paper, we assume that a data set is imbalanced if the majority class
has at least two times more examples than the minority class.
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TABLE I. DESCRIPTION OF THE DATA SETS.

Data sets # labeled (%) # unlabeled (%) series length # classes % minority % majority ID

50words 450 (49.72) 455 (50.28) 270 50 0.22 11.56 D1
Adiac 390 (49.93) 391 (50.07) 176 37 1.03 3.85 D2
ChlorineConcentration 467 (10.84) 3840 (89.16) 166 3 19.49 56.10 D3
Cinc-ECG-torso 40 (2.81) 1380 (97.19) 639 4 12.5 32.5 D4
FacesUCR 200 (8.88) 2050 (91.12) 132 14 2.0 16.50 D5
Haptics 155 (33.47) 308 (66.53) 1092 5 11.61 23.23 D6
InlineSkate 100 (15.38) 550 (84.62) 1882 7 9.0 18.0 D7
Mallat 55 (2.29) 2345 (97.71) 1024 8 3.64 20.0 D8
MedicalImages 381 (33.39) 760 (66.61) 99 10 1.58 53.28 D9
OSULeaf 200 (45.24) 242 (54.76) 427 6 7.5 26.5 D10
SonyAIBORobotSurface 20 (3.22) 601 (96.78) 70 2 30.0 70.0 D11
StarLightCurves 1000 (10.82) 8236 (89.18) 1024 3 15.2 57.3 D12
Symbols 25 (2.45) 995 (97.55) 398 6 12.0 32.0 D13
Wafer 1000 (13.95) 6164 (86.05) 152 2 9.7 90.3 D14
WordsSynonyms 267 (29.50) 638 (70.50) 270 25 0.75 22.47 D15

The remainder of this paper is organized as follows. Section
II describes our experimental design. Section III analyzes our
results. Finally, Section IV provides our conclusions.

II. EXPERIMENTAL DESIGN

We used a slight variation of the experimental setup in
[2] for time series transductive classification. We performed
experiments using benchmark data sets widely used in the time
series literature and publicly available in the UCR repository2.
We chose the 15 most imbalanced data sets from the repository
which covers different application domains such as medicine,
astronomy, and robotics. These data sets are described in Table
I. Since we provide an experimental study on transductive
classification, the training (labeled) and test (unlabeled) data
are used together during the classification process. Due to
reasons concerning reproducibility, we used the data splits
suggested in the UCR repository.

The SSL algorithms are compared based on their error rates
on the test data. In order to provide a comprehensive analysis,
we used the empirical evaluation models described in [2],
which are: (1) best case analysis, in which we compare each
combination of SSL algorithm and graph construction method
based on their lowest error rates with respect to all parameter
values; (2) evaluation of classifier stability, in which we
evaluate how the classifiers’ performance is affected on a given
graph construction method with respect to k; (3) evaluation of
graph stability, in which we evaluate how the performance of
a given SSL algorithm is affected with respect to k for each
graph; (4) evaluation of regularization parameters, in which
we evaluate how the regularization parameters affect an SSL
algorithm’s performance on a fixed graph.

A. Graph construction

We generate a sparse, undirected, weighted graph using
both labeled and unlabeled examples from the kNN graph
using the DTW distance. In order to generate a symmetric
adjacency matrix, we used the following adjacency graphs:
symmetric kNN (symKNN), mutKNN, and symmetry favored
kNN (symFKNN) [8]. Since mutKNN may generate a graph
with isolated vertices, we created an undirected edge between
each isolated vertex and its nearest neighbor, as suggested in
[2]. The parameter k was chosen at range {4, 6, 8, · · · , 40}.

2http://www.cs.ucr.edu/∼eamonn/time series data/

From the adjacency matrix, we applied the following
weighted matrix generation methods: RBF kernel; Hein &
Maier’s (HM) similarity function [9]; and Local Linear Em-
bedding (LLE) [10]. In order to efficiently compute the LLE
method, we used the Local Anchor Embedding (LAE) method
[11] with the symmetrization process described in [2]. We
estimate the value of the parameter in the RBF kernel as
suggested in [12]. We generated the combinatorial and the
normalized Laplacians using the definitions in [2], which are
useful in an attempt to avoid numerical instabilities while
executing the SSL algorithms.

