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Genome-wide association analysis of feed intake
and residual feed intake in Nellore cattle
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Heidge Fukumasu1, Saulo L Silva1, Gerson A Oliveira Junior1, Pâmela A Alexandre1, Paulo R Leme1,
Ricardo A Brassaloti5, Luiz L Coutinho5, Thiago G Lopes2, Flávio V Meirelles1, Joanir P Eler1 and José BS Ferraz1

Abstract

Background: Feed intake plays an important economic role in beef cattle, and is related with feed efficiency,
weight gain and carcass traits. However, the phenotypes collected for dry matter intake and feed efficiency are
scarce when compared with other measures such as weight gain and carcass traits. The use of genomic information
can improve the power of inference of studies on these measures, identifying genomic regions that affect these
phenotypes. This work performed the genome-wide association study (GWAS) for dry matter intake (DMI) and residual
feed intake (RFI) of 720 Nellore cattle (Bos taurus indicus).

Results: In general, no genomic region extremely associated with both phenotypic traits was observed, as expected
for the variables that have their regulation controlled by many genes. Three SNPs surpassed the threshold for the
Bonferroni multiple test for DMI and two SNPs for RFI. These markers are located on chromosomes 4, 8, 14 and 21 in
regions near genes regulating appetite and ion transport and close to important QTL as previously reported to RFI and
DMI, thus corroborating the literature that points these two processes as important in the physiological regulation of
intake and feed efficiency.

Conclusions: This study showed the first GWAS of DMI to identify genomic regions associated with feed intake
and efficiency in Nellore cattle. Some genes and QTLs previously described for DMI and RFI, in other subspecies
(Bos taurus taurus), that influences these phenotypes are confirmed in this study.

Background
Feed intake plays an important economic role in cattle
growth and may represent the greatest costs in beef cat-
tle, both in beef cattle finishing systems and calves pro-
duction [1]. Feed intake is evaluated by dry matter
intake (DMI) in cattle, which is associated with weight
gain, carcass traits and feed efficiency [2]. It is, therefore,
a relevant variable for the entire meat production system
and, possibly, a trait to be included in genetic breeding
programs.
Although genetic breeding foci primarily on growth

and reproductive traits, other variables must be taken
into account because increased weight gain rates may
lead to a concomitant increase in the adult size generat-
ing higher maintenance costs of animals [3]. Thus, the

objectives of genetic breeding must be adequately delin-
eated to attain balance between weight gain rates and
other essential characteristics, such as reproduction [4],
meat quality and feeding efficiency [3].
In recent decades, many efforts have been made to

better balance the relationship of weight gain with feed
intake in beef cattle; however, some traits are less effect-
ive to minimize the negative response of increased adult
animal size, such as gross feeding efficiency [3,5]. In this
respect, the residual feed intake (RFI) was proposed in
the 1960s [6] and has gained more notability for being
independent from growth and body size, and designed
towards intake reduction [3,5-8]. This independence is
attributed to the fact that RFI is calculated as the differ-
ence between observed and estimated intake by a regres-
sion equation of DMI over the average daily gain (ADG)
and the mid body weight (MBW) [6].
Both DMI as RFI in cattle have enough variability and

heritability to respond to genetic selection [2,7,8]; however,
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there is still no consensus on how these traits should be
considered in the indices of selection. In this context, two
major limitations comprise the difficulties inherent to ob-
tain phenotypes and how to use this information in the
breeding process [9]. In Nellore cattle (Bos taurus indicus),
these difficulties are even greater, given the few animals
with phenotype available for DMI and RFI, and the scarce
knowledge about genetic parameters of these traits in
Nellore. However, the phenotypic variability of RFI in
Nellore show a standard deviation ranging between
0.31 and 0.69 kg/DM per day [10,11], is similar to that
observed in Bos taurus taurus (often referred as tau-
rine) animals and crossbreed [2,3,6,7].
The use of genomic information can be a strategy to im-

prove the selection of phenotypes such as RFI and DMI, if
the marker effects are estimated accurately. Genome-wide
association study (GWAS) allowed to identify subsets of
markers that explain an important portion of the variation
of these characteristics [9,12,13]. The use of the informa-
tion obtained from these markers along the chromosomes
(BTA) can improve the accuracy of young animals candi-
dates for genetic selection, and thus improve the genetic
gain by reducing the generation interval.
Several studies have reported the viability of using the

