

 Universidade de São Paulo

2014-08-27

SPH fluids for viscous jet buckling

Conference on Graphics, Patterns and Images, XXVII, 2014, Rio de Janeiro.
http://www.producao.usp.br/handle/BDPI/48407

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Matemática Aplicada e Estatística - ICMC/SME Comunicações em Eventos - ICMC/SME

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/48407

SPH Fluids for Viscous Jet Buckling

Luiz Fernando de Souza Andrade ∗, Marcos Sandim ∗, Fabiano Petronetto †, Paulo Pagliosa‡ and Afonso Paiva∗

∗ICMC, USP, São Carlos
† Dept. of Mathematics, UFES, Vitória

‡FACOM, UFMS, Campo Grande

Fig. 1. The liquid rope coiling effect: our technique with SPH fluid particles (left), and the respective free surface (middle) and a real image of honey
coiling (right) extracted from Flickr repository.

Abstract—We present a novel meshfree technique for animat-
ing free surface viscous liquids with jet buckling effects, such as
coiling and folding. Our technique is based on Smoothed Particle
Hydrodynamics (SPH) fluids and allows more realistic and
complex viscous behaviors than the preceding SPH frameworks
in computer animation literature. The viscous liquid is modeled
by a non-Newtonian fluid flow and the variable viscosity under
shear stress is achieved using a viscosity model known as Cross
model. The proposed technique is efficient and stable, and our
framework can animate scenarios with high resolution of SPH
particles in which the simulation speed is significantly acceler-
ated by using Computer Unified Device Architecture (CUDA)
computing platform. This work also includes several examples
that demonstrate the ability of our technique.

Keywords-SPH fluids; jet buckling; viscous liquids; CUDA;
computer animation.

I. INTRODUCTION

A daily life example of viscous jet buckling is the coiling

and folding of a thin thread of syrup or honey falling onto a

spoon. The characteristic motion of a jet buckling is controlled

by the balance among inertia, gravity and viscous forces that

arise from the compressive stress caused by the impact of

the fluid on a rigid surface. In the last years, Smoothed

Particle Hydrodynamics (SPH) [1] has become a popular

numerical meshfree tool for visually realistic animation of

liquids [2]. However, simulating the complex free surface of a

viscous jet buckling in an efficient and realistic way remains

a big challenge for the previous SPH frameworks in computer

animation. The difficulties are related to propose a variable

viscosity model which has a non-linear dependence of the

fluid’s shear rate, an accurate and stable SPH approximation

for viscous acceleration which involves second order deriva-

tives of each component of the velocity field and enforcing

boundary conditions suited to SPH.

In this paper, we present a novel meshfree technique based

on SPH fluids for simulating viscous jet buckling behaviors.

Our technique allows a wide range of realistic viscous effects

of the free surface of liquids, such as coiling and folding, as

shown in Figure 1. In order to capture the viscous behavior

that is characteristic of jet buckling, the time interval between

two consecutive frames needs to be very short, as discussed

in Section III-C, thus increasing the number of time-steps

along the simulation total time. Since the computation in

each time-step is highly intense, but can be performed in

parallel and independently for each SPH particle, the problem

can be suitably mapped to graphics processing units (GPUs).

We use the Computer Unified Device Architecture (CUDA)

by NVIDIA due to its efficiency, object-oriented programming

capability, easy integration with the development environment

we have used, and availability of a lot of libraries and demos

which accompany the CUDA toolkit. The adequacy of using

CUDA for standard SPH fluids can be demonstrated by other

implementations reported in the literature [3], [4]. In summary,

the main contributions of this paper are:

Variable viscosity model. The viscous liquid is modeled

as a non-Newtonian fluid flow and the variable viscosity is

governed by a rheological model known as Cross model [5].