B. SSL algorithms

We provide an experimental evaluation using the following
SSL algorithms: Gaussian Fields and Harmonic Functions
(GFHF) [5], Local and Global Consistency (LGC) [6], RMGT
[8], and Laplacian Regularized Least Squares (LapRLS) [7].
The regularization parameter μ in the LGC algorithm was
chosen at range {0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100}. The
regularization parameters γA and γI of LapRLS were chosen
at range {10−6, 10−4, 10−2, 10−1, 1, 10, 100}, as suggested in
[13]. We generated the kernel matrix for LapRLS using the
RBF kernel with the same parameter estimation in [12]. For
RMGT, we assumed a uniform class distribution, as suggested
in [8]. We used the combinatorial Laplacian for RMGT and
the normalized Laplacian for the other SSL algorithms, as
suggested in [2] (see also [14]).

III. ANALYSIS OF THE RESULTS

In this section, we provide a comprehensive analysis of our
results using the commonly used best case analysis as well as
the empirical evaluation models proposed in [2].

A. Best case analysis

Table II shows the results for the best case analysis. Each
result in this table corresponds to the best error rate for a
combination of an SSL algorithm, graph construction method,
and data set. The four worst results obtained by an SSL
algorithm in each data set have a grey background while
the best one is in bold. The best overall result on each
data set is boxed. The symbol † in Table II indicates that
numerical instabilities occurred for some parameter values, i.e.,
the algorithm found no solution for these parameter values.
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TABLE II. ERROR RATES (%) OF THE SSL ALGORITHMS ON EACH DATA SET WITH RESPECT TO GRAPH CONSTRUCTION.

Data sets D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

GFHF-symKNN-RBF 19.78 37.34 7.01 0.07 3.61 55.19 59.27 5.07 20.39 35.95 2.66 6.85 2.11 0.26 23.35
GFHF-mutKNN-RBF 19.34 36.57 6.22 0.0 4.59 54.87 56.55 5.07 20.39 35.54 0.5 5.43 1.51 0.32 24.45

GFHF-symFKNN-RBF 19.56 36.06 6.59 0.07 3.56 56.82 59.09 4.18 20.0 35.95 2.16 6.33 2.11 0.26 23.51
GFHF-symKNN-HM 23.3 41.18 13.83 0.43 5.17 52.6 59.09 6.27 22.37 38.84 23.29 6.28 3.02 0.28 25.86

GFHF-mutKNN-HM 21.98 36.83 11.41 0.0 4.93 52.6 56.36 5.93 21.97 37.19 0.83 5.1 1.61 0.41 25.71

GFHF-symFKNN-HM 22.2 37.6 13.2 0.29 4.78 52.27 59.09 5.29 21.71 38.02 14.14 5.8 2.81 0.23 25.86
GFHF-symKNN-LLE 26.37 33.25 0.73 0.65 6.2 51.3 59.64 5.33 23.42 37.6 21.8 4.89 2.31 0.36 29.62

GFHF-mutKNN-LLE 23.74 33.76 0.52 0.0 5.27 52.6 56.55 6.61 22.24 39.67 1.16 5.04 1.61 0.52 28.21

GFHF-symFKNN-LLE 25.27 31.97 0.7 0.07 5.51 50.97 59.82 4.39 22.89 37.6 11.81 4.4 2.31 0.29 27.9

LGC-symKNN-RBF 18.9 39.9 7.5 0.0 3.85 55.52 57.64 4.26 19.21 36.78 2.0 6.22 2.41 0.26 22.26

LGC-mutKNN-RBF 18.9 35.29 6.67 0.0 4.59 55.19 55.09 4.26 19.61 35.12 0.5 5.23 1.51 0.32 23.51

LGC-symFKNN-RBF 18.9 37.08 7.01 0.0 3.85 55.52 57.27 4.01 19.21 35.95 2.16 5.8 2.11 0.26 22.73

LGC-symKNN-HM 22.64 39.39 14.11 0.14 5.41 52.27 57.27 4.82 21.58 38.84 7.65 5.65 3.12 0.28 26.02

LGC-mutKNN-HM 20.0 35.29 11.41 0.0 5.32 51.62 55.09 4.39 21.18 36.78 0.83 5.16 1.51 0.39 25.24

