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Towards the Development of a Two-Time Scale
CUEP/BCU Method

Edson A. R. Theodoro, Luı́s F. C. Alberto, and Hsiao-Dong Chiang,

Abstract—This paper proposes a new Two-Time Scale (TTS)
BCU method, and reports the first ever known use of the TTS-
CUEP method in a multi-machine power system. The proposed
TTS-BCU method is a numerical algorithm to correctly compute
the slow and fast CUEPs of the TTS-CUEP method. It also
provides a more robust algorithm to compute the CUEP of the
original system.

Index Terms—Transient Stability, Direct Methods, CUEP/BCU
Methods, Two-Time Scale Decomposition, Singularly Perturbed
Systems.

I. INTRODUCTION

The Controlling Unstable Equilibrium Point (CUEP)
method [1] has been recognized as the most effective direct
method for transient stability assessment of power systems
since mid 90’s [2]. The search for the correct CUEP is a
challenge in many computational aspects [1]: (i) the CUEP is a
unstable equilibrium point of a nonlinear differential-algebraic
system, which provides a small and often irregular region of
convergence for Newton’s based methods, (ii) the search space
is large, typically having hundreds of variables, and (iii) the
identification of the exit-point (the point at which the fault-
on trajectory crosses the stability boundary) is a numerical
approximation and is generally far from the CUEP.

The BCU method [3] is a robust numerical algorithm that
explores the properties of an artificial reduced gradient system
to enable the computation of the CUEP of the original system.
Among its advantages, one has [1]: (i) the search space for
the CUEP is diminished, once the artificial gradient system
is a reduced system, (ii) the exit-point identification can be
properly addressed by the use of an energy function, once
the crossing of the stability boundary of a gradient system
occur at a point of maximum potential energy, and (iii) it uses
the characterization of the stability boundary (as the union of
the stable manifolds of all equilibrium points that lie in the
stability boundary) to calculate the CUEP.

Recently, a Two-Time Scale (TTS) CUEP method was
proposed in [4] (a sound theoretical foundation for this method
was provided a year later in [5]) with the aim to explore time-
scale properties, already present in the power system models,
to improve the direct stability assessment. This method relies
on a relationship between the CUEP of the original system
and the CUEPs of the fast and slow subsystems to improve
the CUEP calculation. Taking into account the time-scale
properties in the CUEP method has several advantages: (i)
speeding up CUEP calculation, (ii) obtaining less conservative
estimations of critical clearing time (CCT), and (iii) providing
a deeper insight into the unstable modes of the system.

This paper proposes a new TTS-BCU method, and reports
the first ever known use of the TTS-CUEP method to assess
stability of a multi-machine power system. The proposed TTS-
BCU method is a numerical algorithm to correctly compute
the slow and fast CUEPs of the TTS-CUEP method, and it
also provides a more robust algorithm to compute the CUEP
of the original system.

The paper is organized as follows: in Section II the two-time
scale problem formulation is presented; in section III the multi-
machine power system model, as well its energy functions are
presented; in section IV the TTS-CUEP method is revised;
in section V the proposed TTS-BCU method is discussed; in
section VI tests and results are discussed; and finally in section
VII the main conclusions are depicted.

II. A TWO-TIME SCALE PROBLEM FORMULATION

Many power system models present two-time scale prop-
erties, i.e., variables with slow and fast dynamics coexist in
the system. These systems can be modeled in the form of
a singularly perturbed system (Two-Time Scale (TTS) system),
which can be expressed in the slow and fast time-scales, where
x ∈ Rn is a vector of slow variables, z ∈ Rm is a vector of
fast variables and ε is a positive small real number:

(Σε)

{
dx
dt = f(x, z)

εdz
dt = g(x, z)

τ=t/ε−→ (Πε)

{
dx
dτ = εf(x, z)

dz
dτ = g(x, z)

(1)

Taking the limit ε → 0 in the previous equations, two
simplified decoupled systems are derived, the slow system
(Σ0) and the fast system (ΠBLS(x)) [4]:

(Σ0)

{
dx
dt = f(x, z)

0 = g(x, z)
, (ΠBLS(x))

{
dx
dτ = 0

dz
dτ = g(x, z)

(2)

We can notice that for each frozen (fixed) value of the slow
variables, x, there is a corresponding fast system (ΠBLS(x)).
It is also important to notice that the fast systems have the
same stability boundary characterization as the two-time scale
system [6].