information from single nucleotide polymorphism (SNP)
to identify regions of the genome that affect phenotypes
of interest, aiming at improving breeding schemes for
weight gain, reproduction and carcass traits in beef cat-
tle [14-16]. Additionally, studies on molecular markers
in cattle were enhanced with the recent release of the
reference bovine genome [17] and with the improvement
of beadchip technologies that perform fast and auto-
mated analyses of hundreds of thousands of SNPs and
with the decreasing cost per SNP analyzed. The develop-
ment of high-density commercial panels of SNPs opened
a range of opportunities for GWAS [14]. Furthermore, the
imputation of genotypes has proven to be an effective tool
in enhancing the power of GWAS by increasing the num-
ber of genotyped animals and can be a valuable strategy
for reducing even more the genotyping cost [18].
However, the vast majority of GWAS has been per-

formed in animals of the taurine subspecies. Also, the
first beadchip of thousands of SNPs were developed
based on this subspecies, which causes several SNPs, de-
scribed as being polymorphic in taurines, to be non-
informative in zebu cattle (Bos taurus indicus), especially
Nellore [19,20]. Only in recent years, GWAS was carried
out more often in zebu from the development of opti-
mized beadchips also taking into account this subspecies
(e.g. [20]). The objectives of this study were: 1) to iden-
tify SNPs associated with DMI and RFI in Nellore cattle,
using medium (Illumina® BovineSNP50 v2 BeadChip),
high density (Illumina® BovineHD BeadChip) and a com-
bined of medium to high-density panels by imputation;

and 2) to explore the regions surrounding the identified
markers seeking possible genes with known function
near these SNPs.

Results
Phenotype, quality assurance and imputation
For the three datasets of the two phenotypic variables, no
evidences were found to deviate from normality and ho-
moscedasticity of model residuals in the Shapiro-Wilk and
Breusch-Pagan tests (P > 0.05), respectively. The mean,
additive genetic variances and residual variances were
8.76 ± 1.96, 0.29 and 0.42, respectively to DMI and 0.00 ±
0.89, 0.20 and 0.33, respectively to RFI. However, four
samples were considered outliers in the DMI distribution
and removed from the HD dataset and HDimp dataset,
whereas two samples were considered outliers for RFI. Re-
garding the criteria for exclusion of samples and SNPs,
the results of the quality control of 50 k and HD are
shown in Table 1.
After the quality control criteria, the final datasets

were: 672 samples in 50 k with 28,231 SNPs and 365
samples in HD with 436,588 SNPs.
The number of SNPs imputed with over 95% accuracy

was 290,620 and the number of remaining samples was
672 for the dataset HDimp. The median imputation ac-
curacy was 97.2% with an average of 94.6%. Only those
genotypes imputed with over 95% accuracy were used in
the GWAS.

Genome-wide association study
The deflation/inflation factor (λ) calculated for all associ-
ation analyses was lower than 1.1 (Additional files 1, 2, 3,
4, 5 and 6), which was considered acceptable and can be
used on genomic control correction approach (GC). The
P-values of SNPs along the chromosomes are shown in
the form of Manhattan Plots for DMI and RFI in Figures 1
and 2, respectively, with the threshold represented as the
Bonferroni significance line.
The SNPs significant in the Bonferroni adjustment in

each DMI and RFI analysis are described in Table 2.
The exploration of the region around the five SNPs

that were associated with DMI and RFI are shown in

Table 1 Number and percentage of SNPs excluded in
quality control

Criterion HD (SNPs) HD (%) 50 k (SNPs) 50 k (%)

Location* 42,669 5.5 1,723 3.2

Call rate 104,602 13.4 9,253 16.9

MAF 173,564 22.3 13,728 25.1

HWE 20,529 2.6 16,740 3.1

Total 341,374 43.9 26,378 48.3

*The criterion location excluded SNPs without coordinated genomic known
and not located in autosomal chromosomes.
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Figure 1 Manhattan plots of –Log10(P-values) for DMI in Nellore cattle. The horizontal lines represent the Bonferroni threshold (50 k = 1.77 × 10-6,
HD = 1.15 × 10-7, HDimp = 1.72 × 10-7).

