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Abstract—In conventional classification problems, each in-
stance of a dataset is associated with just one among two or
more classes. However, there are more complex classification
problems where instances can be simultaneously classified into
classes belonging to two or more paths of a hierarchy. Such a
hierarchy can be structured as a tree or a directed acyclic graph.
These problems are known in the machine learning literature as
hierarchical multi-label classification (HMC) problems. In this
Thesis, two methods for hierarchical multi-label classification are
proposed and investigated. The first one associates a Multi-Layer
Perceptron (MLP) to each hierarchical level, being each MLP
responsible for the predictions in its associated level. The method
is called HMC-LMLP. The second method induces hierarchical
multi-label classification rules using a Genetic Algorithm. The
method is called HMC-GA. Experiments using hierarchies struc-
tured as trees showed that HMC-LMLP obtained classification
performances superior to the state-of-the-art method in the
literature, and superior or competitive performances when using
graph-structured hierarchies. The HMC-GA method obtained
competitive results with other methods of the literature in both
tree and graph-structured hierarchies, being able of inducing, in
many cases, smaller and in less quantity rules.
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I. INTRODUCTION

In the majority of the classification problems described in

the literature, a classifier assigns a single class to a given

instance, and the problem classes assume a flat structure.

However, in a variety of real-world classification problems,

classes have a hierarchical structure, where they are divided

into subclasses or grouped in superclasses. In addition, in-

stances can be assigned simultaneously to two or more classes

that belong to the same hierarchical level. These problems are

known in the machine learning (ML) literature as Hierarchical

Multi-Label Classification (HMC) problems. A hierarchical

class structure can be represented either as a tree or as a

directed acyclic graph (DAG).

The main difference between HMC problems structured as

trees and DAGs is that, in the tree structure, each node has

just one parent class, whereas in the DAG structure each node

may have more than one parent node. Fig. 1 depicts hierarchies

structured as trees and DAGs.

Two main approaches have been used to solve HMC prob-

lems: local and global. In the local approach, conventional

classification algorithms, such as decision trees, are trained

to produce a hierarchy of classifiers, which are later used to

classify unlabeled instances following a top-down strategy [8].

In this approach, local information about the class hierarchy

is used during the induction of each base classifier. According

to [9], this local information can be used in different ways,

depending on how the local classifiers are induced. The three

main strategies for using local information are: one Local

Classifier per Node (LCN), one Local Classifier per Parent

Node (LCPN), and one Local Classifier per Level (LCL).

The LCN strategy trains one binary classifier for each class

of the hierarchy [10]. The LCPN strategy trains, for each

internal class, a multi-class classifier to distinguish between its

subclasses [11], and the LCL strategy trains one multi-class

classifier for each hierarchical level, where each classifier is

responsible for the prediction in its associated level [7].

Differently from the local approach, the global approach

induces a single classifier using all classes of the hierarchy

at once. After the training process, the classification of a new

instance occurs in just one step [12]. As global methods induce

a single classifier to consider the specificities of the classifi-

cation problem, they usually do not make use of conventional

classification algorithms, unless these are adapted to consider

the hierarchy of classes.

The main contributions of this Thesis are as follows.

First, a new HMC method termed Hierarchical Multi-Label

Classification with Local Multi-Layer Perceptron (HMC-
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Fig. 1. Hierarchies structured as: (a) trees; (b) DAGs

LMLP) is proposed, and applied to the problem of protein

function prediction. The main idea is to reduce the hierarchical

problem by solving a multi-label problem in each level of the

class hierarchy. This is done by incrementally training a set

of neural networks, one neural network per hierarchical level.

Each of these neural networks is responsible for the prediction

of the classes belonging to its associated hierarchical level.

Second, we propose a Genetic Algorithm (GA) to generate

HMC rules. The method is called Hierarchical Multi-Label

Classification with a Genetic Algorithm (HMC-GA). It is

a extended version of the method proposed in Cerri et. al.

[5]. We use a new fitness function and selection operator to

evolve antecedents of classification rules. The consequents

of the rules are obtained using a deterministic procedure.

They are represented as a class vector v, where each position

corresponds to a class, and receives a real value interpreted as

the probability of an instance being classified in the class. We

evolve propositional rules, which traditionally evaluates if an

attribute value ak satisfies a test condition, e.g. Ak ≤ xi,k.

The remainder of this manuscript is organized as follows.

Sections II and III present the details of the proposed meth-

ods HMC-LMLP and HMC-GA. The methodology employed

for the empirical analysis is discussed in Section IV. The

experimental analysis is described in Section V, where the

proposed methods are compared with literature methods for

HMC on 20 protein function prediction datasets structured as

trees and DAGs. Finally, we summarize the conclusions and

discuss topics for future work in Section VI.

II. HMC-LMLP

The idea behind HMC-LMLP is to divide the learning

process into a number of steps, aiming at learning a complex

model through the combination of few simpler models, which

are learned sequentially. By reducing the problem, each model

in the sequence is forced to learn something different from

the previously trained models, breaking down the complex

learning process into simpler processes.

HMC-LMLP works by learning MLP networks sequentially,

one for each level of the class hierarchy. Each MLP is

responsible for extracting local information from the instances

at each level, which we believe to be useful in the classification

of unlabeled instances. Since HMC problems are usually very

complex, our hypothesis is that different patterns can be

extracted from the instances in the different hierarchical levels.

Note that, whereas many different classification strategies

could be employed in a similar architecture, we decided for

neural networks because of the simplicity in associating a

class per output neuron. Therefore, obtaining a multi-label

prediction for an instance is done in a straightforward fashion.

In this section we present the preliminary version of the

HMC-LMLP previously presented in [1], together with the

new, enhanced, version. Besides, two additional baseline vari-

ants are also proposed in this Thesis. For convenience, the

preliminary version will be henceforth named HMC-LMLP-

Labels, since it uses the classes predicted in one level as

the unique input to the MLP responsible for the predictions

in the next level. The new version proposed here is termed

HMC-LMLP-Predicted, considering that it employs the classes

predicted by an MLP in one level to complement the feature

vectors of the instances used to train an MLP in the next level.

The first baseline variant, called HMC-LMLP-True, employs,

at each level, the true labels of the instances from the previous

level to complement the feature vectors. The second baseline

variant is named HMC-LMLP-NoLabels, since it uses only

the original feature vectors of the instances to train the MLP

at each level. For simplicity, all the networks used in this study

have only one hidden layer.

A. HMC-LMLP-Labels

In Fig. 2, the architecture and the training process of

HMC-LMLP-Labels are given. In this figure, X represents

the instances assigned to classes from the level l; hl and

Ol are, respectively, the hidden layer and output layer of

the MLP network associated with level l. The matrices W1l

and W2l represent, respectively, the weights connecting the

input attributes and the neurons in the hidden layer, and the

neurons in the hidden and output layers of the MLP associated

with level l.