On the other hand, the slow system (Σ0) is an algebraic-
differential equation system. In the slow system the solution
(flow) is constrained to an algebraic manifold Γ = {(x, z) ∈
Rn × Rm : g(x, z) = 0}.

The set Γ is subdivided into several stable (Γs) and unstable
(Γu) components by thin sets of nonhyperbolic points NH =
{(x, z) ∈ Rn × Rm : Dzg(x, z) is singular} [4].

The stability boundary characterization of the slow system
is quite complex, once many different limit sets can be lay
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on its stability boundary, such as: equilibrium points, pseudo-
equilibrium points, periodic orbits, and singular points among
others [7].

Besides the obvious complexity of the slow system, the slow
system (Σ0) and the family of fast systems (ΠBLS(x)) can
completely describe the dynamics of the two-time scale system
for a sufficiently small parameter ε. In [4], a novel TTS-CUEP
method for transient stability analysis was proposed, based on
the TTS-decomposition of the power system dynamics, and on
a relationship between the CUEP of the original two-time scale
system (1) and the CUEPs of the slow and fast subsystems
(2). Several advantages in terms of CUEP computation and
understanding of the power system’s dynamic are obtained.

III. THE MULTI-MACHINE POWER SYSTEM MODEL

Consider a power system composed of nb buses, ng gener-
ators, nl load buses and an infinite bus1. The generators are
represented by one-axis models (field flux decay model) and
loads are modeled as constant impedances:

(Πε)



δ̇i = ωi

Miω̇i = Pmi −
∑ng+1

j=1 E
′

qiE
′

qj (Gijcos(δi − δj)+

Bijsin(δi − δj))−Diωi

Ė
′

qi = ciε
[
EFDi − E

′

qi + (xdi − x
′

di
)
∑ng+1

j=1 E
′

qiE
′

qj(
Bijcos(δi − δj)−Gijsin(δi − δj)

)]
(3)

being i = 1, ..., n, ci = 1/(εT
′

doi
) and ε =

maxi=1,...,ng (1/T
′

doi
) a positive small parameter. G and B

are the reduced conductance and susceptance matrices of the
system, and all the other machine parameters are defined
according to the usual notation, as presented in [1].

In this model, the mechanical variables (δ,ω) are consid-
ered fast variables when compared to the equivalent voltage
on the quadrature axes E

′

q. This is a reasonable consideration
when the time constants T

′

doi
are large.

The fast subsystem (ΠBLS(E
′

q)) derived from this model
is the classical generator network-reduced model:

(ΠBLS(E
′

q))


δ̇i = ωi

Miω̇i = Pmi −Diωi −
∑ng+1

j=1 E
′

qiE
′

qj

(Gijcos(δi − δj) +Bijsin(δi − δj))

(4)

On the other hand, the simplified slow system (Σ0) is a
algebraic-differential equation system [4], [5]:

1Any other reference could be adopted, like one-machine or the center of
inertia, without any further complications to the developed theory.

(Σ0)



Ė
′

qi = ciε
[
EFDi − E

′

qi + (xdi − x
′

di
)
∑ng+1

j=1 E
′

qiE
′

qj(
Bijcos(δi − δj)−Gijsin(δi − δj)

)]
0 = ωi

0 = Pmi −
∑ng+1

j=1 E
′

qiE
′

qj (Gijcos(δi − δj)+

Bijsin(δi − δj))

(5)

IV. THE TTS-CUEP METHOD

For the correctness of the TTS-CUEP method, the following
assumptions are made:
(A1) All the equilibrium points of the original TTS (Σε/Πε),

fast (ΠBLS(E
′

q)) and slow (Σ0) systems are hyperbolic;
(A2) The stable and unstable manifolds of the equilibrium

points on the stability boundary of the TTS system
(Σε/Πε) satisfy the transversality condition [6];

(A3) There exist energy functions Vε, Vfast and Vslow asso-
ciated with the original TTS (Σε/Πε), fast (ΠBLS(E

′

q))
and slow (Σ0)systems, respectively;

The conceptual algorithm for the TTS-CUEP method for
transient stability assessment could be described in the fol-
lowing steps [5]:

Step 1: (Assessing the Stability of the Fast-Fault-on System)
Check if the Fast Fault-on trajectory ϕF

0 (τ,x0, z0) converges
to an asymptotical equilibrium point (x0, zsF ). If it converges,
then proceed to Step 2 for stability assessment of the Slow
system; otherwise proceed to Step 3 for stability assessment
of the Fast system.

