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ABSTRACT 

Individual projection images in Digital Breast Tomosynthesis (DBT) must be acquired with low levels of radiation, 

which significantly increases image noise. This work investigates the influence of a denoising algorithm and the 

Anscombe transformation on the reduction of quantum noise in DBT images. The Anscombe transformation is a 

variance-stabilizing transformation that converts the signal-dependent quantum noise to an approximately signal-

independent Gaussian additive noise. Thus, this transformation allows for the use of conventional denoising algorithms, 

designed for additive Gaussian noise, on the reduction of quantum noise, by working on the image in the Anscombe 

domain. In this work, denoising was performed by an adaptive Wiener filter, previously developed for 2D 

mammography, which was applied to a set of synthetic DBT images generated using a 3D anthropomorphic software 

breast phantom. Ideal images without noise were also generated in order to provide a ground-truth reference. Denoising 

was applied separately to DBT projections and to the reconstructed slices. The relative improvement in image quality 

was assessed using objective image quality metrics, such as peak signal-to-noise ratio (PSNR) and mean structural 

similarity index (SSIM). Results suggest that denoising works better for tomosynthesis when using the Anscombe 

transformation and when denoising was applied to each projection image before reconstruction; in this case, an average 

increase of 9.1 dB in PSNR and 58.3% in SSIM measurements was observed. No significant improvement was observed 

by using the Anscombe transformation when denoising was applied to reconstructed images, suggesting that the 

reconstruction algorithm modifies the noise properties of the DBT images. 

Keywords: Image denoising, quantum noise, Digital Breast Tomosynthesis, Anscombe transformation, Wiener filter. 

 

 

1. INTRODUCTION 

Digital breast tomosynthesis (DBT) is a relatively new imaging modality for breast cancer screening in which a limited 

number of low-dose x-ray projections are acquired as the x-ray tube moves over an arc.
1
 A 3D volume is then 

reconstructed from these projections and tomographic slices of the breast are generated. Typically, DBT reconstructions 

are performed on planes parallel to the breast support at various depths in the breast volume.
2 

The advantage over 2D 

digital mammography is that tomosynthesis can reduce the problems caused by tissue overlap when projecting breast 3D 

parenchymal structures into a plane.
1,2

 Preliminary studies indicate that DBT has greater sensitivity and specificity for 

cancer detection relative to 2D digital mammography.
3
 

There have been a number of studies investigating the effect of tomosynthesis acquisition parameters on image quality.
4,5

 

Among others, the main factors that affects the quality of the reconstructed slices are the number of projections acquired, 

scan angle, spatial resolution, dose levels, quantum noise and the choice of reconstruction algorithm. Regarding dose 

levels, tomosynthesis examination normally is done with a total radiation exposure similar to a conventional 

mammogram. This means that individual projections are acquired with very low levels of radiation dose, typically about 

5-15% of a normal single-view 2D mammography. Thus, low-dose acquisition significantly degrades image quality by 

increasing the amount of quantum noise. 

_________________________ 
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In previous work,
6,7

 we presented a denoising algorithm for 2D digital mammography based upon a fully adaptive 

Wiener filter, which reduces image noise without significantly affecting image sharpness. Additionally, we proposed the 

use of the Anscombe transformation
8-10

 to stabilize the noise variance before applying the denoising filter, providing 

better reduction of quantum noise in digital mammography. The present work investigates how quantum noise in low 

dose DBT projections influences the quality of the reconstructed slices and how it would be altered if our denoising 

algorithm were to be applied either before or after the tomographic reconstruction. The use of the Anscombe 

transformation before denoising has also been investigated in order to stabilize the noise variance. 

 

2. METHODOLOGY  

 

2.1 Adaptive Wiener filtering 

The following simple model can be considered to describe the noise-degradation process during image acquisition, 

considering an additive white noise. 

 

 (   )    (   )   (   )       ( ) 

 

where  (   ) is the degraded (noisy) image,  (   ) is the input image and  (   ) is the additive noise, all at 

coordinates x and y. Denoising techniques usually manipulate this equation to obtain an estimate,  ̂(   ), of the input 

image when  (   ) and  (   ) are known. 