Initially, an MLP is associated with the first hierarchical

level, having the training instances (X) as inputs. In order

to allow the neural network to predict a set of labels, each

output neuron is associated with one class. After the MLP
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Fig. 2. Example of the HMC-LMLP-Labels architecture. (a) Training an MLP at the first level; (b) Using the output of the first MLP as input to train the
MLP at the second level; (c) Using the output of the second MLP to train the MLP at the third level.

has been trained for the first hierarchical level (Fig. 2-(a)), a

second MLP is associated with the next level of the hierarchy.

The input for this network is now the output provided by the

previously trained MLP, as shown in Fig. 2-(b). This process

of incrementally training an MLP for each hierarchical level

terminates when the last level of the hierarchy is reached.

When training an MLP for a specific hierarchical level, the

MLPs associated with the previous levels are not re-trained,

considering that their training has already taken place in the

previous steps. When training an MLP for level l, the previous

l− 1 MLP networks are used only to provide the input values

for the current training process. Hence, when training an MLP

for level l, its input values are obtained by feeding training

instances to the MLP associated with the first level. The output

values from the first MLP are then used as input to the second

MLP (associated with the second level), which then provides

its output values to be used as input values for the next MLP

network. This process continues until the MLP associated with

level l is reached. To classify unlabeled instances, these are fed

into the first MLP associated with the first level. The output

values of the first MLP are then used to feed the second MLP

associated with the second level, and this process is repeated

level by level until the last level is reached.

B. HMC-LMLP-Predicted

Fig. 3 illustrates the architecture of the HMC-LMLP-

Predicted and its training process. In this figure, Xl represents

the instances assigned to classes from the level l. The training

process is similar to HMC-LMLP-Labels. However, each MLP

from the second level onward uses the augmented feature

vectors of the instances belonging to its respective associated

level as inputs. The feature vectors of the instances used to

train an MLP network at level l are complemented with the

output from the MLP trained at level l − 1.

The neural network associated with the first level is trained

with all training instances (X1), since all instances are as-

signed to the classes from the first hierarchical level. At the

second level, the MLP input is now the training instances that

are assigned to the classes belonging to level 2 (X2), combined

with the output provided by the previously trained MLP, i.e.,

real numbers that are used to classify the instances at level

1. The advantage of using the augmented feature vector for

training each MLP is the incorporation of label dependency in

the learning process. A similar approach was proposed in [13]–

[15], where labels were used to augment the feature space of

the instances in order to enable binary classifiers to discover

existing label dependency by themselves.

The training of the neural network at the third level follows

the same procedure adopted for the second level (Fig. 3-

(c)). This supervised incremental greedy procedure continues

until the last level of the hierarchy is reached. Recall that

when training an MLP network for level l, the neural network

associated with level l − 1 is used only to provide the inputs

that will augment the feature vectors of the training instances

for the MLP network associated with level l.

C. HMC-LMLP-True

The training process of HMC-LMLP-True follows the same

procedure adopted in HMC-LMLP-Predicted, with the differ-

ence that now the true class labels of the instances are used to

complement the feature vectors, instead of the predicted class

labels. Fig. 4 illustrates the architecture of the HMC-LMLP-

True and the training process. In this figure, Tl are the true

class labels associated to the instances at the level l. Note that

now each MLP is trained separately, since an MLP associated

to level l does not depend anymore on the predictions made

by the MLP associated to level l − 1.

D. HMC-LMLP-NoLabels

In HMC-LMLP-NoLabels, an individual MLP is trained

for each hierarchical level without using the class labels

(neither true nor predicted) to complement the feature vectors

of the instances. Fig. 5 illustrates the HMC-LMLP-NoLabels

architecture and the training process.

E. Obtaining final predictions

In the test phase of HMC-LMLP-Predicted and HMC-

LMLP-True (i.e., when predicting a test instance), a top-down

strategy is employed. The test instance is fed to the first MLP
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Fig. 3. Example of the HMC-LMLP-Predicted architecture. (a) Training an MLP at the first level; (b) Using the output of the first MLP to augment the feature
vector of the instances used to train the MLP at the second level; (c) Using the output of the second MLP to augment the feature vector of the instances used
to train the MLP at the third level.
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Fig. 4. Example of the HMC-LMLP-True architecture. (a) Training an MLP at the first level; (b) Using the true classes of the instances in level 1 to augment
the feature vector of the instances used to train the MLP at the second level; (c) Using the true classes of the instances in level 2 to augment the feature
vector of the instances used to train the MLP at the third level.

(first level), and the output from this MLP is used to com-

plement the feature vector of the instance1. This augmented

feature vector is then used as input to the MLP associated with

the second level, whose prediction values will, once again,

complement the input for the MLP at the third level. This

procedure is repeated until the last MLP network, associated

with the last level, is reached. As previously mentioned, in

both the training and test phases of HMC-LMLP-Predicted,

the augmentation of feature vectors is not incremental, i.e., the

feature vector of an instance being fed into an MLP associated

with level l is only complemented by the output from the MLP

1Recall that, in the test phase, the true labels are not available to the MLPs.

associated with level l−1. The same is true for HMC-LMLP-

True, with the difference that the true class labels are used

in the training phase and the predicted classes are used in the

test phase. In HMC-LMLP-NoLabels, all instances are fed into

all MLPs at every level. Each MLP then gives independent

predictions for the instances at each level.

To obtain the final prediction for a test instance – consider-

ing all HMC-LMLP variations – thresholds are applied to the

output prediction values from each of the MLPs to define the

predictions for each level. If the output of a given neuron j is

equal to or larger than a given threshold, the instance being

classified is assigned to the class cj . The final classification

from HMC-LMLP is given by a binary vector v of size |C|,
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Fig. 5. Example of the HMC-LMLP-NoLabels architecture. (a) Training an MLP at the first level; (b) Training an MLP at the second level; (c) Training an
MLP at the third level.

where C is the set of all classes in the hierarchy. If the output

value of neuron j is equal to or larger than a given threshold,

the value 1 is assigned to position vj . Otherwise, the position

is set to 0. It is expected that different threshold values result

in different predicted classes. As the activation function used

in the neurons is the logistic sigmoid function, the output

values range from 0 to 1. Thus, we can make use of threshold

values also ranging from 0 to 1. The larger the threshold

value employed, the lower the number of predicted classes

will be. Conversely, the lower the threshold value employed,

the larger the number of predicted classes. It is important to

recall that, during the classification process, the output values

that are passed from network to network are not the values

obtained after the application of a threshold (0 or 1). The

regular output values from the last-layer neurons, which are

within [0,1], are not modified. The application of the threshold

is only performed to generate the final predictions.