Step 2:(Assessing the Stability of the Slow System)
Step 2.1: Calculate the CUEP (xcoS , zcoS) of the Slow

system.
Step 2.2: Calculate the critical energy of the Slow system

by computing the slow energy at the CUEP of the Slow system,
that is, Vslowcr = Vslow(xcoS , zcoS).

Step 2.3: Check whether the Slow Fault-on trajectory
encounters a singularity on ΓF

s before the fault is cleared. If
it does, the analysis is terminated with the conclusion that the
two-time scale system may be unstable; otherwise compute
the slow energy of the post-fault Slow system at the clearing
time tcl along the projected fault-on trajectory2, i.e., Vslowcl

=
Vslow(Φ

P
0 (tcl,x0, z

F
s ).

Step 2.4: If Vslowcl
< Vslowcr , the the Slow system is

stable and the two-time scale system is stable for sufficiently
small ε and stop; otherwise proceed to Step 2.5 to refine the
stability assessment of the Slow system.

Step 2.5: Numerically integrate the Slow system starting
from the projected initial condition of the post-fault system.
If the Slow system is stable, then, for sufficiently small ε, the
two-time scale system is stable.

Step 3: (Assessing the Stability of the Fast System)

2It is important to notice that the fault-on algebraic manifold ΓF
s is different

from the post-fault algebraic manifold ΓPF
s , so in order to calculate the post-

fault energy the fault-on trajectory must be projected over ΓPF
s [4].



Step 3.1: Calculate the CUEP (x0, zcoF ) of the Fast
system.

Step 3.2: Calculate the critical energy of the Fast system
by computing the fast energy at the CUEP of the Fast system,
that is, Vfastcr = Vfast(x0, zcoF ).

Step 3.3: Calculate the fast energy of the Fast post-
fault system at the clearing time τcl = t/ε, i.e., Vfastcl =
Vfast(Φ0(x0, z0)).

Step 3.4: If Vfastcl < Vfastcr then the Fast system is
stable and proceed to Step 4; otherwise the fast system may
be unstable and proceed to Step 3.5 to refine the stability
assessment of Fast system.

Step 3.5: Numerically integrate the post-fault fast system.
If the post-fault fast system is unstable, then the analysis is
terminated with the conclusion that the two-time scale system
may be unstable for sufficiently small ε; otherwise, proceed
to Step 4.

Step 4: (Assessing the Stability of the TTS System)
Step 4.1: Check the existence of a Uniform3 CUEP

(xco, zco) on the type-one component Γu of Γ. If it exists
then proceed to Step 4.2; otherwise calculate the CUEP
(xcoS , zcoS) of the Slow system which, in this case, is the
Uniform CUEP of the two-time scale system, i.e., (xco, zco) =
(xcoS , zcoS).

Step 4.2: Calculate the critical energy by computing the
energy function, of the two-time scale system, at the Uniform
CUEP for a fixed small ε, that is, Vεcr = Vε(xco, zco).

Step 4.3: Calculate the energy function of the post-fault
two-time scale system at the clearing time τcl, i.e., Vεcl =
Vε(Φε(τcl,x0, z0)).

Step 4.4: If Vεcl < Vεcr the the two-time scale system is
stable; otherwise it may be unstable.

In the presented algorithm, there is need for the calculation
of slow and fast CUEPs, in Steps 2.1, 3.1 and 4.1. However, no
algorithm to accomplish this task was provided before hand.

In this paper, a numerical algorithm, called TTS-BCU
method, is proposed for the computation of the fast and slow
CUEPs. The new TTS-CUEP/BCU method is an extension of
the traditional CUEP/BCU method for power system stability
models that exhibit two-time scale properties.