The Wiener filter calculates an estimate,  ̂(   ), of the expected noise-free image that minimizes the mean squared 

error. Specifically, when noisy image  (   ) is assumed to have a Gaussian additive noise, the Wiener filter is the 

optimal filter and is expressed as follows:
7 
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where  ̅(   ) and   
 (   ) are the mean and variance of the input image, respectively;  ̅(   ) is the mean of the noisy 

image  (   ); and   
 (   ) is the variance of the noise. 

Parameters  (̅   ) and   
 (   ) should estimated considering local statistics within a small neighborhood around the 

pixel being processed.
6,7 

As the input image,  (   ), is not known, these parameters should be estimated by blurring the 

noisy image  (   ) with a low-pass filter, which produced a preliminary estimate of the input image, denoted by 

 ̂̂(   ). In this work, we used a 3 × 3 averaging filter mask on  (   ) to obtain  ̂̂(   ). Thus, denoting the 

neighborhood around  ̂̂(   ) by Aij, the local mean and variance of  ̂̂(   ) were calculated by: 
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where M denotes the size of the square neighborhood Aij. 
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The choice of the size M for local mean and variance estimation is crucial and has a great impact on the performance of 

the filter
7
. The bigger the area of the neighborhood, the more noise that will be removed, but also the restored image will 

be more blurred. Thus, to properly define the size of the neighborhood Aij, we considered the method originally proposed 

by Rabbani
11

, where M is automatically adjusted depending on the signal activity relative to the noise activity within the 

neighborhood Aij. Initially, the area Aij is chosen to be a 5 × 5 square neighborhood around the pixel at coordinates (x,y) 

which is being processed (M = 5). In that region, we measured the relative signal activity,  (   ), which is defined as:  

 

 (   )   
 ̂̂ 

 (   )

  
 (   )

                         ( ) 

 

where  ̂̂ 
 (   ) is the variance of the preliminary estimate of the input image (Eq. 4) and   

 (   ) is the variance of the 

noisy image, both measured within the 5 × 5 neighborhood Aij around the pixel being processed. 

The parameter  (   ) is in the range [0,1] and denotes a relative measure of the signal activity (variance) versus the 

noise variance.
7,11

 Values of  (   ) close to zero correspond to flat areas, with little signal variation compared to the 

noise variance. Conversely, values of  (   ) close to one imply that the signal variance dominates the noise variance 

and are indicative of areas with fine details or sharp transitions. Thus, the size M of the square neighborhood around the 

pixel being processed is chosen depending on the value of  (   ) considering the following criteria: if 

0.2 <  (   ) < 0.6, moderate signal activity is present and the required statistics are estimated from a 5 × 5 

neighborhood using Eq. (3) and Eq.(4). If  (   ) < 0.2, a relatively flat area is detected and the size of the square 

neighborhood is increased to 7 × 7 to enclose more pixels and to more effectively average out the noise. Finally, if 

 (   ) > 0.6, a possible sharp transition area has been encountered, and a set of gradient operations are performed on 

the pixels in the 5 × 5 neighborhood to detect the gradient orientation. Then, this area is divided into two sub-regions and 

we consider only the sub-region on the side of the sharp transition with an average value more similar to the pixel being 

processed.
7,11

 Figure 1 summarizes the criteria used to select the size M of the square neighborhood around the pixel 

being processed. The local mean and variance computed using this algorithm allowed the Wiener filter to reduce image 

noise without significantly affecting image sharpness.
6,7

 

 

 

Figure 1 – Summary of the method used to properly choose the size M of the square neighborhood to estimate local mean 

and variance to Wiener filtering. 