LGC-symFKNN-HM 21.1 37.85 13.44 0.14 4.78 51.62 56.55 4.35 21.32 37.6 5.99 5.08 3.02 0.28 25.24
LGC-symKNN-LLE 25.27 32.74 1.07 0.72 6.2 50.97 58.91 4.56 23.42 37.19 7.15 4.4 2.61 0.31 28.37

LGC-mutKNN-LLE 21.54 33.25 0.55 0.0 4.93 52.27 56.55 4.69 21.97 36.36 1.0 5.01 1.51 0.44 28.06

LGC-symFKNN-LLE 23.74 31.97 0.89 0.43 5.37 50.97 58.18 4.09 22.63 36.36 6.82 3.97 2.31 0.29 26.96

LapRLS-symKNN-RBF 18.9 36.06 7.03 0.0 3.61 54.55 58.36 4.61 20.26 35.54 2.0 6.39 2.11 0.26 23.2

LapRLS-mutKNN-RBF 18.24 33.76 6.25 0.0 3.95 54.55 58.36 2.86 20.0 35.12 0.33 5.38 1.51 0.11 23.51

LapRLS-symFKNN-RBF 18.9 34.53 6.64 0.0 3.46 54.55 58.55 3.92 20.13 35.54 2.16 6.31 2.11 0.26 23.67

LapRLS-symKNN-HM 20.66 37.08 13.75 0.14 5.12 52.6 57.64 5.07 22.11 35.95 8.32 6.22 3.02 0.19 24.29

LapRLS-mutKNN-HM 20.0 34.53 11.3 0.0 4.2 52.6 56.36 2.39 20.39 35.95 0.83 5.48 1.61 0.19 24.45

LapRLS-symFKNN-HM 20.22 36.83 13.05 0.14 4.78 51.95 57.45 4.73 21.05 35.54 6.82 6.23 2.81 0.19 24.45
LapRLS-symKNN-LLE 21.1 28.64 0.73 0.72 5.9 50.97 57.09 4.9 22.11 35.95 8.32 6.29 2.31 0.39 24.29

LapRLS-mutKNN-LLE 20.22 30.43 0.52 0.0 4.49 51.3 56.55 2.77 20.79 35.95 1.0 5.09 1.61 0.23 24.14

LapRLS-symFKNN-LLE 20.88 27.88 0.7 0.07 5.37 50.0 57.82 4.22 21.97 35.95 7.15 6.20 2.31 0.37 24.45

RMGT-symKNN-RBF 20.22 46.04† 7.01 0.14 4.78 58.77 60.55 9.34 22.63 40.5 9.82 13.93 3.92 0.73† 24.61

RMGT-mutKNN-RBF 19.34 38.87† 6.35 0.07 4.44 57.47 60.0 7.21 21.58 38.43 1.16 7.72 1.51 0.83† 24.61

RMGT-symFKNN-RBF 19.56 42.97† 6.69 0.14 4.59 58.12 60.73 8.53 21.97 39.26 7.99 13.57 3.72 0.78† 24.29
RMGT-symKNN-HM 21.32 37.08 18.75 0.07 4.98 53.25 55.64 5.33 31.18 38.84 1.5 10.59 2.91 27.84 23.51

RMGT-mutKNN-HM 20.88 34.02 15.99 0.0 4.88 52.6 56.36 3.45 29.34 37.6 0.17 10.48 1.61 10.85 23.82

RMGT-symFKNN-HM 19.34 36.32 17.66 0.07 4.44 52.27 55.64 3.84 31.18 37.6 1.16 11.15 2.81 28.88 22.41
RMGT-symKNN-LLE 25.05 31.46 6.07 0.0 5.46 52.27 58.18 3.03 33.82 35.95 1.5 9.64 2.11 31.98 28.68

RMGT-mutKNN-LLE 22.64 31.97 5.7 0.0 4.49 51.95 55.64 3.41 31.05 35.54 0.5 10.26 1.61 30.39 27.59

RMGT-symFKNN-LLE 24.84 28.9 5.81 0.0 4.88 51.3 58.18 2.22 32.24 35.95 1.0 10.27 2.01 33.42 27.74

TABLE III. AVERAGE RANKINGS FOR THE GRAPH CONSTRUCTION

METHODS FOR EACH SSL ALGORITHM.