V. THE TTS-BCU METHOD

The TTS-BCU method consists in finding artificial reduced
systems to the original TTS system (Σε/Πε), and for its fast
(ΠBLS(E

′

q)) and slow (Σ0) subsystems,to enable the fast/slow
CUEPs calculation in the TTS-CUEP method.

For the original TTS system we define a novel artificial

3Let (xcoε, zcoε) be the CUEP of the two-time scale system (Σε) with
respect to the fault-on trajectory ΦF

ε (t,x0, z0), and consider the map ε →
(xcoε, zcoε). If there exists ε∗ > 0 such that the map is constant for all
ε ∈ (0, ε∗), then (xco, zco) = (xcoε, zcoε) is a uniform CUEP with respect
to the fault-on trajectory ΦF

ε (t,x0, z0) for all ε ∈ (0, ε∗).
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Fig. 1. Scheme of the static and dynamic relationships of the TTS-BCU
method.

reduced TTS system (Πε(AR)) as following:

(Πε(AR))



δ̇i = Pmi −
∑ng+1

j=1 E
′

qiE
′

qj (Gijcos(δi − δj)+

Bijsin(δi − δj))−Diωi

Ė
′

qi = ciε
[
EFDi

− E
′

qi + (xdi
− x

′

di
)
∑ng+1

j=1

E
′

qiE
′

qj

(
Bijcos(δi − δj)−Gijsin(δi − δj)

)]
(6)

Applying the same TTS-decomposition, the artificial fast
(ΠBLS(AR)(E

′

q)) and slow (Σ0(AR)) subsystems can be de-
rived:

(ΠBLS(AR)(E
′

q))

δ̇i = Pmi −Diωi −
∑ng+1

j=1 E
′

qiE
′

qj

(Gijcos(δi − δj) +Bijsin(δi − δj))

(7)

(Σ0(AR))



Ė
′

qi = ciε
[
EFDi − E

′

qi + (xdi − x
′

di
)
∑ng+1

j=1

E
′

qiE
′

qj

(
Bijcos(δi − δj)−Gijsin(δi − δj)

)]
0 = Pmi −

∑ng+1
j=1 E

′

qiE
′

qj (Gijcos(δi − δj)+

Bijsin(δi − δj))

(8)

The equilibrium points of these artificial fast/slow subsys-
tems exhibit a static (location and type of the equilibrium
points) and a dynamic (presence on the stability boundary) re-
lationship with the equilibrium points of the original fast/slow
systems. An scheme of these relationship is depicted in Fig. 1
for the proposed multi-machine power system model of section
(III).

Firstly, we intend to prove the relationship between the
equilibrium points of the original TTS system (Σε/Πε) and
the equilibrium points of its fast (ΠBLS(E

′

q)) and slow (Σ0)
subsystems.



Before that, we will state some facts about the equilibrium
points of these systems:

• the slow system (Σ0) has the same equilibrium points of
the original TTS system (Σε/Πε);

• the equilibrium points of the fast system (ΠBLS(E
′

q)),
generally, are not equilibrium points of the slow system
(Σ0);

• the equilibrium points of the fast system (ΠBLS(E
′

q)) lie
on the set Γ.

The static relationship between the type of the hyperbolic
equilibrium points of the slow (Σ0) and original TTS (Σε/Πε)
systems are stated in the next theorem.

Theorem 1: [4] If a hyperbolic type-j equilibrium point, say
(x∗, z∗) of (Σ0) lies on a type-k component Γi of Γ, then
there exists ε∗ > 0 such that (x∗, z∗) is a hyperbolic type-
(j+k) equilibrium point of (Σε/Πε) for all ε ∈ (0, ε).

Thus, as the CUEP is generally a type-one hyperbolic equi-
librium point [1], theorem 1 assures that the uniform CUEP of
the TTS system (Σε/Πε), considering that ∥Re(λ)∥ > α > 0,
where λ is the eigenvalue vector of the Jacobian matrix
of the original TTS system, is or a type-one hyperbolic
equilibrium point of the slow system (Σ0) on a type-zero
(stable) component Γs of Γ, or on a type-zero (asymptotic
stable) equilibrium point of the slow system (Σ0) on a type-
one (unstable) component Γu of Γ.

The dynamic relationship of the original TTS system
(Σε/Πε) and the slow (Σ0) and fast (ΠBLS(E

′

q)) are stated
by the next two theorems.