 

2.2 Anscombe transformation 

The Anscombe transformation is a variance-stabilizing transformation that converts a random variable with a Poisson 

distribution into a variable with an approximately additive, signal-independent Gaussian distribution with zero mean and 

unity variance.
8-10

 The Anscombe transformation of degraded image  (   ) is given by the following:
8
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This equation can be represented by the following additive model:
9
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where  (   ) is the expected value (rate) of the Poisson-distributed image and  (   ) is the additive term, which is 

independent of the signal  (   ) and has an approximately Gaussian distribution.
9
  

After the Anscombe transformation, the additive term  (   ) includes both the quantum noise converted into Gaussian 

noise and the electronic white noise, originally incorporated by the digitization process. Thus, this transformation allows 

for the use of any conventional denoising technique to remove additive Gaussian white noise by acting on the image 

 (   ) in the Anscombe domain.
7
 Typically, the removal of Poisson noise using the Anscombe transformation is 

performed through the following three-steps:
10

 First, the noise variance is stabilized by applying the Anscombe 

transformation to the noisy image, producing a signal in which the noise can be treated as additive Gaussian with unitary 

variance. Second, the noise is removed using a conventional denoising algorithm for additive Gaussian white noise. 

Third, an inverse transformation is applied to the denoised signal, obtaining the estimate of the signal of interest. 

In this work, we used the adaptive Wiener filter presented in Eq. (2) to obtain an estimate,  ̂(   )  of the mammographic 

image in the Anscombe domain. After the Anscombe transformation we can assume that   
 (   ) = 1. Moreover,  ̅(   ) 

is equal to  ̅(   ) because the mean of the noise,  ̅(   ), is equal to zero after Anscombe transformation. Thus, 

denoising in the Anscombe domain simplifies Eq. (4), which can be rewritten as follows:
7
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where  ̅(   ) is the mean of the image and   
 (   ) is the variance of the signal (or an estimate of the signal) in the 

Anscombe domain. 

After the filtering procedure, the inverse Anscombe transformation must be applied to obtain the estimate,  ̂(   )  of an 

approximately noise-free mammographic image in the spatial domain. The inverse Anscombe transformation is 

described by 
7
 

 

 ̂(   )  
 

 
 ̂(   )  

 

 
 .     ( ) 

 

2.3 Anthropomorphic software breast phantom 

In order to evaluate the denoising methodology, a set of synthetic DBT projections was generated using a 3D 

anthropomorphic breast software phantom, developed previously.  The phantom design is based upon a detailed analysis 

of breast anatomy visualized by clinical imaging and sub-gross pathology provided realistic simulation of the breast.
12-16

 

This software phantom is able to simulate 3D breast models with skin, regions of adipose and fibroglandular tissue, and 

the matrix of Cooper’s ligaments and adipose compartments. The adipose compartments are simulated using a seeded 

region-growing algorithm where compartments are grown from a set of seed points with specific orientation and 

growing speed. Simulation parameters could be selected to cover the breadth of variations in breast anatomy observed 

clinically. 
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Using this software, we created nine different 3D breast models with different volume, grandularity and adipose 

compartment distribution, simulating several different anatomic noise patterns. A cluster of microcalcifications of 

approximately 15 cm
3
 (2.5 × 2.5 × 2.5 cm) was embedded within each one of these phantoms at random locations 

(position and depth). 

An image database containing DBT projections of all phantoms was generated using the acquisition geometry which 

corresponds to a GE DBT prototype system (Senographe DS, General Electric Healthcare, Chalfont St. Giles, U.K.).
14

 

Each phantom was deformed to model mammographic compression, based upon a finite element model of 50% 

reduction in compressed phantom thickness.
15

 Fifteen DBT low-dose projections were generated for each phantom 

considering an angular range of approximately ±20.0 degrees and quantum noise levels representative of a case of 

normal clinical dose. An anti-scatter grid was not simulated. Reference projections images without noise were also 

generated in order to provide ground-truth information, which allowed the evaluation of the denoising performance 

using objective signal fidelity measurements.
17,18

 Thus, a total of 270 projections images were generated, each one with 

1920 × 2304 pixels, 14 bits and a pixel size of 100 μm. Only the mediolateral-oblique (MLO) view was considered for 

this study. Figure 2 shows examples of synthetic DBT central projections (acquisition angle = 0°) of three different 3D 

phantom models. The white arrows indicate the location of the microcalcification cluster. 

 

           

Figure 2 – Examples of synthetic DBT images (central projections) of three different 3D phantom models with different 

internal composition used for denoising evaluation. The white arrows indicate the location of the microcalcification cluster. 