2014 27th SIBGRAPI Conference on Graphics, Patterns and Images

1530-1834/14 $31.00 © 2014 IEEE

DOI 10.1109/SIBGRAPI.2014.47

65

SPH viscous acceleration. We introduce a stable and ro-

bust SPH approximation of fluid’s viscous acceleration using

derivative operators of first order.

SPH jet buckling on CUDA. Using CUDA enables the

animation of jet buckling scenes involving millions of SPH

particles in affordable computational times, notably when

compared to sequential processing, as showed by the experi-

ments presented in Section IV, freeing the CPU for other tasks.

A. Related work

In order to better contextualize our approach and highlight

its properties, we organize the existing frameworks for ani-

mating viscous jet buckling into two main groups, Eulerian

mesh-based and Lagrangian meshfree-based methods.

Eulerian mesh-based. A seminal work in computer ani-

mation was introduced by Goktekin et al. [6]. They simulate

solids and viscoelastic fluids with a small effect of buckling

using an explicit grid-based method with viscosity transition

between solid and non-Newtonian fluid controlled by a quasi-

linear plasticity model. Batty and Bridson [7] developed an

implicit and unconditionally stable method using marker-and-

cell (MAC) grid. Although this method provides high-accuracy

free surface boundary conditions, it is limited to viscous New-

tonian fluids. Bergou et al. [8] proposed a discrete model for

viscous threads using elastic rods to represent thin Newtonian

liquid jets. Despite this method’s realistic results, spurious

results may occur when the jet becomes thick. Recently, this

model was extend to discrete viscous thin sheets [9]. Batty and

Houston [10] presented an adaptive tetrahedral mesh solver to

animate Newtonian liquids with high viscosity. However, the

level set surface generated by this method does not preserve

temporal coherence due to the slow motion of the liquid.

In computational physics literature, there are several papers

using variations of generalized simplified MAC (GENSMAC)

method to simulate viscous jet buckling in arbitrary 2D/3D

domains with explicit [11], [12], [13] and implicit [14] free

surface boundary conditions.

Lagrangian meshfree-based. SPH fluids have been ap-

plied with success in simulations of highly viscous liquids

with variable viscosity [15], [16], [17], [18], [19]. However,

none of these methods in computer animation have captured

viscous buckling behavior. In computational physics, Rafiee et

al. [20] used an incompressible version of SPH to simulate 2D

jet buckling of non-Newtonian fluids, while Xu et al. [21], [22]

extended the traditional weakly compressible SPH method to

deal with 3D simulations. This paper is inspired in [21] and it

improves that work in several ways: our stable SPH approx-

imation of momentum equation does not require additional

terms, artificial stress and artificial viscosity, to prevent particle

clustering and unphysical behavior of free surface.

To our best knowledge, this paper is the first work to

propose a meshfree framework to animate viscous jet buckling

in computer animation literature.

II. GOVERNING EQUATIONS

The governing equations for simulating fluid flow are

derived from mass and momentum conservation laws. La-

grangian framework describes these laws from the viewpoint

of an infinitesimally small fluid element, i.e., a particle. In this

framework the mass conservation is naturally satisfied, since

the particle mass is constant, then the total mass of the system

is preserved. For weakly compressible fluids, the momentum

equation can be written as follow:

dv

dt
= −1

ρ
∇p+

1

ρ
∇ · τ + g (1)

where t denotes the time, v the velocity field, ρ the density,

p the pressure, g the gravity acceleration vector and τ the

shear stress tensor.

Lagrangian formulation of Equation (1) represents the ac-

celeration of a particle moving with the fluid flow. The term

− 1
ρ∇p is related to particle acceleration due to pressure

changes in the fluid. While, the term 1
ρ∇ · τ describes the

viscous acceleration due to friction forces caused by particles

with different velocities. This last term plays a key role in

viscous jet buckling animation.