Theorem 2: [4] Suppose (xs, zs) and (xu, zu) are respec-
tively asymptotic stable and unstable equilibrium points of
(Σ0) on the stable component Γs. Also, suppose that for each
ε, the associated TTS system (Σε/Πε) has an energy function
and its equilibrium points are isolated. Then, there exists an
ε∗ > 0 such that for all ε ∈ (0, ε∗), the unstable equilibrium
point (xu, zu) lies on the stability boundary ∂A0(xs, zs) of
(Σ0) if and only if (xu, zu)lies on the stability boundary
∂Aε(xs, zs) of (Σε/Πε).

Theorem 3: [4] Suppose (xs, zs) is an asymptotic stable
equilibrium point of (Σ0) on the stable component Γs, (xu, zu)
is a unstable equilibrium point of (Σ0) on the unstable com-
ponent Γu, and consider ∥Re(λ)∥ > α > 0, where λ is
the eigenvalues’ vector of the original TTS system’s Jacobian
matrix evaluated in any equilibrium point of (Σε/Πε). Also,
suppose that (xu, z

∗) lies on the stability region A0(xs, zs) ⊂
Γs of (Σ0), and (xu, zu) lies on the stability boundary
∂ABLS(xu, z

∗) of (ΠBLS(xu)). . Then, there exists ε∗ > 0
such that for all ε ∈ (0, ε∗), the unstable equilibrium point
(xu, zu) is a type-one unstable equilibrium point of (Σε/Πε)
lying on the stability boundary ∂Aε(xs, zs) of (Σε/Πε).

Exploiting these static and dynamic relationships, the CUEP
of the original TTS system (Σε/Πε) can be obtained by
computing the CUEPs of the fast (ΠBLS(E

′

q)) and slow (Σ0)
subsystems.

The same procedure can be made to prove the static and
dynamic relationships between the artificial reduced TTS

system (Σε(AR)/Πε(AR)) and its fast (ΠBLS(AR)(E
′

q)) and
slow (Σ0(AR)) subsystems.

Now, to finish the theoretical foundation of the TTS-BCU
method, it is necessary to establish a static and dynamic
relationship between the slow and fast subsystems derived
from the original TTS system (Σε/Πε) and those derived from
the artificial reduced TTS system (Σε(AR)/Πε(AR)).

Both the slow systems (Σ0) and (Σ0(AR)) have the same
form, so the verification of the static and dynamic relationships
between their equilibrium points is trivial.

On the other hand, the verification of the static/dynamic
relationships for the fast systems (ΠBLS(E

′

q)) and
(ΠBLS(AR)(E

′

q)) follows the same steps that the traditional
BCU method [1], [8].

Once the TTS-BCU has been proved, it provides an efficient
way to calculate the uniform CUEP of the original TTS system
by the calculus of the slow/fast CUEPs in the TTS-CUEP
method. In the next section, the TTS-CUEP/BCU method will
be applied for transient stability assessment of multi-machine
power system model.

VI. TESTS AND DISCUSSIONS

The energy functions, used by the TTS-CUEP/BCU method,
for the original TTS system (Σε/Πε) and for the slow system
(Σ0) are taken as numerical ones [1], [8], while the energy
function for the fast subsystems (ΠBLS(E

′

q)) is taken from
[9]. The path-dependent integral terms are computed along a
straight line, as follows:

Vε = −
ng∑
i=1

∫ δi

δ0i

[Pmi
− Pei ] dδi −

ng∑
i=1

∫ E
′
qi

E′0
qi

[
EFDi − E

′

qi + (xdi − x
′

di
)Idi

]
dE

′

qi (9)

Vslow = −
ng∑
i=1

∫ E
′
qi

E′0
qi

[
EFDi

− E
′

qi + (xdi
− x

′

di
)Idi

]
dE

′

qi

(10)

Vfast =

ng∑
i=1

Miω
2
i

2
−

ng∑
i=1

(Pmi
− ∥E

′

qi∥
2Gii)−

ng∑
i=1

ng+1∑
j=i+1

E
′

qiE
′

qjBii(cos(δi − δj)− cos(δ0i − δ0j )) +

ng∑
i=1

ng+1∑
j=i+1

[
E

′

qiE
′

qj

(δi − δ0i ) + (δj − δ0j )

(δi − δ0i )− (δj − δ0j )

Gii(sin(δi − δj)− sin(δ0i − δ0j ))
]

(11)

With this energy functions, and considering the proposed
multi-machine power system model, two small power system
models will be studied by the traditional CUEP/BCU method
and by the novel TTS-CUEP/BCU method for transient sta-
bility assessment in the next subsections.
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Fig. 2. Four-generator system.