After HMC-LMLP has provided the final predictions, a

post-processing phase is employed to correct eventual classi-

fication inconsistencies, i.e., when a subclass is predicted but

its superclass is not. These inconsistencies may occur because

each MLP makes its predictions individually, and even though

these individual MLPs make use of data from the previous

levels, this does not guarantee that the superclasses of all

predicted subclasses have also been predicted. This problem

is intrinsic to the LCL strategy [9]. The post-processing phase

guarantees that only consistent predictions are made.

We use a very simple procedure to correct inconsistencies

in the predictions. Our post-processing phase simply removes

from the the prediction those predicted classes that do not have

predicted superclasses.

III. HMC-GA

Hierarchical Multi-Label Classification with a Genetic Al-

gorithm (HMC-GA) is a global-based method for the genera-

tion of HMC rules using a Genetic Algorithm (GA). The main

pseudocode of the method is presented in Algorithm 1, where

a sequential covering procedure is implemented to evolve

antecedents of rules. In this procedure, instances covered by a

rule are removed from the training set, so that new rules can

be generated with the remaining instances. The consequent of

a rule is generated using a deterministic procedure considering

the classes of all instances covered by the rule.

A. Individual Representation

Figure 6 illustrates the individual representation in HMC-

GA. Each test of an individual is represented as a 4-tuple

{FLAG, OP, ∆1, ∆2}, where each 4-tuple is associated to

a dataset attribute A. The gene FLAG indicates if the test

over an attribute is used in the rule. If the test is used, FLAG

receives the value 1, and 0 otherwise. Gene OP is the integer

index of the operator used in the test. Genes ∆1 and ∆2 will

receive values that will depend on the operators used. Exactly

how all values are assigned will be detailed explained in the

next section.

���� �� � � ���� �� � �

Fig. 6. Representation of an Individual.

With the representation depicted in Figure 6, HMC-GA

is able to evolve rules of the form IF Antecedent THEN

Consequent. The antecedent of a rule is thus formed by a

conjunction of tests, and the consequent of a rule is formed

by a set of classes, respecting the constraints of the hierar-

chical taxonomy. An example of rule is given below. In this

example, only active tests of the rule are shown.

IF (A1 OP ∆1) AND (∆1 OP A5 OP ∆2)

THEN

{1, 1/1, 1/2, 1/1/1, 2, 2/1}

B. Population Initialization

The population in HMC-GA is initialized using a seeding

procedure, where an instance is randomly selected and trans-

formed into a rule. Each test has a probability pt of being

used. The operator used is randomly selected depending if the

attribute is numeric or categoric.



procedure HMC-GA()

Input: training set D
number of generations G
size of population p
min number of instances covered by a rule minCov
max number of instances covered by a rule maxCov
max number of not-covered instances maxNotCov
crossover rate cr
mutation rate mr
tournament size t
number of individuals selected by elitism e
probability of using a test in a rule pt

Output: set of rules InducedRules
inducedRules← ∅
while |D| > maxNotCov do

initialPop← generatePopulation(D, p, pt)
calculateF itness(initialPop,D)
currentPop← initialPop
bestRule← best rule of currentPop
j ← G
repeat

newPop← ∅
newPop← newPop ∪ elitism(currentPop, e)
parents← tournament(initialPop, t, e, p)
offspring ← uniCrossover(parental, cr)
newPop← newPop ∪ offspring
newPop← mutation(newPop,mr, pt)
newPop← locOp(newPop,minCov,maxCov)
currentPop← newPop
calculateF itness(currentPop,D)
bestRule← getBest(initialPop, bestRule)
j ← j − 1

until j > 0 OR ruleConvergence();
inducedRules← inducedRules ∪ bestRule
remove from D all instances covered by bestRule

end

return inducedRules
Algorithm 1: A Genetic Algorithm to generate HMC rules.

After choosing the operator, the values to be put in the genes

∆1 and ∆2 depend on the operator chosen. For categorical

attributes, the operators can be =, 6=, and in. The in operator

verifies if a given attribute value is among a given set of values.

If the operator chosen is = or 6=, gene ∆1 receives the index

corresponding to the categoric value of attribute in the instance

being used as seed, and gene ∆2 receives 0 (∆2 is not going to

be used in the test). If the operator is in, gene ∆1 receives the

index corresponding to one of the sets of values which contain

the value of attribute in the instance, and gene ∆2 receives 0.

As an example of this last procedure, if the attribute in the

instance has the value A, and the possible attribute values in

the dataset are A, B, and C, position ∆1 receives an index value

corresponding to one of the sets of values which contain value

A: {A, B}, {A, C}, and {A, B, C}. The set of values used

is randomly chosen.

If the operator chosen corresponds to an operation over a

numeric attribute, the assignment of values to genes ∆1 and

∆2 is simpler, because numeric attribute values do not need

to be indexed. In the case of operator ≥, gene ∆1 receives

the attribute value in the instance, and gene ∆2 receives 0.

If the operator is ≤, gene ∆2 receives the attribute value

in the instance, and gene ∆2 receives 0. We use ∆1 and

∆2 differently depending on the operator used because we

consider ∆1 and ∆2, respectively, as the lower and upper

bounds of the attribute value. This facilitates the use of an

operation testing if an attribute value is between two given

values (∆1 ≤ Ai ≤ ∆2). In this case, the values for genes ∆1

and ∆2 are randomly chosen in order to make the attribute

value Ai satisfy the test condition.

The indexation of categorical values and operators is done

according to Figure 7. In the Figure, a dataset with four

attributes is considered. When verifying if a rule covers an

instance, appropriate operations are executed according to the

type of attribute (numeric and categoric).
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Fig. 7. Indexation of operators and categorical values.

C. Evolution

The evolutionary process starts by saving the best e rules of

the current population (elitism). Then, p− e rules are selected

to be submitted to a uniform crossover operation, in order

to generate an offspring. The crossover operation exchanges

entires 4-tuples between the individuals. This means that

crossover points are allowed to fall only in the boundaries

between two 4-tuples. In order to specialize the rules in the

classification of a set of instances, the crossover operation con-

siders the distances between the consequents of the rules. The

consequent of a rule represents a vector of class probabilities,

and each vector position value is given by Equation 1.

vr,j =
|Sr,j |

|Sr|
(1)

In Equation 1, Sr,j is the set of all training instances covered

by rule r, which are classified in class cj . The set Sr contains

all training instances covered by rule r. Thus, each position

vr,j contains the proportion of instances covered by rule r,

which are classified in class cj . This can be interpreted as

the probability of an instance covered by r to be classified in

class cj .