Cross model

In order to animate a wide variety of buckling effects,

Newtonian and non-Newtonian fluid flows are used in this

paper. In particular, non-Newtonian fluids have non-linear

dependence of the shear stress τ with respect to the rate-of-

deformation tensor D = ∇v + (∇v)
�

as follows

τ = ρ ν(D)D , with D =

√
1
2 · trace (D)

2
. (2)

The Cross model [5] is one of simplest and most used model

for shear-thinning behavior, i.e., the fluid’s viscosity decreases

with increasing of the local shear rate D, thus the kinematic

viscosity ν is defined as a function of D:

ν (D) = ν∞ +
ν0 − ν∞

1 + (KD)n
, (3)

where K and n are positive parameters, and ν0, ν∞ are the

limiting values of the viscosity at low and high shear rates,

respectively. The units of viscosity are m2/s.

Assuming K = 0 in Equation (3), the non-Newtonian

fluid model is simplified to a Newtonian fluid with constant

kinematic viscosity ν0.

III. OUR TECHNIQUE

There are several SPH frameworks to animate fluid flow.

In our animation framework, we use a SPH version for weakly

compressible fluids [23], extended by our method. A wide

description of SPH fluids for graphics can be found in [2].

66

A. SPH fluids
The main idea of SPH in fluid flow simulation is to dis-

cretize the fluid by a set of particles where each particle i has

attributes such as position xi, velocity vi, pressure pi, mass mi

(constant across all particles) and density ρi. A scalar or vector

attribute fi = f(xi) is updated using a SPH approximation

fi =
∑
j∈Ni

fj Wh(xij)
mj

ρj
, (4)

where j indexes the particles lying in the neighborhood Ni of

the particle i and xij = ‖xi−xj‖. The kernel function Wh is

a radially symmetric, positive, smooth, compactly supported

function and the value h defines the region of influence of Wh.

Fluid attributes and the differential operators of the momentum

equation (1) can be approximated in a similar manner as

follows.

Density computation. We compute the density using the

traditional direct summation derived from Equation (4) with

poly6 kernel presented in [23]:

ρi =
∑
j∈Ni

mj Wh(xij) . (5)

This form preserves mass exactly without involving kernel

derivatives.

Equation of state. In standard SPH frameworks, an in-

compressible fluid is approximated by a weakly compressible

fluid. In other words, the pressure is computed directly from

density through an equation of state. For simplicity, we choose

an equation of state proposed by Morris et al. [24]:

pi = c2(ρi − ρ0) , (6)

where c is the speed of sound in the fluid and ρ0 is a reference

density. The values c =
√
1.5m/s and ρ0 = 103 kg/m3 are

tuned out to be suitable for all experiments.

Pressure acceleration. We use Müller’s SPH pressure

gradient with spiky kernel [23]. The pressure acceleration for

each particle is given by:

− 1

ρi
∇pi = −

∑
j∈Ni

mj
pi + pj
2ρj

∇iWh(xij) . (7)

This choice avoids numerical instabilities associated with

particle clustering, because the SPH gradient does not vanish

when xij becomes closer to zero.

Viscous acceleration. In order to compute the shear stress

τi at particle i in Equation (2), we adopt the same SPH

approximation as Paiva et al. [19] for the deformation tensor

Di = ∇vi +∇v�i with:

∇vi =
∑
j∈Ni

mj

ρj
(vj − vi)⊗∇iWh(xij) . (8)

After updating shear stress at all particles, the viscous accel-

eration is approximated by:

1

ρi
∇ · τi =

∑
j∈Ni

(
τi
ρ2i

+
τj
ρ2j

)
· ∇iWh(xij) . (9)

w
all

Fig. 2. SPH particles: fluid (yellow) and boundary (blue) particles.

B. Boundary conditions

We represent the solid wall boundaries by fixed virtual

particles [25]. These boundary particles perform similar to the

fluid particles and contribute to the SPH approximation of the

fluid attributes. The density of the fluid particles is extrapolated

for boundary particles using Equation (5). Then, the pressure

is computed in the boundary particles directly from (6).