Figure 2 Manhattan plots of –Log10(P-values) for RFI in Nellore cattle. The horizontal lines represent the Bonferroni threshold (50 k = 1.77 × 10-6,
HD = 1.15 × 10-7, HDimp = 1.72 × 10-7).
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Table 3, which shows all the genes with known functions
located around (100 kb) these SNPs. Several other genes
are at shorter distances; however, these distances were not
included because their function is still unknown according
to Ensembl genes 72 UMD v 3.1 [21]. Additionally, the
distance of the QTLs mapped for both phenotypic vari-
ables closer to these SNPs is shown in the same table.

Discussion
The thresholds for the SNP exclusion are still question-
able. The accuracy load of each criterion depends heavily
on the dataset and information that it is expected from
each type of GWAS. The criterion that eliminates most
SNPs and, possibly, the most controversial is MAF. In
general, there is a tendency to use 5% for GWAS
[9,14,16,22-24]; however, in this study, we adopted 2% of
MAF, even with approximately 25% of SNPs being elimi-
nated in this criterion. Other studies also adopted the
same level [20,25,26].
The GWAS across the 29 autosomal chromosomes

showed no genomic region associated with DMI and RFI
of feedlot Nellore young bulls and steers, as expected for
the variables that have their regulation controlled by
many genes. This fact was reported in other studies that

also assessed DMI and RFI in different cattle subspecies
[9,14] and RFI in pigs [27].
The benefits of using imputation were observed in this

study because, in the dataset HDimp, we found regions
significantly associated with phenotypes, which was not
noted in the dataset HD even though both had a very
close Bonferroni threshold. Although the number of
SNPs of the dataset of imputed animals is much lower
than that of the dataset HD (290,620 vs 436,588), this
tool enabled a much more robust association study due
to the considerable increase in the number of samples
(672 vs 365).
The two variables showed high genetic and phenotypic

correlation among each other [2,8,28], but not always
the same regions showed strong association with these
characteristics. This can be partly explained by the dif-
ference between the physiological mechanisms that
regulate RFI are not exactly the same that regulate DMI.
On the other hand, regions with important effect on the
two traits suggest the existence of pleiotropic effects on
these variables [29,30]. However, some regions are well
evidenced in both analysis of the same trait and, in some
cases, we can observe genomic regions that relate to
both, such as in BTA4, BTA8 and BTA14.

Table 2 Description of the most significant SNPs for DMI and RFI

Trait/dataset SNP ID BTA BP (Mb)1 MAF Ef. Sub.2 Var (%)3 P-value

DMI/50 k rs109784719 14 44.9 0,13 −1.83 9.59 2.28 × 10-06

DMI/50 k rs29024524 8 28.7 0,10 1.60 7.64 2.22 × 10-06

DMI/HDimp rs134003539 4 73.5 0.38 0.36 1.78 6.53 × 10-08

RFI/50 k rs41660853 8 4.5 0.12 0.48 4.65 1.13 × 10-07

RFI/HDimp rs135777172 21 71.0 0.09 0.89 11.1 5.37 × 10-08

1BP = position in base pairs.
2Ef. Sub = allelic substitution effect (DM/day).
3Var = proportion of the explained phenotypic variance.

Table 3 Genes and QTLs that are close to SNPs associated with RFI and DMI

SNP (trait) Gene Gene IDa Dist gene (kb)b Strand Dist QTL (Mb)c QTL IDd Full gene name (description)