Our crossover operator receives as input a list of p − e
rules. A rule is then removed from the list, and the weighted

Euclidean distances between the consequent of this rule,

and the consequents of all the other rules in the list, are

calculated. The lower the Euclidean distance value between the

consequents of two rules, the nearer the rules are considered to

be in the search space. The two nearest rules are then removed

from the list, and their antecedents are submitted to a uniform

crossover to generate two child rules. The objective is to apply

the crossover operator in rules that cover instances that are near

in the search space, i.e., instances that are classified in a similar

or equal set of classes. Equation 2 gives the calculation of the

weighted Euclidean distance (WED) between the consequents

of two rules.

WED(v1,v2) =

√

√

√

√

|C|
∑

j=1

wi × (v1,j − v2,j)2 (2)

In Equation 2, wj corresponds to the weight associated to

the jth class in the hierarchy. Weights were associated to

each class because, in the context of hierarchical classification,

similarities between classes located in levels closer to the root

are more important than similarities between classes located

in deeper levels [12].

The weighting scheme used in HMC-GA is the same used

in [12]. After trying different schemes, the authors found out

that the best one is given by Equation 3. The weight w0

associated to a class in the first level is defined as 0.75, and the

weight of a class cj is recursively defined as the multiplication

of w0 by the mean weight of all its ancestor classes Pj .

wj = w0 ×

Pj
∑

k=1

w(pk)/Pj (3)

After the generation of new rules, a mutation operator is

applied to a percentage mr of them, randomly chosen. Each

of the rules have a chance of 50% to suffer a FLAG mutation

and a chance of 50% to suffer a restriction or generalization.

In the FLAG mutation, each test in the antecedent of the rule

has a probability pt of being not used (gene FLAG exchanged

from 1 to 0), or used (gene FLAG exchanged from 0 to 1). In

the restriction/generalization operation, each used test in the

rule is randomly restricted or generalized, having their values

modified by using a randomly generated factor in [0, 1]. The

restriction/generalization procedure is applied in order to make

the tests cover a smaller/larger number of instances.

After the mutation operation, a local operator is applied in

order to try to guarantee that the rules cover a minimum and

maximum number of instances. This is performed to make the

rules not too specific neither too general.

After the generation of a new offspring, the fitness of all

rules is calculated, and the best rule is saved. This procedure is

executed until the maximum number of generations is reached,

or until rule convergence, i.e. the same rule stays the same

after 10 generations. After this complete evolutionary cycle

is performed, the best rule found so far is saved, and its

covered instances are removed from the training data. A new

population is then generated, and and new evolutionary cycle

is executed. This is performed until all, or almost all, training

instances are covered.

D. Fitness Calculation

HMC-GA uses the variance gain [12], [16] of a rule as its

fitness. The variance gain value is higher for rules which cover

a more homogeneous set of instances, i.e., rules that partition

the training set in more homogeneous sets. In addition, the

variance gain can directly cope with hierarchical multi-label

data, considering the relationships between the classes [16].

The variance gain (VG) calculation is presented in Equation 4.

V G(r, S) = var(S)−
|Sr|

|S|
×var(Sr)−

|S¬r|

|S|
×var(S¬r) (4)

As observed in Equation 4, the set S of all training instances

is divided into two subsets: the set of instances covered by

rule r, denoted Sr, and the set of instances not covered by

rule r, denoted S¬r. The variance gain of a rule is obtained

considering the set S, and also involves the variance (var) of

the sets Sr and S¬r. The variance of a set of instances is

defined by the sum of the mean quadratic distances between

the class vector of each instance (vi), and the mean class label

vector of all instances in the set (v). The variance of a set of

instances S is presented in Equation 5. The distance used is

the weighed Euclidean distance presented in Equation 2.

var(S) =

∑|S|
i=1

WED(vi,v)
2

|S|
(5)

IV. EXPERIMENTAL SET-UP

In this section, we present the HMC methods that are

compared with HMC-LMLP and HMC-GA. We also de-

scribe the datasets used in the experiments and the eval-

uation methodology adopted for the experimental analysis.

Additionally, we detail the rationale behind the parameter

setting employed by HMC-LMLP, and present the parameters

used in HMC-GA. The datasets used in the experiments and

the source code of the proposed methods can be found in

http://sites.google.com/site/cerrirc/downloads/.

Recall that not all experiments performed in the Thesis are

shown in this manuscript. We selected a subset of experiments

which demonstrate the good performance obtained by the pro-

posed methods, and also show how promising were the results.

A. HMC literature methods

We compare HMC-LMLP and HMC-GA with four literature

HMC methods used for protein function prediction: PCT-

based methods Clus-HMC, Clus-HSC, and Clus-SC [12]; and

hmAnt-Miner [16]. These methods are briefly described next:

• Clus-HMC: global-based method that builds a single

decision tree to cope with all classes simultaneously;

• Clus-HSC: LCN-based method that applies a top-down

strategy to induce a decision tree for each hierarchical

class considering the hierarchical relationships;



• Clus-SC: LCN-based method that induces one decision

tree for each hierarchical level without considering hier-

archical relationships;

• hmAnt-Miner: global-based method that uses concepts

from ACO to generate classification rules.

B. Datasets

Twenty freely available2 datasets related to protein function

prediction are used in the experiments. These datasets are

related to issues like phenotype data and gene expression

levels, and are structured as trees and DAGs. A description

of each dataset can be found in [12].

Because there is no level definition in DAG structures (a

class can be located at different levels depending on which

hierarchical path is chosen from the root node to the class), we

defined the depth of a class in a DAG structure as the deepest

path from the class to the root node. This is necessary for the

application of HMC-LMLP, since the method needs a clear

separation of the classes in levels, in order to apply an MLP to

each level. We chose the deepest path as the definition of depth

because it guarantees that when a class is located in a level l,
all its superclasses will be located in levels shallower than l.

We performed a pre-processing step before running HMC-

LMLP over these datasets, in which all nominal attribute

values were transformed into numeric values using the one-

attribute-per-value approach, where an attribute with k cate-

gories is transformed into k binary attributes. In this study,

instead of 0 and 1, the nominal attributes were assigned −1
(absence) and 1 (presence) values, which are more suited

for training neural networks [17]. The attributes were then

standardized (mean 0 and variance 1). Additionally, all missing

values for nominal and numeric attributes were replaced,

respectively, by their mode and mean values.