The increasing pressure at boundary particles prevents the

fluid particles from penetrating to the solid walls. In order to

enforce the no-slip condition, the velocities of the boundary

particles are set to zero throughout the entire simulation. Those

particles are placed outside the computational domain with

particle spacing equal to the initial particle spacing of the fluid

particles. The wall boundaries are modeled by a few layers of

the boundary particles as illustrated in Figure 2. The particle

deficiency at wall boundaries is alleviated by taking the total

width of boundary particle layers at least equal to the radius

of influence of the SPH kernel.

Another boundary condition is the stress-free condition for

momentum equation (1), which states that the total normal

stress must be zero at free surface. Mathematically, it can

be expressed as (−pI + τ) · n = 0, where I is the iden-

tity matrix and n is the normal to the free surface. This

condition is trivially satisfied by the SPH gradients because

the boundary integrals are ignored in the SPH derivatives

approximation [26].

C. Implementation

We implement our technique in C++ and CUDA C++ using

the Microsoft Visual Studio 2012 for Windows and CUDA 6.0.

The input data of the program are given in an initialization file

or interactively by the user and include: the material properties

of the fluid model, configuration of the jet (shape, position,

trajectory along the simulation, injection rate, maximum num-

ber of particles), and simulation parameters (time-step δt,
maximum number of steps, total time), among others. For

each time-step δt, the program updates the particle attributes

following the sequence in Algorithm 1.

The first task is to add new fluid particles into the scene,

which are generated by the jet inlet in CPU and then sent to

a preallocated area (enough to store the maximum number of

67

Fig. 3. Numerical simulation of the torus fluid spreading. The initial configuration of the torus fluid is illustrated in top-left. In bottom-left, we plot (loglog
scales) the Cross model with parameters: [ν∞, ν0] = [0.2, 2], n = 1 and K = 0, 1, 10 and 100. Fluid flow simulations at different times (rows) in the right
side: the first column illustrates a Newtonian fluid (K = 0) and non-Newtonian fluids on the remaining columns. The colors code the viscosity νi ∈ [ν∞, ν0]
in the SPH particles.

Algorithm 1 Single time step of the SPH framework

1: Inject new fluid particles into the scene

2: for each particle i do
3: Find neighbors Ni

4: end for
5: for each particle i do
6: Update ρi using Equation (5)

7: Update pi using Equation (6)

8: end for
9: for each particle i do

10: Update ∇vi using Equation (8)

11: Update τi using Equation (2)

12: end for
13: for each particle i do
14: Compute pressure acceleration using Equation (7)

15: Compute viscous acceleration using Equation (9)

16: end for
17: for each particle i do
18: Update vi and xi with leap-frog scheme

19: end for

particles) in the global memory of the GPU. New particles are

created iff:

1) The set of particles previously generated by the jet inlet

has moved a given distance from the jet position;

2) The maximum number of particles into the scene has

not yet been reached.

The data structure for the particle system representing the fluid

is implemented using the Thrust library [27] and organized as

a structure of arrays (of position, velocity, density, pressure,

etc.) in order to allow coalesced access to the GPU global

memory.

Next tasks are performed entirely in parallel on GPU.

For the neighbor search, we use the algorithm described in

the Particles demo in the CUDA’s toolkit [28], which is

based on a subdivision of the simulation space into a regular

grid of linearly indexed cells. The algorithm relies on several

CUDA kernels. The first one calculates a hash value for each

particle based on the index of the cell containing the particle.

We then use the Thrust sorting function to reorder the particles

according to their hash values. Finally, a kernel which uses a

thread per particle builds its neighbor list by comparing the

cell index of the current particle with the cell index of the

previous particle in the sorted list (see [28] for details).

The remaining tasks in Algorithm 1 are implemented by

four CUDA kernels which also use one thread per particle.