rs109784719 (DMI) STMN2 534991 27.4 + 44.1 #4365 Stathmin-like 2

rs29024524 (DMI) CCDC171 538331 0 - 12.1 #4425 Coiled-coil domain containing 171

PSIP1 282011 48.3 + PC4 and SFRS1 interacting protein 1

SNAPC3 511366 89.3 - Small nuclear RNA activating comp 3

rs134003539 (DMI) ZNF804B 100295505 0 + 4.5 #10584 Zinc finger protein 804B

rs41660853 (RFI) ANXA10 505322 0 + 7.1 #4353 Annexin A10

DDX60 787280 0 - 7.9 #5274 DEAD (Asp-Glu-Ala-Asp) box polypep 60

rs135777172 (RFI) GPR132 539146 14.8 + 2.2 #4462 G protein-coupled receptor 132

CDCA4 527837 40.7 - Cell division cycle associated 4

AHNAK2 527701 84.9 - AHNAK nucleoprotein 2

BRF1 618161 93.3 - RNA polymerase III transcr init factor 90
aIdentification of the gene according to Ensembl genes database 72.
bDistance in kb of SNP for the gene.
cDistance in Mb of SNP for the closer QTL described in trait associated with SNP.
dIdentification of QTL according to the cattle QTLdb database.
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Three SNPs surpassed the threshold for the Bonferroni
multiple test for DMI and two SNPs for RFI. Several
markers have been associated with these two variables in
the literature [9,12,14,22-24,27,29,30]; however, the
methodologies used for this purpose are diverse and
populations assessed are extremely distinct, which may
imply that associations made in a particular breed may
not be applied in others [31]. These SNPs can explain
part of the phenotypic variance, insomuch that few
markers explain more than 30% of the variation in RFI
[9,27,30]. However, this calculation takes into account
allele frequencies, the allele substitution effect and
phenotypic variance of the trait. This prediction can be
overrated depending on these factors, mainly when it as-
sumes independence between the markers considered in
this calculation. The allele substitution effect of the
SNPs varied between the panels, and this effect in DMI
was higher for markers in the 50 k panel, for RFI in the
HDimp panel.
Regarding the location of SNPs related to DMI,

the SNP rs109784719 (BTA14) is at 27.4 kb of the
single gene (STMN2); however, it is in the region of
QTL #4365 described previously for DMI. Other studies
found SNP associated with DMI in the BTA14 in beef
cattle [9,24] and in chromosome 14 in pigs [32], both in
a region surrounding the genes such as PLAG1, RDHE2
and CHCHD7 that notably influence the stature of vari-
ous species [20,24,33]. The SNP rs29024524, in the
BTA8, is in gene CCDC171 and surrounding other
genes; moreover, it lies next to the QTL #4425, which is
a genomic region that seems to affect RFI and DMI.
Other two QTLs (#4353 and #5274) involved with

RFI surround this SNP and SNP rs41660853, associated
with RFI. This SNP linked to RFI is located near gene
CLCN3, related to the ionic transport processes already
reported as influential in RFI [12], corroborating a previ-
ous study that described the metabolic differences of RFI
[34]. Three other association studies indicated the im-
portance of this region in RFI and DMI [14,23,29].
The ionic transport system can account for more than

10% of all ruminant energy expenditure [35]; therefore,
for animals with lower energy expenditure to maintain
this system, they can, at the same time, direct the energy
consumed to other processes, which can influence feed-
ing efficiency. The SNP rs135777172 also lies in a region
of QTL (#4462) already described for RFI at final part of
BTA21, where there is an abundance of genes encoding
various types of proteins [21].
Finally, SNP rs134003539 is in a locus described as im-

portant, for both DMI and RFI [12,14,23,29,36,37], at
4 Mb of the QTL (#10584). Other two genes widely
studied in both phenotypic variables are also located in
this locus. The neuropeptide Y (NPY, Gene ID 504216)
positioned at 1.4 Mb of distance and the leptin (LEP,

Gene ID 280836) at 19 Mb from the SNP and inserted
in this QTL. The neuropeptides and hormones that con-
trol appetite, energy expenditure and metabolism of fat
and glucose have a relationship to each other, which
seems to be mediated by leptin [38]. These compounds
can increase appetite such as the neuropeptide Y,
ghrelin, AGRP, MCH, orexines and noradrenalines, or
they can even have a reducing effect on appetite such as
leptin, POMC, CART, CRH, α-MSH and serotonin [38].
In addition, the rs134003539 is in gene ZNF804B that is
a form of protein “zinc finger”, characterized by coordin-
ation and stabilization of one or more zinc ions in sev-
eral ionic exchange processes [39].
In general, the GWAS presents itself as an interesting

tool to identify genomic regions that can influence these
phenotypes. Another potential advantage is the creation
of less dense panels designed for a breed or subspecies
of interest containing SNPs directed to a certain charac-
teristic. This could reduce costs of a possible genetic se-
lection with the use of genomic data, improving the
accuracy of estimates of genetic value in animals.
The identification of regions associated with DMI and

RFI may elucidate loci that influence these variables and
highlight possible important physiological mechanisms.
In this study, some promising regions were identified,
with important effect on DMI and RFI. However, the
strict significance level adopted and the number of geno-
typed animals may have contributed to reducing the
power of the present study, given that important regions
may not have been identified, which suggests the need for
further studies aimed at overcoming such restrictions.