C. Evaluation method

As discussed in Sections II and III, the outputs of HMC-

LMLP and HMC-GA, for each class, are real values between

0 and 1. The same is true for the literature methods. Thus,

in order to obtain the final predictions from all methods, a

threshold value was employed. When classifying an instance,

if the corresponding output value for a given class is equal

to or larger than the threshold, the instance is assigned to the

class. Otherwise, it is not assigned to the class.

The choice of the “optimal” threshold value is a difficult

task, since low threshold values lead to many classes being

assigned to each instance, resulting in high recall and low

precision. On the other hand, large threshold values lead to

very few instances being classified, resulting in high precision

and low recall. To deal with this problem, we used precision-

recall curves (PR-curves) as evaluation measure to compare

the different methods. To obtain a PR-curve for a given

classification method, different thresholds between [0,1] are

applied to the outputs of the methods, and thus different values

of precision and recall are obtained, one for each threshold

2http://www.cs.kuleuven.be/∼dtai/clus/hmcdatasets.html

value. Each threshold then represents a point within the PR

space. The union of these points form a PR-curve, and the

area under the curve is calculated. Different methods can be

compared based on their areas under the PR-curves.

In order to calculate the area under the PR-curve, the PR-

points must be interpolated [18]. This interpolation guarantees

that the area below the curve is not artificially increased, which

would happen if the curves were constructed just connecting

the points without interpolation.

In this work, we used the area under the average PR-

curve (AU(PRC)). Given a threshold value, a precision-recall

point (Prec,Rec) in the PR-space can be obtained through

Equations (6) and (7). They correspond to the micro-average

of precision and recall.

Prec =

∑

i TPi
∑

i TPi +
∑

i FPi

(6)

Rec =

∑

i TPi
∑

i TPi +
∑

i FNi

(7)

To verify the significance of the results, we employed

the Friedman and Nemenyi statistical tests, recommended for

comparisons involving many classifiers and several datasets

[19]. We adopted a confidence level of 95% in the statisti-

cal tests. As in [12] and [16], 2/3 of each dataset were used

for inducing the classification models and 1/3 for test. We used

the same data partitions suggested in [12].

D. HMC-LMLP Parameters

We investigate the performance of HMC-LMLP using the

conventional Back-propagation algorithm [20]. The HMC-

LMLP parameters were optimized using the Eisen validation

dataset. This dataset was selected because it was one of the

datasets where Clus-HMC obtained their best performances,

and also because it has a relatively small number of attributes,

which makes it possible to run several experiments in a

reasonable amount of time. The following parameters were

optimized: (i) number of neurons in each hidden layer (be-

ginning with the hidden layer of the MLP network associated

with the first hierarchical level, and finishing with the hidden

layer of the MLP network associated with the last level), (ii)

the learning rate and momentum constant used in the Back-

propagation algorithm, and (iii) the range of values used to

initialize the neural network’s weights. To reduce the influence

of parameter selection in the MLP predictive performance,

the number of hidden neurons was set as a fraction of the

number of input attributes. We executed HMC-LMLP over the

validation datasets using different sets of parameter values. We

employed different initial weight values, number of hidden

neurons, learning rates, and momentum constants. We did

not use all possible sets of values due to the huge number

of possibilities.

Because the datasets structured as trees and DAGs have

the same attributes (only the class structure is different), and

due to the high computational cost when executing HMC-

LMLP using the DAG structured datasets, we performed



the parameter optimization procedure only considering the

datasets structured as trees.

For the initial weights of the neural networks, we noticed

that the higher their initial values are, the more likely over-

fitting will occur, achieving a better performance on more

frequent classes but a worse overall prediction performance.

We varied the initial weights by randomly selecting them

initially from [-0.1,0.1], but gradually increasing the range

to [-1,1]. Regarding the number of neurons, we tested a

limited number of neurons for each hidden layer, beginning

with 1.0/0.9/0.8/0.7/0.6/0.5 neurons in each layer and gradu-

ally decreasing these values until 0.1/0.08/0.06/0.04/0.03/0.02.

These hidden neuron numbers represent the fraction of the

total number of network inputs. Thus, if a neural network

has 100 inputs, the value 0.6 means that it has actually 60

hidden neurons. Considering the learning rate and momentum,

we started our experiments with the same values used in in

the Weka tool [21], where the learning rate is set to 0.3 and

the momentum to 0.2. We gradually decreased theses values

and noticed that the neural networks became less liable to

overfitting as these values decreased. The final parameters

obtained for HMC-LMLP after the preliminary experiments

are listed next.

• Number of hidden neurons per level (fraction of the total

number of network inputs):

– 0.6/0.5/0.4/0.3/0.2/0.1 for trees;

– 0.65/0.65/0.6/0.55/0.5/0.45/0.4/0.35/0.3/0.25/0.2/

0.15/0.1 for DAGs;

• Learning rate and momentum constant used in Back-

propagation for hidden and output layers: {0.05, 0.03}
and {0.03, 0.01}, respectively;

• Initial weights of the neural networks: within [-0.1,0.1];

We would like to point out that we decreased the number

of hidden neurons of the neural networks as the hierarchical

levels become deeper. Our intention was to avoid overfitting,

since the number of training instances is smaller for the

networks associated with deeper hierarchical levels. For DAG-

structured hierarchies, we choose 0.1 as the fraction of inputs

for the MLP associated to the last level (same value obtained

for trees). We then increased this value by 0.05 until the first

level was reached. With this, we used values that were similar

to the ones used in the tree structure.

E. HMC-GA Parameters

The parameter values used in HMC-GA are listed in Table I.

These parameters were obtained based on the work of [22], and

no attempts to optimize them were made. The work developed

in [22] is a local-based GA to evolve rules for hierarchical,

but not multi-label, problems.

The parameter pt (probability of using an attribute in

initialization) has a different value according to the number

of attributes in the dataset. It is given by |A| × pt = 5, were

|A| is the number of attributes. Thus, the parameter value is

set in order to activate on average 5 tests in the rule. We

chose to start with small rules in order not to have an initial

TABLE I
PARAMETERS USED IN HMC-GA

Parameters Values

Size of population (p) 100/500/1000

Elitism rate (e) 1%

Mutation rate (mr) 40%

Crossover rate (cr) 90%

Probability of using an attribute in initialization (pt) |A| × pt = 5

Number of Generations (G) 100

Tournament size (t) 2

Maximum number of not-covered instances (maxNotCov) 10

Minimum number of instances covered by a rule (minCov) 10

Maximum number of instances covered by a rule (maxCov) 300

population with too many restricted rules, covering none or

very few instances. We also executed HMC-GA with three

different population sizes, 100, 500, and 1000 individuals.