Each kernel computes, respectively, density and pressure,

deformation tensor and shear stress, pressure and viscous ac-

celerations, and velocity and position of each particle. We use

the leap-frog scheme to integrate the system of differential

equations provided by the SPH approximation of (1) along

the particle trajectories. The numerical stability in this explicit

time integration scheme is ensured under time-step constraints

given by Courant-Friedrichs-Lewy (CFL) and viscous force

conditions [19]:

δt ≤ 0.1 min

(
h

c
,
h2

8ν0

)
. (10)

Respecting the Equation (10), we choose δt = 10−6 seconds

in our experiments.

The free surface rendering is performed by blobs (metaballs)

from POV-Ray. The blob radius is equal to the radius of

influence of the SPH kernel used in the simulation.

68

Fig. 4. Numerical simulation of the torus fluid spreading (Figure 3 shows initial configuration of the torus fluid). Fixing K = 1, the graphs (log-log scales)
illustrate the Cross model with parameters: [ν∞, ν0] = [0.2, 2], n = 0.5, 1.0 and 10 (top-left); and n = 1, [ν∞, ν0] = [0.2, 2], [0.2, 20] and [0.002, 2]
(bottom-left). In the right side, the respective simulations at different times (rows) are shown. The first three columns illustrate the non-Newtonian fluid with
variations of the parameter n. The last three columns, non-Newtonian fluid with distinct viscosity ranges. The colors code the viscosity νi ∈ [ν∞, ν0] in the
SPH particles.

IV. RESULTS AND COMPARISONS

In this section, we present the results provided by our

technique, including animations of viscous liquids with coiling

and folding effects.

Initially, we discuss the variable viscosity effects of non-

Newtonian fluids in simulations of gravity spreading. Then,

we apply our technique to a variety of situations involving jet

buckling.

All examples have been generated in a computer equipped

with a CPU Intel i5 3570 3.4Hz with 8GB of RAM, and a

NVIDIA GeForce 650 with 384 CUDA cores and 1GB of

RAM.

Torus fluid

In this first result, to demonstrate that our method can model

shear-thinning behavior using the Cross model, we performed

the numerical simulation of a torus fluid spreading on a plane

surface due to gravity (9.8m/s2).

Figure 3 shows the results of our method using the Cross

model with n = 1, ν0 = 2.0, ν∞ = 0.2 and four values of K,

namely K = 0 for a Newtonian fluid (which corresponds to

assign a constant viscosity at ν0) and K = 1.0, 10.0 and 100.0
for a non-Newtonian fluid. The shear-thinning is increased at

higher values of K allowing the fluid to spread more over the

surface (see last row).

Another feature of the Cross model is the parameter n which

determines the rate of decay of the viscosity as a function of

the shear rate. The viscosity transition between the viscosity

limits ν∞ and ν0 becomes faster at high values of n. Moreover,

different rates between these limits also produce different

behaviors in the fluid flow.

Figure 4 illustrates the effect of the parameters n, ν∞ and ν0
in our method, fixing K = 1. Left graphs show the viscosity

variation under influence of those parameters, varying either

n (top) or [ν∞, ν0] (bottom). On the right, corresponding

simulations with those combinations of parameters are shown.

The first three columns show the viscosity function, setting

K = 1 and [ν∞, ν0] = [0.2, 2], varying the index parameters

n = 0.5, 1 and 10. The last three columns show the viscosity

function depending only of ν∞ and ν0. Fixing n = 1, we test

different ranges of viscosity [ν∞, ν0]: [0.2, 2], [0.002, 2] and

[0.2, 20].

Figures 3 and 4 help us to understand the shear-tinning

behavior provided by Cross model with different sets of

parameters. The results show that the Cross model determines

the spatial variation of the viscous force that reflects the

behavior of the fluid flow. This model allows a wide range

of viscous effects of the free surface of Newtonian and non-

Newtonian fluids in a small set of user parameters.