TABLE I
TESTS RESULTS AND COMPARISONS FOR THE TTS-CUEP/BCU METHOD

APPLIED TO MODIFIED KUNDUR SYSTEM.

Fault on Line CCT CCT CCT
bus # Tripped (TTS-BCU) (Tradit. BCU) (Step-by-step)

6 — 104 ms 104 ms 149 ms
5 — 204 ms 204 ms 285 ms
8 8-9 121 ms 121 ms 132 ms
3 — 73 ms — 100 ms
7 — 138 ms 138 ms 191 ms

A. Four-generators System

For our first example, consider the system of Fig. 2. This
system is a modification of the system presented in [10],
considering the multi-machine power system model (3) studied
in this paper.

Table I presents the results of the proposed TTS-
CUEP/BCU method for CCT estimations, as well its com-
parison with the results of the traditional CUEP/BCU method.

The CCT estimates of the proposed TTS-CUEP/BCU are
the same as the traditional estimates obtained via CUEP/BCU
method. As expected they are conservative estimates of the
true CCT (presented in the fifth column of Table I).

Analyzing the results in Table I, we observe that for the
fourth contingency the traditional CUEP/BCU method does
not provide a CCT estimate. It occurs because the CUEP
obtained by this procedure does not lie on the stability bound-
ary, which does not occur when using the TTS-CUEP/BCU
method.

It should be pointed out that there are numerical methods
that could be used in the traditional CUEP/BCU method to
improve its effectiveness, like the “BCU - Exit Point” method,
but it is also remarkable that a TTS-version of the BCU - Exit
Point method also can be obtained. Therefore, the fact that the
TTS-CUEP/BCU method can perform a correct calculation of
the CUEP in a case where the traditional CUEP/BCU method
does not, without relying on more sophisticated numerical al-
gorithms, is a prime contribution of the proposed methodology.

B. Modified IEEE 14 Bus System

Consider the slightly modified IEEE 14 bus system, as
shown in Fig. 3.

The results of the proposed TTS-CUEP/BCU method for the
calculus of the uniform CUEPs, including CCT estimations,
and a comparison with the traditional CUEP/BCU method are
presented in Table II.

SC

∞ 
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G 

G 
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Fig. 3. Modified IEEE 14 bus system.

TABLE II
TESTS RESULTS AND COMPARISONS FOR THE TTS-CUEP/BCU METHOD

APPLIED TO MODIFIED IEEE 14 BUS SYSTEM.

Fault on Line CCT CCT CCT
bus # Tripped (TTS-BCU) (Tradit. BCU) (Step-by-step)

2 1-2 76 ms 76 ms 136 ms
4 4-13 318 ms 318 ms 365 ms
6 6-8 121 ms 121 ms 190 ms
7 7-9 235 ms 235 ms 524 ms
9 9-14 255 ms — 672 ms

The accuracy of the proposed TTS-CUEP/BCU method can
be evaluated observing that its CCT estimates matches with
the results of the traditional CUEP/BCU method (the CUEP
calculated by both methods for the first four contingencies are
the same). Also, as expected [3], the estimates are conservative
when compared with the real CCT (presented in the fifth
column of Table II).

Despite its accuracy, more important is to highlight that
the TTS-CUEP/BCU also succeeded in calculating the CUEP
for the last contingency in Table II, while the traditional
CUEP/BCU method could not find the ’exit-point’ [1] along
the fault-on trajectory, and consequently the CUEP.

We also note that both BCU-based methods give very
conservative CCT estimations for contingencies at bus 7 and
9. After further study, it was concluded that the correct CUEPs
were obtained but the numerical energy functions give rise to
the conservativeness in CCT estimation.