GFHF LGC LapRLS RMGT overall

symKNN-RBF 4.567 4.6 4.423 6.933 5.129
mutKNN-RBF 3.167 3.433 3.039 4.2 3.46

symFKNN-RBF 3.767 3.767 4.269 6.233 4.509
symKNN-HM 7.033 7.2 7.5 5.933 6.916
mutKNN-HM 4.433 4.433 4.192 4.133 4.298

symFKNN-HM 5.567 5.433 6.231 4.533 5.441
symKNN-LLE 6.333 6.5 6.231 5.233 6.074
mutKNN-LLE 5.133 4.7 3.539 3.4 4.193

symFKNN-LLE 5.0 4.933 5.577 4.4 4.978

For most combinations of graph construction method, the
SSL algorithms showed similar performances. However, we
can see some interesting results in Table II. For ChlorineCon-
centration (D3), we see that the graphs generated by LLE
outperformed those generated by HM and the RBF kernel for
GFHF, LGC, and LapRLS. However, for RMGT, this high
superiority was not evidenced if we compare these results with
those for the graphs generated by LLE and the RBF kernel.

For most combinations of SSL algorithm and weighted
matrix generation method, we see that the graphs generated
by mutKNN outperformed those generated by symKNN and
symFKNN. Moreover, for SonyAIBORobotSurface (D11), we
see that the graphs generated by mutKNN outperformed those
generated by symKNN and symFKNN by a large margin.

RMGT showed competitive performance with the other
SSL algorithms in most data sets. However, for the data
sets with high imbalanced ratio (e.g. MedicalImages (D9),
StarLightCurves (D12), and Wafer (D14)), this method
achieved poor results for some graph construction methods.
For Mallat (D8), RMGT showed no competitive results with
the other methods when using the graphs generated by the RBF
kernel. In addition, for StarLightCurves (D12), RMGT showed
poor results for all graph construction methods. Moreover, for
Wafer (D14), this method showed poor results using the graphs
generated by HM and LLE.

Table III shows the average rankings for the graph cons-
truction methods for each SSL algorithm as well as the overall
average rankings. The results that were statistically3 outper-
formed by the best ranked method have a grey background.
We see in Table III that mutKNN-RBF achieved the best
average ranking for GFHF, LGC, and LapRLS as well as
the best overall average ranking. We also note in Table III
that the graphs generated by mutKNN achieved better average
rankings than those generated by symKNN and symFKNN
for all weighted matrix generation methods. In addition, we
see that symKNN-RBF and symFKNN-RBF achieved good
average rankings for GFHF, LGC, and LapRLS. However,
these graphs achieved the worst average rankings for RMGT.

3We used the Friedman’s test with the Nemenyi’s post test using a
significance level of 0.05 (see [15] for a review on statistical tests).
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Fig. 1. Error rates of the SSL algorithms with respect to k on the FacesUCR (using the symFKNN-RBF graph), ChlorineConcentration (using the symFKNN-LLE
graph), and Symbols (using the symFKNN-LLE graph) data sets.

B. Evaluation of classifier stability

For most combinations of graph construction method and
data set, the SSL algorithms showed similar behaviors with
respect to k. However, we found some interesting results,
which are discussed in the following.

Fig. 1 shows the error rates of the SSL algorithms on the
FacesUCR (D5), ChlorineConcentration (D3), and Symbols
(D13) data sets with respect to k. Although LGC performed
very well in the best case analysis in these data sets, we see
that this method showed high instability while the competing
methods achieved good as well as stable results. Fig. 1 is an
excellent example to show why the best case analysis alone
may not be effective to choose the best classifiers for a given
application; this analysis may hide useful information related
to the SSL algorithms’ performance with respect to graph
construction and parameter selection [2].
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Fig. 2. Error rates of the SSL algorithms with respect to k on the
SonyAIBORobotSurface and Cinc-ECG-torso data sets using the symKNN-
LLE graph.