Conclusions
The current study showed the results of GWAS in high
and medium-density panels to identify genomic regions
associated with feed intake and efficiency. It is believed
to be the first study of this kind conducted in Nellore
cattle to these traits. The results suggest that RFI and
DMI are influenced by loci previously described and
these results obtained in zebu cattle are supported by
the literature.

Methods
Phenotypic records
The study was conducted from a compilation of 11 ex-
periments of feed efficiency and intake conducted in
Brazil from 2007 to 2011. One experiment was per-
formed in the South [28], eight in the Southeast [10,19]
and two in the Midwest region in Brazil. In these experi-
ments, we obtained phenotypes of 720 young bulls and
steers at 550 ± 115 days old, with body weight of 380 ±
51 kg. The sample size of each trial ranged from 50 to
120 animals. Three different facilities were used to meas-
ure the phenotypes. We used automated systems of
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collective stalls (Calan gates and GrowSafe™) and an in-
dividual pens system. The experiment lasted at least
70 days, and the dietary intake was measured daily with
subsequent adjustment for dry matter content.
During the experiments, the MBW of each animal was

obtained by periodic weighing without fasting and ADG
was calculated as the slope of the linear regression of
weights compared to the testing days. To calculate the
RFI, we considered the regression equation residue of
DMI on ADG and MBW [6]; however, because of the
different experiments, we formed contemporary groups
(CG), which means that animals of the same experiment
were considered as a CG. Within three of the CG, there
were young bulls and castrated steers; therefore, the sex-
ual condition (SC) was also included as a covariate in
the statistical model. The RFI was calculated in the
PROC REG procedure from the statistical package SAS
9.3 and the general equation was:

DMI ¼ β0 þ β1ADG þ β2MBW 0;75 þ β3SC þ β4CG þ ε

RFI and DMI were tested for data normality (Shapiro-
Wilk) and homoscedasticity of model residues (Breusch-
Pagan). We also performed the control of data outliers
(DMI, ADG, MBW and RFI), in which the records out-
side the mean range ± 3 standard deviations, classified as
possible measurement error, were excluded from the
analysis.

DNA extraction, sample assurance and SNP quality
control
Blood was collected from all animals evaluated by punc-
turing the jugular. We used tubes containing K2 EDTA
as anticoagulant. The samples were stored at 4°C for late
DNA extraction by NaCl precipitation [40]. After extrac-
tion, the quality of the DNA samples was assessed by de-
termining the ratio A260/280 in biophotometer. The
samples were only accepted when values remained be-
tween 1.8 and 2.0 concomitantly, the DNA was, then,
quantified and samples were diluted to a minimum con-
centration of 50 ng/μL and maximum of 150 ng/μl for
subsequent genotyping.
Genotyping was performed in two types of DNA bead-

chip: the Illumina® BovineHD BeadChip (777,962 SNPs)
[41], and the Illumina® BovineSNP50 v2 BeadChip
(54,609 SNPs) [42], both in the standard test Infinium
Assay II for the HiScanSQ® platform (Illumina Inc., San
Diego, CA). Genotype calls were determined using the
validated standard cluster file provided by the manufac-
turer, with GenCall Scores greater than 0.70. In total,
720 animals were genotyped, including 336 young bulls
and steers in BovineSNP50 (50 k dataset) and 384
young bulls in BovineHD (HD dataset). As most of the
BovineSNP50 markers are embedded in the BovineHD

panel, the HD samples were also included in the 50 k
dataset in order to increase sample size. We assessed
the occurrence of duplicate samples by calculating the
proportion of alleles identical by state (IBS) between all
possible pairs of individuals. For IBS calculation, geno-
types were considered for 5,000 and 20,000 markers
taken randomly for BovineSNP50 and BovineHD, re-
spectively, and any pair of samples with IBS ≥ 95% were
excluded.
For GWAS, SNPs were subjected to a quality control

in which only autosomal SNPs with known genomic co-
ordinate were considered. Samples with Call rate (IDCR)
lower than 90% were removed from the study. Markers
were removed if they presented minor allele frequency
(MAF) ≤ 0.02, Call rate (SNPCR) ≤ 0.95 and P-value for
Fisher’s exact test for Hardy-Weinberg Equilibrium
(HWE) ≤ 1 x 10-5. This quality control was performed in
R v2.15.2 software using scripts developed for this pur-
pose [20] and the GenABEL v1.7-6 package [43].