VII. CONCLUSION

In this paper a novel TTS-BCU method was proposed to
compute the slow and fast CUEPs in the TTS-CUEP method.
Its theoretical basis was enlightened, and the first known
application of the TTS-CUEP/BCU method in multi-machine
power systems was made.

The proposed TTS-CUEP/BCU method was demonstrated
to be able to compute the correct uniform CUEP in cases



TABLE III
PARAMETERS FOR THE FOUR-GENERATORS SYSTEM

(Vbase = 230 KV, Sbase = 100 MVA).

Bus V Ang Pg Qg Pl Ql Bsh

1 1.000 0.00◦ -0.5475 -0.1168 0.00 0.00 0.00
2 1.030 13.11◦ 12.7400 2.8062 0.00 0.00 0.00
3 1.030 30.84◦ 10.4000 2.9707 0.00 0.00 0.00
4 1.030 15.33◦ 10.0100 4.1786 0.00 0.00 0.00
5 1.002 0.52◦ 0.00 0.00 0.00 0.00 0.00
6 1.006 1.29◦ 0.00 0.00 1.5000 0.00 0.00
7 1.000 -4.81◦ 0.00 0.00 9.6700 1.0000 2.0000
8 0.990 -7.66◦ 0.00 0.00 1.5000 0.00 0.00
9 0.968 -5.55◦ 0.00 0.00 17.6700 1.0000 3.5000
10 0.976 5.78◦ 0.00 0.00 1.5000 0.00 0.00
11 0.996 21.11◦ 0.00 0.00 0.00 0.00 0.00

Line R (p.u.) X (p.u.) bc (p.u.) Tap
1 - 5 0.0000 0.017 0.000 1.00
2 - 6 0.0000 0.017 0.000 1.00
3 - 11 0.0000 0.017 0.000 1.00
4 - 10 0.0000 0.017 0.000 1.00
5 - 6 0.0025 0.025 0.044 1.00
6 - 7 0.0010 0.010 0.018 1.00
7 - 8 0.0110 0.110 0.193 1.00
7 - 8 0.0110 0.110 0.193 1.00
8 - 9 0.0110 0.110 0.193 1.00
8 - 9 0.0110 0.110 0.193 1.00
9 - 10 0.0010 0.010 0.018 1.00

10 - 11 0.0025 0.025 0.044 1.00

Gen. Bus rarm (p.u.) xd (p.u.) x′
d (p.u.) T ′

do (s) M (s2)
2 2.01.10−6 1.51.10−3 2.52.10−4 8.00 0.310
3 2.01.10−6 1.51.10−3 2.52.10−4 8.00 0.295
4 2.01.10−6 1.51.10−3 2.52.10−4 8.00 0.295

where the traditional CUEP/BCU method was not. This feature
is a prime contribution of the TTS-CUEP/BCU method.

Future applications and developments of the TTS-
CUEP/BCU method in power system stability analysis include
the simultaneous assessment of transient and voltage stability,
and the development of the theoretical basis for network-
preserving power system models.

APPENDIX A
POWER SYSTEMS DATA

The buses, lines and generators parameters of the two multi-
machine power systems tested in this paper are presented in
Tables III and IV.
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Amparo à Pesquisa do Estado de São Paulo - Brazil) for the
financial support to this research.

REFERENCES

[1] H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power
Systems. Wiley IEEE Press, 2011.

[2] F. Rahimi, M. Lauby, J. Wrubel, and K. Lee, “Evaluation of the transient
energy function method for on-line dynamic security analysis,” Power
Systems, IEEE Transactions on, vol. 8, no. 2, pp. 497–507, 1993.

[3] H.-D. Chiang, F. Wu, and P. Varaiya, “A bcu method for direct analysis
of power system transient stability,” Power Systems, IEEE Transactions
on, vol. 9, no. 3, pp. 1194–1208, 1994.

[4] L. F. C. Alberto and H.-D. Chiang, “Controlling unstable equilibrium
point theory for stability assessment of two-time scale power system
models,” in Power and Energy Society General Meeting - Conversion
and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008,
pp. 1–9.

TABLE IV
PARAMETERS FOR THE MODIFIED IEEE 14 BUS SYSTEM

(Vbase = 100 KV, Sbase = 100 MVA).