Fig. 2 shows the error rates of the SSL algorithms with
respect to k on the SonyAIBORobotSurface (D11) and Cinc-
ECG-torso (D4) data sets using the symKNN-LLE graph.
Although Hypothesis 3 says that RMGT may not be effective
on imbalanced data sets, we see that this method showed
exceptional performance as well as good stability on SonyAI-
BORobotSurface and Cinc-ECG-torso while the competing
methods showed moderate to high instability. However, for the
data sets with high imbalanced ratio (e.g. MedicalImages (D9),
StarLightCurves (D12), and Wafer (D14)), RMGT showed
poor results for some graph construction methods.

C. Evaluation of graph stability

In this section, we evaluate the stability of the graph
construction methods with respect to k for each SSL algorithm.
We analyze in the following some specific though important
results concerning graphs’ stability with respect to k.
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(b) Mallat

Fig. 3. Error rates of LGC with respect to k on the SonyAIBORobotSurface
and Mallat data sets using a variety of graph construction methods.

Fig. 3 shows the error rates of LGC with respect to k on
the SonyAIBORobotSurface (D11) and Mallat (D8) data sets
using a variety of graph construction methods. The legends
for Fig. 3 and 4 can be found in Fig. 3(b), 4(a), and 4(c).
Although the graphs generated by mutKNN achieved similar
results in the best case analysis on SonyAIBORobotSurface
for most SSL algorithms, Fig. 3(a) shows that these graphs
achieved good as well as stable results while the other graphs
showed high instability.

Fig. 3(b) shows that the graphs generated by mutKNN
achieved the highest instabilities in comparison to the other
graphs on Mallat (D8) while achieving similar results in
the best case analysis in this data set. Although the graphs
generated by mutKNN showed high instability in this data set,
this behavior was only evidenced in a few data sets.

Fig. 4 shows the error rates of the SSL algorithms with
respect to k on the ChlorineConcentration (D3) data set using
a variety of graph construction methods. We see that the graphs
generated by LLE outperformed the other graphs. The graphs
generated by HM and the RBF kernel achieved high insta-
bility. We also note that the graphs generated by mutKNN
performed slightly better than those generated by symKNN
and symFKNN.
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Fig. 4. Error rates of the SSL algorithms with respect to k on the ChlorineConcentration (D3) data set using a variety of graph construction methods.

D. Evaluation of regularization parameters

In this section, we evaluate how the performance of
LapRLS is affected with respect to γA and γI . We see in
Table II that LapRLS achieved the best overall result in 8
out of 15 data sets and competitive results in the other data
sets for most graph construction methods. Although it appears
to be a surprising result, we have to notice that LapRLS
has two regularization parameters and, to our knowledge, the
process of parameter selection for this method remains unclear.
Since these regularization parameters may drastically affect
the performance of LapRLS [2], we have to analyze the error
surfaces generated by this method in order to verify whether
it is strongly or weakly dependent of parameter selection with
respect to γA and γI on a given data set. We provide this
analysis in the following.
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Fig. 5. Error surfaces for LapRLS with respect to γA and γI on the
Adiac (using the mutKNN-RBF graph) and ChlorineConcentration (using the
mutKNN-LLE graph) data sets.

Fig. 5(a) shows the error surface generated by LapRLS on
the Adiac (D2) data set using the mutKNN-RBF graph. We
see that the optimal results are achieved when γA = γI , which
is a pattern found in [2] for a data set of text classification.
However, this pattern occurred only in a few combinations of
graph construction method and data set.

Fig. 5(b) shows the error surface generated by LapRLS on
the ChlorineConcentration (D3) data set using the mutKNN-
LLE graph. Although LapRLS achieved the best overall perfor-
mance in this setting (with an error rate of 0.52%), we see that
this method can be considered strongly dependent of parameter
selection with respect to γA and γI on ChlorineConcentration.
This high variance on the error rate (almost 35%) of LapRLS
may hinder the effective use of this method on real applications
of time series transductive classification.

Fig. 6 shows the error surfaces generated by LapRLS on
the Cinc-ECG-torso (D4) data set using the graphs generated
by the RBF kernel. We see that the optimal results occur only
when γA �= γI , which is an opposite pattern to that reported
in Fig. 5(a). Unfortunately, by analyzing the error surfaces
generated by LapRLS, we found no evident explorable pattern
that could help parameter selection.