Imputation
In order to increase sample size, an imputation analysis
was performed to combine the available information of
animals genotyped with BovineSNP50 and BovineHD.
The HD panel information was used to verify the imput-
ation efficiency from the 50 k Panel to the HD. The
quality control of SNPs was performed again, which ex-
cluded SNPs located in non-autosomal chromosomes,
SNPCR ≤ 0.97, HWE ≤ 1 × 10-6, IDCR ≤ 0.90.
Afterwards, 290 animals randomly sampled (genotyped

in high-density panel) were considered as population
reference for the imputation analysis, while the
remaining animals of the panel were included in a valid-
ation set. Except for the markers in common between
the two technologies, the genotyped animals in the val-
idation BovineHD had their genotypes masked and im-
puted, which allowed to simulate the imputation of 50 k
to HD. These analyses were performed using the FImpute
2.2 software [44], using HD genotypes in combination
with pedigree information. The imputation efficiency was
assessed using the proportion of genotypes imputed
correctly. Subsequently, imputation was performed
similarly to all animals in the 50 k, in which all geno-
typed animals in HD that passed the quality control cri-
teria (362) were considered as reference population.
The final dataset (HDimp dataset) was composed of
672 animals and 290,620 SNPs that were allocated with
accuracy greater than 95%.

Association analysis
The association analysis was based on a variance-
components method, namely Grammar-Gamma [45].
This method is a computationally efficient unbiased ap-
proximation of the gold standard likelihood ratio test
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(LRT) [45,46], which corrects the association analysis for
confounding due to genetic substructure and relatedness.
The first step in the association analysis was to use the

variance-covariance matrix as genomic relationship matrix,
to correct for relatedness and substructure and Grammar-
Gamma factor calculation. To ensure the reliability of the
estimates, we calculated the inflation/deflation factor (λ)
for the correction of the GC [47].
The second step consisted of associating the pheno-

type with the genotypes without the variance-covariance
matrix and the estimates of SNPs effects adjusted by the
Grammar-Gamma factor [47]. The model used was the
polygenic [48] and the association test varied depending
on the phenotype used. The polygenic model for RFI in-
cluded age and SC as covariate and, for DMI was included
SC and MBW as covariates. The results were presented as
Manhattan Plots in which the -log10(P- values) were
plotted, corrected for λ and the Bonferroni correction
(α = 0.05/number of SNPs) was considered as signifi-
cance threshold. All the procedures described in this
item were carried out in R v2.15.2, using the GenABEL
v1.7-6 package [43].

Region surrounding significant SNPs
The SNPs that surpassed the threshold of the Bonferroni
adjustment were described and their allelic substitution
effects were reported. The proportion of the phenotypic
variance explained by the SNPs was also estimated as:

VAR %ð Þ ¼ 2pqβ2

S2
� 100

Where p and q are the allele frequencies of the ana-
lyzed SNP, β2 is the square of the allele substitution ef-
fect and S2 is the total variance of phenotype.
Additionally, they were investigated for their genomic

location (genes surrounding and possible QTLs already
mapped for DMI and RFI). The exploration of the region
searched for genes with known functions located at the
maximum 100 kb distant from the SNPs in Ensembl
genes 72 using the assembly UMD v3.1 [21]. The search
for QTLs was examined in cattle QTLdb database [49].
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Additional file 1: Quantile-quantile plot for the test statistics used
in the association analysis for DMI (50K).

Additional file 2: Quantile-quantile plot for the test statistics used
in the association analysis for DMI (HD).

Additional file 3: Quantile-quantile plot for the test statistics used
in the association analysis for DMI (HDimp).

Additional file 4: Quantile-quantile plot for the test statistics used
in the association analysis for RFI (50K).

Additional file 5: Quantile-quantile plot for the test statistics used
in the association analysis for RFI (HD).

Additional file 6: Quantile-quantile plot for the test statistics used
in the association analysis for RFI (HDimp).
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