Jet buckling

D

H

The Jet buckling problem has

been studied in several experi-

mental and analytical investiga-

tions [29], [30]. This phenomenon

is characterized by the formation

of a physical instability when a

thin viscous jet hits a rigid plate.

The geometry of a jet buckling

problem is given by the height H
between the inlet and the rigid plate and by the jet width D in

meters. In our simulations of this problem, we use values for

H , D and physical parameters consistent with the conditions

described by Tomé et al. [13].

When a stream of viscous fluid falls onto a surface, the

deceleration of the stream near impact causes the buckling

effect and the fluid starts to coil on itself. Figure 5 illustrates

the coiling formation in our results. Note that, as the coiling

69

Fig. 5. The formation of coils in a falling stream of viscous liquid.

Fig. 6. Jet buckling of a Newtonian fluid. In top row, the result given
by an implementation of [23] which uses the Laplacian velocity operator in
the viscous acceleration. In bottom row, we show the result achieved by our
technique with same parameters (Cross model with K = 0).

develops, the fluid tends to have a more viscous behavior at

the surface, which prevents the fluid from further spreading.

Hence, when the falling stream contacts the coils already

formed, the viscosity decreases and new coils are created.

Figure 6 compares our technique with the popular SPH

framework proposed by Müller et al. [23] in which the viscous

term of Equation (1) is simplified using the Laplacian velocity

operator ν0Δv. Choosing the same parameters in both simula-

tions, we can verify that using the Laplacian velocity prevents

the buckling development, leading to a spurious result.
In order to illustrate the relevance of the viscosity variation

in our method, Figure 7 shows two jet buckling with distinct

behaviors by applying Cross model in different viscosity

intervals. Despite the fact that the fluids are fairly viscous,

we can note, on the bottom of the fluid, the shear-thinning

action, where the fluid becomes less viscous, spreading and

mixing.
The shear-thinning behavior provided by inlet flow using

rectangular jets are illustrated in Figure 8. The flow behavior

of the Newtonian fluid (using K = 0 in Cross model) is more

viscous than non-Newtonian fluid (using K = 1) due to the

viscosity variation given by our technique. It is noted that the

number of layers is reasonably pronounced in the Newtonian

case and less pronounced in the non-Newtonian case.

Moving inlet jet
Figure 9 illustrates some ‘stitching’ patterns obtained with

our method when a viscous liquid is injected by a moving jet.

The buckling of the fluid and motion of jet combine to give

a wide range of regular and periodic patterns, like a “sewing

machine”.

Comparison between CPU and GPU
Table I compares the performance of our implementation

running a dam break sequentially on CPU and in parallel

on GPU. The parameters of the Cross model are: K = 1,

n = 1, ν0 = 0.05, and ν∞ = 0.005. The first column is

the number of particles; the columns labeled CPU and GPU

show the simulation times, in seconds, for 1000 steps on CPU

and GPU, respectively; the column Speedup is the relation

CPU/GPU; and the column Efficiency is the speedup divided

by the number of CUDA cores used in the experiment (384).

Though the low efficiency, the speedup of about 27 for de

number of particles varying between 64K and 256K justifies

the use of the GPU: keeping that speedup, the CPU time for

the simulation of 1M particles (not measured in our test) would

be about �3.3 hours, against �7.4 minutes on GPU.

70

Fig. 7. Jet buckling with different viscosity intervals. Our method provides different coiling effects varying the parameters of Cross model.

Fig. 8. Effect of the variable viscosity in our technique. At top, the simulation
of a Newtonian fluid (K = 0) defines well-defined fluid layers, while a non-
Newtonian fluid (K = 1) the fluid layers are mixed due to the shear-thinning.

V. CONCLUDING REMARKS

In this paper, we introduced a novel SPH-based technique

for animating free surface viscous liquids with jet buckling.