IV. CONCLUSION

In this paper, we provided a comprehensive empirical
comparison of state-of-the-art graph-based SSL algorithms
combined with a variety of graph construction methods in
order to compare them on time series transductive classification
tasks on imbalanced data sets. Through a comprehensive and
detailed analysis using recently proposed empirical evaluation
models, we observed the following:

• the graphs generated by mutKNN showed high insta-
bility in some data sets for relatively small values of k.
However, these graphs showed good performance and
stability in a variety of data sets, even for small values
of k. Therefore, Hypothesis 1 may not hold in general.
Although we found situations in which the graphs
generated by symKNN and symFKNN achieved high
instability for small values of k, such an instability
is more probable to occur when we use the graphs
generated by mutKNN because they have less edges
than the other graphs for the same value of k;

• for most data sets, the graphs generated by mutKNN
achieved better results than those generated by
symKNN and symFKNN for all weighted matrix
generation methods. In addition, for some data sets,
mutKNN outperformed the competitors by a large
margin. Therefore, mutKNN tends to be the best ad-
jacency graph for time series data; hence, Hypothesis
2 holds for time series transductive classification;

• by analyzing the average rankings of the graph cons-
truction methods in Table III, we see that mutKNN-
RBF achieved the best average ranking for GFHF,
LGC, and LapRLS as well as the best overall average
ranking. Therefore, this graph may be the best graph
for time series transductive classification on imbalan-
ced data sets for general tasks. In the absence of any
other criteria to choose a graph construction method
for real applications, we suggest, from our results, the
use of mutKNN-RBF;
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TABLE IV. ERROR RATES (%) FOR GFHF USING MUTKNN-RBF (k = 20), THE BEST RESULTS FOR GFHF, AND THE BEST OVERALL RESULTS.

Data sets D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

GFHF (mutKNN-RBF) 20.44 37.34 29.43 0.0 4.78 56.49 56.54 6.14 21.18 35.54 0.83 7.24 1.81 0.67 25.24

best results (GFHF) 19.34 31.97 0.52 0.0 3.56 50.97 56.36 4.18 20.0 35.54 0.5 4.4 1.51 0.23 23.35
best results (overall) 18.24 27.88 0.52 0.0 3.46 50.0 55.09 2.22 19.21 35.12 0.17 3.97 1.51 0.23 22.26
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Fig. 6. Error surfaces for LapRLS with respect to γA and γI on the Cinc-ECG-torso data set using graphs generated by the RBF kernel.

• RMGT showed exceptional performance on most data
sets. However, for the data sets with high imbalanced
ratio, this algorithm achieved poor results. Therefore,
Hypothesis 3 may only hold for data sets with high
imbalanced ratio;

• although LapRLS achieved the best overall perfor-
mance in most data sets in the best case analysis, the
error surfaces generated by this method showed high
variance in the error rate with respect to γA and γI .
Therefore, at least for imbalanced data sets, LapRLS
can be considered strongly dependent of parameter
selection with respect to γA and γI , which may hinder
the effective use of this method on real applications
of time series transductive classification. However,
this method can naturally perform induction through
kernel expansions, which may be an advantage over
other methods, depending on the application;

• LGC, LapRLS, and RMGT may not be effective for
time series transductive classification due to the fol-
lowing observations: (1) LGC achieved high instability
on some data sets (see Fig. 1); (2) RMGT showed no
competitive results in some data sets (those with high
imbalanced ratio); and (3) LapRLS can be considered
strongly dependent of parameter selection with respect
to γA and γI in many data sets;

• we note that GFHF achieved competitive results in
most combinations of graph construction method and
data set. In addition, this method is parameter-free;
hence, we just have to choose the parameter k of the
graph. In Table IV, we show the results for GFHF
using mutKNN-RBF with k = 20. We see that this
setting achieved good results in comparison to the
best result reported for GFHF in most data sets.
The performance for this setting can be considered
ineffective only for ChlorineConcentration (D3). As
shown in Fig. 4, only the graphs generated by LLE
were effective in this data set. From our results, we
suggest k = 20 as initial choice for real applications
on time series transductive classification.
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[15] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” JMLR, vol. 7, pp. 1–30, 2006.

3785