Bus V Ang Pg Qg Pl Ql Bsh

1 1.060 0.00◦ 0.9275 0.0539 0.00 0.00 0.00
2 1.045 1.61◦ 0.4000 0.0312 0.2170 0.1270 0.00
3 1.010 -2.53◦ 1.0000 -0.1889 0.9420 0.1900 0.00
4 1.070 -7.03◦ 0.3000 0.3376 0.1120 0.0750 0.00
5 1.090 -7.53◦ 0.00 0.2089 0.00 0.00 0.00
6 1.033 -4.94◦ 0.00 0.00 0.4780 -0.0390 0.00
7 1.056 -7.53◦ 0.00 0.00 0.00 0.00 0.00
8 1.040 -4.24◦ 0.00 0.00 0.0760 0.0160 0.00
9 1.048 -8.87◦ 0.00 0.00 0.2950 0.1660 0.1900
10 1.044 -8.83◦ 0.00 0.00 0.0900 0.0580 0.00
11 1.053 -8.06◦ 0.00 0.00 0.0350 0.0180 0.00
12 1.055 -7.97◦ 0.00 0.00 0.0610 0.0160 0.00
13 1.049 -8.12◦ 0.00 0.00 0.1350 0.0580 0.00
14 1.030 -9.55◦ 0.00 0.00 0.1490 0.0500 0.00

Line R (p.u.) X (p.u.) bc (p.u.) Tap
1 - 2 0.019 0.059 0.053 1.00
1 - 8 0.054 0.223 0.049 1.00
2 - 3 0.047 0.198 0.044 1.00
2 - 6 0.058 0.176 0.034 1.00
2 - 8 0.057 0.174 0.035 1.00
3 - 6 0.067 0.171 0.013 1.00
6 - 8 0.013 0.042 0.00 1.00
6 - 7 0.00 0.209 0.00 1.00
6 - 9 0.00 0.556 0.00 1.00
8 - 4 0.00 0.252 0.00 1.00
4 - 11 0.095 0.199 0.00 1.00
4 - 12 0.0123 0.256 0.00 1.00
4 - 13 0.066 0.130 0.00 1.00
7 - 5 0.00 0.176 0.00 1.00
7 - 9 0.00 0.110 0.00 1.00
9 - 10 0.032 0.084 0.00 1.00
9 - 14 0.127 0.270 0.00 1.00
10 - 11 0.082 0.192 0.00 1.00
12 - 13 0.221 0.200 0.00 1.00
13 - 14 0.171 0.348 0.00 1.00

Gen. Bus rarm (p.u.) xd (p.u.) x
′
d (p.u.) T

′
do (s) M (s2)

2 0.00 1.39 1.25 8.00 0.053
3 0.00 0.91 0.75 8.00 0.026
4 0.00 1.63 1.5 8.00 0.014
5 0.00 1.32 1.2 8.00 0.067

[5] ——, “Theoretical foundation of cuep method for two-time scale power
system models,” in Power Energy Society General Meeting, 2009. PES
’09. IEEE, 2009, pp. 1–9.

[6] H.-D. Chiang, M. Hirsch, and F. Wu, “Stability regions of nonlinear
autonomous dynamical systems,” Automatic Control, IEEE Transactions
on, vol. 33, no. 1, pp. 16–27, 1988.

[7] V. Venkatasubramanian, H. Schattler, and J. Zaborsky, “Dynamics of
large constrained nonlinear systems-a taxonomy theory [power system
stability],” Proceedings of the IEEE, vol. 83, no. 11, pp. 1530–1561,
1995.

[8] H.-D. Chiang, C.-C. Chu, and G. Cauley, “Direct Stability Analysis of
Electric Power Systems using Energy Functions: Theory, Applications,
and Perspective,” Proceedings of the IEEE, vol. 83, no. 11, pp. 1497
–1529, Nov. 1995.

[9] T. Athay, R. Podmore, and S. Virmani, “A practical method for the
direct analysis of transient stability,” Power Apparatus and Systems,
IEEE Transactions on, vol. PAS-98, no. 2, pp. 573–584, 1979.

[10] M. Klein, G. Rogers, and P. Kundur, “A Fundamental Study of Inter-
Area Oscillations in Power Systems,” Power Systems, IEEE Transactions
on, vol. 6, no. 3, pp. 914 –921, Aug. 1991.