Unlike the previous SPH frameworks, our technique allows

visually realistic viscous behaviors, such as coiling and fold-

TABLE I
PERFORMANCE STATISTICS.

part. CPU GPU Speedup Efficiency
1K 7.20s 1.03s 7.0 1.8%
4K 35.66s 2.40s 14.9 3.9%

16K 156.42s 6.81s 23.0 6.0%
64K 682.00s 25.80s 26.4 6.9%

128K 1374.86s 51.35s 26.8 7.0%
256K 2887.20s 104.84s 27.6 7.2%

1M — 444.93s — —

ing. The technique relies on the SPH approximation of a

non-Newtonian fluid, where the variable viscosity is ruled

by the Cross model. The effectiveness of the technique is

demonstrated on simple and intuitive examples which match

with the physics, leading to an efficient and attractive scheme

for animation. Moreover, simulation time is considerably im-

proved by using CUDA computing platform.
One limitation of our technique is that its results depend

of the time-step size, the condition (10) may not permit large

time-steps in the simulation, thus resulting a time consuming

animation.
A natural direction for future work is to extend our tech-

nique to deal with truly incompressible fluid flows.

ACKNOWLEDGMENT

This work is supported by FAPESP (São Paulo Research

Foundation) under grants #2013/19760-5 and #2014/11981-

5, FAPES (Espı́rito Santo Research Foundation) grant

#53600100/11 and CNPq (Brazilian National Council for

Scientific and Technological Development). We would like

to thank the anonymous reviewers for their valuable com-

ments and suggestions. The real image of honey (Figure 1)

was provided by Domiriel under Creative Commons license

(www.flickr.com/photos/domiriel/8037182858/).

71

Fig. 9. Stitching patterns of a viscous thread poured by a moving jet.

REFERENCES

[1] G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics. World
Science, 2005.

[2] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH Fluids in Computer Graphics,” in Eurographics 2014 – State of
the Art Reports.

[3] A. Herault, G. Bilotta, and R. A. Dalrymple, “SPH on GPU with
CUDA,” Journal of Hydraulic Research, vol. 48, no. Extra Issue, pp.
74–79, 2010.

[4] Ø. E. Krog and A. C. Elster, “Fast gpu-based fluid simulations using
sph,” in Applied Parallel and Scientific Computing. Springer, 2012, pp.
98–109.

[5] M. M. Cross, “Rheology of non-newtonian fluids: A new flow equation
for pseudoplastic systems,” Journal of Colloid Science, vol. 20, no. 5,
pp. 417 – 437, 1965.

[6] T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien, “A method for
animating viscoelastic fluids,” ACM Transactions on Graphics, vol. 23,
no. 3, pp. 463–468, 2004.

[7] C. Batty and R. Bridson, “Accurate viscous free surfaces for buckling,
coiling, and rotating liquids,” in Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2008, pp.
219–228.

[8] M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun,
“Discrete viscous threads,” ACM Transactions on Graphics, vol. 29,
no. 4, pp. 116:1–116:10, 2010.

[9] C. Batty, A. Uribe, B. Audoly, and E. Grinspun, “Discrete viscous
sheets,” ACM Transactions on Graphics, vol. 31, no. 4, pp. 113:1–113:7,
2012.

[10] C. Batty and B. Houston, “A simple finite volume method for
adaptive viscous liquids,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’11, 2011, pp. 111–118.

[11] M. F. Tomé and S. Mckee, “Numerical simulation of viscous flow:
buckling of planar jets,” International Journal for Numerical Methods
in Fluids, vol. 29, no. 6, pp. 705–718, 1999.

[12] M. Tomé, A. Filho, J. Cuminato, N. Mangiavacchi, and S. Mc-
kee, “GENSMAC3D: a numerical method for solving unsteady three-
dimensional free surface flows,” International Journal for Numerical
Methods in Fluids, vol. 37, no. 7, pp. 747–796, 2001.