V. RESULTS AND DISCUSSION

In this section, we present part of the results described in the

Thesis. We performed two sets of experiments. First, we show

the experiments performed to compare the prediction perfor-

mance of the four HMC-LMLP variations, and the baseline

literature HMC algorithms. In a second set of experiments we

compare HMC-GA with the literature methods.

The values depicted for HMC-LMLP and HMC-GA are

the mean and standard deviation over 10 executions. For

HMC-LMLP, each execution had randomly-initialized neural

network weights. Given that hmAnt-Miner is a probabilistic

method, we also executed it 10 times and show the mean

and standard deviation over all executions. Clus-HMC, Clus-

HSC, and Clus-SC are deterministic algorithms and thus need

to be executed only once. We highlight in bold the best

absolute values.

A. Experiments with HMC-LMLP

Table II presents the comparison among the HMC-LMLP

variations and the baseline methods Clus-HMC, Clus-HSC,

Clus-SC, and hmAnt-Miner.

Results from Table II show that all HMC-LMLP vari-

ations outperformed the two local-based methods Clus-

HSC and Clus-SC by a large margin in the tree-structured

datasets. Still regarding the tree-structured data, the variations

HMC-LMLP-Predicted, HMC-LMLP-True, and HMC-LMLP-

NoLabels achieved better results than the global methods Clus-

HMC and hmAnt-Miner in the majority of the datasets. More-

over, and as expected, the variation HMC-LMLP-Predicted

obtained the best results overall among all the methods in

the tree-structured datasets, and improved the results of ver-

sions HMC-LMLP-True and HMC-LMLP-NoLabels, which

reinforces the idea that the predictions at one level were indeed

useful in the learning process of the next level.

It is interesting to see how the use of the predictions (HMC-

LMLP-Predicted) instead of the true classes (HMC-LMLP-

True) led to the improvement of the classification performance.

This is an indicative that the neural networks were capable

of better exploring the relationships between the classes in



TABLE II
AU(PRC) VALUES OBTAINED IN THE TREE AND DAG STRUCTURED DATASETS - HMC-LMLP

Structure Dataset HMC-LMLP-Labels HMC-LMLP-Predicted HMC-LMLP-True HMC-LMLP-NoLabels Clus-HMC Clus-HSC Clus-SC hmAnt-Miner

Tree

Cellcycle 0.185 ± 0.0010 0.207 ± 0.0009 0.203 ± 0.0013 0.205 ± 0.0009 0.172 0.111 0.106 0.155 ± 0.0082

Church 0.164 ± 0.0007 0.173 ± 0.0008 0.167 ± 0.0016 0.169 ± 0.0009 0.170 0.131 0.128 0.165 ± 0.0027

Derisi 0.171 ± 0.0010 0.183 ± 0.0014 0.176 ± 0.0012 0.182 ± 0.0012 0.175 0.094 0.089 0.149 ± 0.0078

Eisen 0.208 ± 0.0011 0.245 ± 0.0017 0.236 ± 0.0013 0.240 ± 0.0013 0.204 0.127 0.132 0.181 ± 0.0069

Gasch1 0.196 ± 0.0010 0.236 ± 0.0020 0.229 ± 0.0022 0.234 ± 0.0016 0.205 0.106 0.104 0.173 ± 0.0076

Gasch2 0.184 ± 0.0007 0.211 ± 0.0007 0.201 ± 0.0014 0.208 ± 0.0009 0.195 0.121 0.119 0.152 ± 0.0006

Pheno 0.159 ± 0.0009 0.159 ± 0.0019 0.158 ± 0.0011 0.159 ± 0.0017 0.160 0.152 0.149 0.161 ± 0.0038

Spo 0.172 ± 0.0009 0.186 ± 0.0016 0.180 ± 0.0007 0.184 ± 0.0011 0.186 0.103 0.098 0.177 ± 0.0041

Expr 0.196 ± 0.0030 0.243 ± 0.0025 0.238 ± 0.0034 0.240 ± 0.0033 0.210 0.127 0.123 0.180 ± 0.0066

Seq 0.195 ± 0.0032 0.236 ± 0.0025 0.233 ± 0.0050 0.232 ± 0.0040 0.211 0.091 0.095 0.186 ± 0.0083

Average 0.183 0.208 0.202 0.205 0.189 0.116 0.114 0.168

DAG

Cellcycle 0.339 ± 0.0014 0.361 ± 0.0010 0.352 ± 0.0025 0.359 ± 0.0007 0.357 0.371 0.252 0.325 ± 0.0079

Church 0.334 ± 0.0010 0.341 ± 0.0009 0.336 ± 0.0015 0.340 ± 0.0011 0.348 0.397 0.289 0.334 ± 0.0010

Derisi 0.334 ± 0.0011 0.343 ± 0.0010 0.336 ± 0.0013 0.345 ± 0.0006 0.355 0.349 0.218 0.321 ± 0.0068

Eisen 0.363 ± 0.0016 0.403 ± 0.0017 0.393 ± 0.0014 0.395 ± 0.0012 0.380 0.365 0.270 0.373 ± 0.0110

Gasch1 0.343 ± 0.0007 0.380 ± 0.0020 0.373 ± 0.0029 0.378 ± 0.0012 0.371 0.351 0.239 0.352 ± 0.0082

Gasch2 0.340 ± 0.0007 0.369 ± 0.0015 0.359 ± 0.0019 0.362 ± 0.0012 0.365 0.378 0.267 0.334 ± 0.0165

Pheno 0.326 ± 0.0012 0.318 ± 0.0020 0.315 ± 0.0025 0.322 ± 0.0011 0.337 0.416 0.316 0.336 ± 0.0017

Spo 0.333 ± 0.0015 0.342 ± 0.0012 0.334 ± 0.0021 0.340 ± 0.0007 0.352 0.371 0.213 0.329 ± 0.0078

Expr 0.336 ± 0.0025 0.372 ± 0.0032 0.369 ± 0.0031 0.371 ± 0.0014 0.368 0.351 0.249 0.343 ± 0.0066

Seq 0.343 ± 0.0031 0.370 ± 0.0025 0.368 ± 0.0034 0.368 ± 0.0018 0.386 0.282 0.197 0.371 ± 0.0069

Average 0.339 0.360 0.355 0.358 0.362 0.363 0.251 0.342

each level when making use of the predictions, and that these

relationships were learned during the training process.

Regarding the DAG structured datasets, we can see that the

overall performance of all methods were similar, except for

Clus-SC, hmAnt-Miner and HMC-LMLP-Labels. Clus-HSC

obtained the best results in five datasets, followed by HMC-

LMLP-Predicted — that achieved the best performance in

three datasets — and Clus-HMC, which obtained the best

results in two datasets. If we compare the performances of

the for HMC-LMLP variations, again HMC-LMLP-Predicted

provided the best results for the majority of the datasets.

Afters applying the Friedman test, the p-value obtained was

1.47×10−22, which clearly indicates that there are statistically

significant differences between the methods. To identify which

pairwise comparisons present statistically significant differ-

ences, we performed the Nemenyi post-hoc test. According

to this test, the HMC-LMLP-Predicted method outperformed

HMC-LMLP-Labels, Clus-HSC, Clus-SC, and hmAnt-Miner

with statistical significance, and all methods were statistically

superior to Clus-SC. No statistically significant differences

were detected between HMC-LMLP-Predicted, HMC-LMLP-

True, HMC-LMLP-NoLabels and Clus-HMC.

Although no statistically significant differences were de-

tected when comparing the HMC-LMLP variations with Clus-

HMC, we can observe that the results provided by HMC-

LMLP-Predicted in the tree-structured datasets were often

largely superior than the results obtained by Clus-HMC.

Considering the DAG-structured data, we believe that HMC-

LMLP-Predicted could have achieved better results if all class-

relationships were employed in the training process of the

method. Recall that we performed an adaptation of the DAG

structures to define a unique depth for each class. The depth of

a class was defined as the number of edges in the largest path

from the root to the class. Therefore, not all class-relationships

were considered during classification. As an example, consider

that a training instance is assigned to the paths A.C and A.B.C,

and that class C is a direct subclass of both classes A and B. In

this case, there are two possible depths for class C: 2 (A.C) and

3 (A.B.C). In our adaptation, class C is defined as belonging

to the third level. In this case, when training a neural network

for the third level, we consider class C as subclass of class B

alone. So, when training a neural network to predict class C

(third level), we are not using as input the information related

to all its superclasses (prediction for classes A and B), but

only prediction related to class B.

B. Experiments with HMC-GA

The AU(PRC) values obtained by HMC-GA are shown

in Table III. The method was executed with three different

numbers of individuals (rules) in the population: 100, 500

and 1000 individuals. As can be observed, in the datasets

with higher number of attributes (Gasch1, Expr and Seq),

the performance increased as the number of individuals was

increased. This improvement is better observed in the datasets

Expr and Seq.

Considering the experiments in the tree-structured datasets,

the best performances were obtained by HMC-GA and Clus-

HMC. In the DAG-structured datasets, the methods Clus-HMC

and Clus-HSC obtained the best results, followed by HMC-

GA, which outperformed hmAnt-Miner and Clus-SC.

After applying the Friedman test, the p-value obtained was

4.39 × 10−20, clearly indicating that there are statistically

significant differences among the methods compared. With

the application of the Nemenyi post-hoc test, we verified that

Clus-HMC was statistically superior to all other methods, with

exception to HMC-GA using 1000 individuals. No statisti-

cally significant differences were detected among the methods

HMC-GA, Clus-HSC and hmAnt-Miner. Still, all methods



TABLE III
AU(PRC) VALUES OBTAINED IN THE TREE AND DAG STRUCTURED DATASETS - HMC-GA.

Structure Dataset
HMC-GA

Clus-HMC Clus-HSC Clus-SC hmAnt-Miner
100 Individuals 500 Individuals 1000 Individuals

Tree

Cellcycle 0.164 ± 0.004 0.163 ± 0.007 0.167 ± 0.008 0.172 0.111 0.106 0.155 ± 0.008

Church 0.156 ± 0.008 0.157 ± 0.011 0.155 ± 0.010 0.170 0.131 0.128 0.165 ± 0.003

Derisi 0.168 ± 0.005 0.167 ± 0.004 0.168 ± 0.004 0.175 0.094 0.089 0.149 ± 0.008

Eisen 0.185 ± 0.008 0.190 ± 0.005 0.200 ± 0.007 0.204 0.127 0.132 0.181 ± 0.007

Gasch1 0.188 ± 0.006 0.191 ± 0.007 0.192 ± 0.007 0.205 0.106 0.104 0.173 ± 0.008

Gasch2 0.173 ± 0.009 0.174 ± 0.009 0.170 ± 0.010 0.195 0.121 0.119 0.152 ± 0.007

Pheno 0.160 ± 0.003 0.156 ± 0.003 0.159 ± 0.001 0.160 0.152 0.149 0.161 ± 0.004

Spo 0.173 ± 0.006 0.173 ± 0.008 0.173 ± 0.008 0.186 0.103 0.098 0.177 ± 0.004

Expr 0.179 ± 0.008 0.186 ± 0.010 0.193 ± 0.006 0.210 0.127 0.123 0.180 ± 0.007

Seq 0.172 ± 0.007 0.178 ± 0.016 0.184 ± 0.015 0.211 0.091 0.095 0.186 ± 0.008

Average 0.172 0.173 0.176 0.189 0.116 0.114 0.168

DAG

Cellcycle 0.341 ± 0.009 0.344 ± 0.007 0.339 ± 0.008 0.357 0.371 0.252 0.325 ± 0.008

Church 0.341 ± 0.005 0.340 ± 0.005 0.338 ± 0.008 0.348 0.397 0.289 0.334 ± 0.001

Derisi 0.344 ± 0.003 0.342 ± 0.005 0.343 ± 0.005 0.355 0.349 0.218 0.321 ± 0.007

Eisen 0.380 ± 0.004 0.375 ± 0.009 0.377 ± 0.011 0.380 0.365 0.270 0.373 ± 0.011

Gasch1 0.361 ± 0.003 0.361 ± 0.009 0.362 ± 0.006 0.371 0.351 0.239 0.352 ± 0.008

Gasch2 0.351 ± 0.007 0.354 ± 0.008 0.352 ± 0.004 0.365 0.378 0.267 0.334 ± 0.016

Pheno 0.331 ± 0.002 0.331 ± 0.004 0.332 ± 0.004 0.337 0.416 0.316 0.336 ± 0.002

Spo 0.345 ± 0.008 0.349 ± 0.006 0.350 ± 0.005 0.352 0.371 0.213 0.326 ± 0.008

Expr 0.361 ± 0.007 0.361 ± 0.004 0.364 ± 0.007 0.368 0.351 0.249 0.343 ± 0.007

Seq 0.359 ± 0.007 0.358 ± 0.016 0.366 ± 0.011 0.386 0.282 0.197 0.371 ± 0.007

Average 0.351 0.351 0.352 0.362 0.363 0.251 0.341

were statistically superior to Clus-SC.