[13] M. Tomé, L. Grossi, A. Castelo, J. Cuminato, N. Mangiavacchi, V. Fer-
reira, F. de Sousa, and S. McKee, “A numerical method for solving
three-dimensional generalized Newtonian free surface flows,” Journal
of Non-Newtonian Fluid Mechanics, vol. 123, no. 2–3, pp. 85 – 103,
2004.

[14] C. M. Oishi, M. F. Tomé, J. A. Cuminato, and S. McKee, “An implicit
technique for solving 3d low Reynolds number moving free surface
flows,” Journal of Computational Physics, vol. 227, no. 16, pp. 7446–
7468, 2008.

[15] S. Clavet, P. Beaudoin, and P. Poulin, “Particle-based viscoelastic fluid
simulation,” in Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2005, pp. 219–228.

[16] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross, “A
unified lagrangian approach to solid-fluid animation,” in Symposium on
Point-Based Graphics 2005, 2005, pp. 125–134.

[17] A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares, “Particle-based non-
newtonian fluid animation for melting objects,” in Sibgrapi 2006 (XIX
Brazilian Symposium on Computer Graphics and Image Processing).
IEEE, 2006, pp. 78–85.

[18] B. Solenthaler, J. Schläfli, and R. Pajarola, “A unified particle model
for fluid-solid interactions,” Computer Animation and Virtual Worlds,
vol. 18, no. 1, pp. 69–82, 2007.

[19] A. Paiva, F. Petronetto, T. Lewiner, and G. Tavares, “Particle-based
viscoplastic fluid/solid simulation,” Computer-Aided Design, vol. 41,
no. 4, pp. 306–314, 2009.

[20] A. Rafiee, M. Manzari, and M. Hosseini, “An incompressible SPH
method for simulation of unsteady viscoelastic free-surface flows,”
International Journal of Non-Linear Mechanics, vol. 42, no. 10, pp.
1210 – 1223, 2007.

[21] X. Xu, J. Ouyang, B. Yang, and Z. Liu, “SPH simulations of three-
dimensional non-Newtonian free surface flows,” Computer Methods in
Applied Mechanics and Engineering, vol. 256, pp. 101 – 116, 2013.

[22] X. Xu and J. Ouyang, “A SPH-based particle method for simulating
3D transient free surface flows of branched polymer melts,” Journal of
Non-Newtonian Fluid Mechanics, vol. 202, pp. 54 – 71, 2013.

[23] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” in Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2003, pp.
154–159.

[24] J. P. Morris, P. J. Fox, and Y. Zhu, “Modeling low reynolds number for
incompressible flows using SPH,” Journal of Computational Physics,
vol. 136, pp. 214–226, 1997.

[25] S. Koshizuka, A. Nobe, and Y. Oka, “Numerical analysis of breaking
waves using the moving particle semi-implicit method,” International
Journal for Numerical Methods in Fluids, vol. 26, no. 7, pp. 751–769,
1998.

[26] J. Fang, R. G. Owens, L. Tacher, and A. Parriaux, “A numerical study
of the SPH method for simulating transient viscoelastic free surface
flows,” Journal of Non-Newtonian Fluid Mechanics, vol. 139, no. 1–2,
pp. 68–84, 2006.

[27] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.7.0. [Online]. Available: http://thrust.github.io/

[28] S. Green, “Particle simulation using CUDA,” 2012. [Online]. Available:
docs.nvidia.com/cuda/samples/5 Simulations/particles/doc/particles.pdf

[29] J. O. Cruickshank, “Low-reynolds-number instabilities in stagnating jet
flows,” Journal of Fluid Mechanics, vol. 193, pp. 111–127, 1988.

[30] M. J. Blount and J. R. Lister, “The asymptotic structure of a slender
dragged viscous thread,” Journal of Fluid Mechanics, vol. 674, pp. 489–
521, 2011.

72