Although the prediction performance of HMC-GA was not

superior to the prediction performance of the state-of-the-art

method, the results can be considered promising if we consider

the amount rules generated. (Table IV). HMC-GA generated

fewer rules, specially for the DAG-structured hierarchies. The

number of rules generated by Clus-HMC, Clus-HSC and Clus-

SC is given by the number of leaves of the decision trees

generated, as each path from the root node to a leaf can

be considered a rule. As Clus-HSC and Clus-SC are local

methods, we present the total number of rules generated by

all decision trees, and also, in parentheses, the average number

of rules generated by each tree. As the HMC-GA and hmAnt-

Miner methods are probabilistic, the number of rules shown is

the average of the number of rules obtained in each execution.

The fitness function employed also has a characteristic

that may have harmed the HMC-GA performance in some

situations. According to Equation 4, the variance gain of a

rule is maximized when the different between the variance of

Sr and S¬r is minimized. However, if a very homogeneous

set of training instances (instances classified in the same, or in

a very similar, set or classes) is left to be covered, the fitness

value can be reduced to 0. This happens when a rule which

covers all instances is induced. In this case, it is a very good

rule, since it covers all remaining instances belonging to a

same/similar set of classes. However, its fitness value will be

0, since
|S

¬r|
|S| × var(S¬r) will be 0, and the values of var(S)

and
|Sr|
|S| × var(Sr) will be the same.

VI. CONCLUSION

In this Thesis, we have presented two methods for HMC

problems. The first one was called Hierarchical Multi-Label

Classification with Local Multi-Layer Perceptron (HMC-

LMLP), which trains a Multi-Layer Perceptron (MLP) to

each hierarchical level, with each MLP being responsible for

the predictions in its associated level. The second one is

called Hierarchical Multi-Label Classification with a Genetic

Algorithm (HMC-GA), and induces HMC rules for both tree

and DAG-structured hierarchies.

We performed several experiments comparing four HMC-

LMLP variants and other literature methods using datasets

structured as both trees and Directed Acyclic Graphs (DAGs),

showing that HMC-LMLP achieved the best classification

results in the tree-structured datasets, and very competitive

results regarding the DAG structures. Besides, according to

the experimental results, the HMC-LMLP-Predicted variant

improved the classification performance when compared with

HMC-LMLP-True and HMC-LMLP-NoLabels.

Regarding HMC-GA, we showed how its fitness function

could have harmed the algorithm’s performance in some

situations. According to the experiments, HMC-GA obtained

competitive results if compared with other methods in the

literature. Although HMC-GA was outperformed by the state-

of-the-art Clus-HMC, the difference in their predictive perfor-

mance was not statistically significant, and HMC-GA gener-

ated a smaller or competitive number of rules.

As future works, we intent to use ensembles of neural

networks in HMC-LMLP, and also investigate other training

algorithms such as Extreme Learning Machines [23]. We also

plan to improve the fitness function of HMC-GA, and extend

the method to also generate rules with relational tests.
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TABLE IV
NUMBER OF RULES GENERATED BY HMC-GA AND LITERATURE METHODS.

Dataset
HMC-GA

Clus-HMC Clus-HSC Clus-SC hmAnt-Miner
100 Individuals 500 Individuals 1000 Individuals

Tree-structured datasets

Cellcycle 17.30 ± 6.360 23.30 ± 8.220 22.50 ± 11.41 24 4037 (8.1) 9671 (19.4) 25.10 ± 5.626

Church 18.30 ± 7.917 17.40 ± 12.39 19.80 ± 9.283 17 2221 (4.5) 4186 (8.4) 8.10 ± 1.370

Derisi 9.50 ± 2.718 11.10 ± 3.510 11.00 ± 4.163 4 3520 (7.1) 7807 (15.6) 26.60 ± 6.620

Eisen 12.40 ± 4.766 17.40 ± 7.090 12.10 ± 2.998 29 2995 (6.5) 6311 (13.7) 17.50 ± 4.790

Gasch1 14.30 ± 6.799 17.30 ± 4.644 16.30 ± 7.616 10 4761 (9.5) 10447 (20.9) 28.10 ± 3.928

Gasch2 17.50 ± 9.289 20.50 ± 9.132 25.50 ± 9.755 26 3756 (7.5) 7850 (15.7) 36.90 ± 14.487

Pheno 3.90 ± 0.994 4.30 ± 0.823 3.80 ± 1.033 8 777 (1.7) 1238 (2.7) 4.90 ± 0.738

Spo 9.30 ± 4.347 12.20 ± 5.827 14.80 ± 7.376 6 3623 (7.3) 8527 (17.1) 12.80 ± 3.882

Expr 13.50 ± 6.671 17.20 ± 10.99 19.30 ± 7.846 12 4711 (9.4) 10262 (20.6) 28.60 ± 4.452

Seq 11.30 ± 6.701 12.50 ± 5.759 13.30 ± 8.499 14 4923 (9.9) 10443 (20.9) 15.30 ± 3.945

Average 12.73 15.32 15.84 15 3532.4 (7.15) 7674.2 (15.5) 20.39

DAG-structured datasets

Cellcycle 18.60 ± 7.367 18.80 ± 7.177 27.70 ± 7.258 21 19085 (3.3) 36260 (8.8) 39.30 ± 8.138

Church 14.40 ± 6.059 18.70 ± 7.212 15.80 ± 9.235 7 12368 (2.1) 16049 (3.9) 25.90 ± 11.210

Derisi 9.40 ± 2.319 11.30 ± 3.802 11.50 ± 4.836 10 16693 (2.9) 31175 (7.6) 32.90 ± 4.095

Eisen 10.80 ± 4.962 20.90 ± 6.724 18.00 ± 9.080 37 14384 (2.9) 24844 (7.0) 22.00 ± 6.782

Gasch1 14.00 ± 5.773 18.50 ± 6.819 19.20 ± 7.814 30 20070 (3.4) 37838 (9.2) 26.70 ± 5.908

Gasch2 18.10 ± 8.800 20.40 ± 7.501 23.70 ± 5.437 27 18546 (3.2) 34204 (8.3) 39.20 ± 8.741

Pheno 5.40 ± 1.776 5.40 ± 1.350 4.90 ± 1.287 6 5691 (1.3) 6213 (2.0) 5.30 ± 0.483

Spo 13.30 ± 5.677 12.40 ± 4.624 12.00 ± 4.59 14 15552 (2.7) 35400 (8.6) 29.40 ± 7.152

Expr 14.60 ± 5.910 16.50 ± 4.453 18.00 ± 5.375 35 20812 (3.6) 38313 (9.3) 29.80 ± 4.289

Seq 13.00 ± 5.518 11.70 ± 5.478 15.80 ± 7.162 15 21703 (3.7) 38969 (9.4) 15.90 ± 3.784

Average 13.16 15.46 16.66 20.2 16490.4 (2.91) 29926.5 (15.69) 26.64
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