 

Tomographic slices were generated from synthetic projections using a commercial DBT reconstruction software
19

 

(Briona™ 3D, Real-Time Tomography, LLC, Villanova, PA). This software uses a filtered back projection algorithm to 

generate reconstructed slices on planes parallel to the breast support at various depths of the breast volume. For this 

study, we generated slices 0.5 mm thick on a slice spacing of 0.5 mm. Figure 3 shows examples of tomographic 

reconstructed slices generated from the synthetic DBT projections of three different 3D phantom models. The white 

arrows indicate the location of the microcalcification cluster. 
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Figure 3 – Examples of three images of DBT reconstructed slices generated by filtered back projecting the synthetic DBT 

projections using Briona™ 3D reconstruction software (Real-Time Tomography, LLC, Villanova, PA). The white arrows 

indicate the location of the microcalcification cluster. 

 

2.4 Evaluation of denoising performance 

The evaluation of denoising performance was conducted using objective image quality metrics. These measurements 

was made considering images denoised by using the adaptive Wiener filter in the spatial domain and also in the 

Anscombe domain, in order to evaluate the improvement on quantum noise reduction achieved when using the 

Anscombe transformation. Objective measurements was performed by the calculation of signal-fidelity measures, which 

compare two signals by providing a quantitative score that describes the degree of similarity between them.
17

 These 

measurements was only possible in this work because we generated synthetic images from a breast phantom model. In 

this case, we compared the denoised image obtained with or without the Anscombe transformation to the ideal image 

(reference) provided by generating DBT projections without noise using the breast phantom model.  

In order to perform an objective assessment of the denoising methodology, we calculated the following signal-fidelity 

parameters: peak of signal-to-noise ratio (PSNR)
17

 and structural similarity index (SSIM).
18

 The PSNR represents the 

ratio between the maximum possible power of a signal and the power of the corrupting noise that affects the fidelity of 

its representation. Typically, the PSNR value is given in decibels (dB) and a higher PSNR would normally indicate 

denoising of higher quality.
17

 The SSIM index includes human visual perception in the measurement by extracting 

information about the luminance, contrast and structure of an image. It was designed to improve traditional signal-

fidelity measures.
18

 SSIM is calculated on various windows of both denoised and reference images, which should be 

displaced pixel-by-pixel in both images. In practice, the mean value of the SSIM indexes (MSSIM) of all windows is 

used to evaluate the overall image quality. The resultant MSSIM index is a decimal value between -1 and 1, where a 

value of 1 can be reached only in the case of two identical images.
18

 

In this work, denoising was applied to all DBT synthetic images considering three different approaches (Figure 4):  

1. Study 1: denoising was applied to all the projection images and the performance was assessed using the projections. 

No reconstruction was performed in this case. 

2. Study 2: denoising was applied to all the projection images but the denoising performance was assessed using the 

slices generated after reconstruction. 
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3. Study 3: denoising was applied to the reconstructed slices and the performance was assessed using the slices 

generated after reconstruction. 

 

Figure 4 summarizes the different approaches using to evaluate the performance of the denoising algorithm and the 

Anscombe transformation on the improvement of DBT images.  

 

 

Figure 4 – Summary of the methodology used to evaluate the effect of denoising in DBT. (1) Denoising and assessment was 

applied to the projections; (2) Denoising was applied to the projections but the assessment was performed in the 

reconstructed slices; (3) Denoising and assessment was applied to the reconstructed slices. 

 

3. RESULTS 

 

3.1 Study 1 – Denoise projections – Assess projections 

Results of each approach conducted in order to apply denoising in DBT images (studies 1, 2, and 3) will be presented 

separately. First, we show one example of images obtained when the denoising and the assessment was applied to the 

projections (Study 1). Figure 5 shows a region of interest (ROI) of size 256 × 256 pixels, which includes the 

microcalcification cluster, extracted from the central projection of one of the synthetic images used in this work. Image 

on the left (a) shows the original (noisy) image; image (b) is the noiseless image used as a reference (ground-truth); (c) is 

the denoised image obtained when the Wiener filter was applied in the spatial domain, without using Anscombe 

transformation and (d) is the denoised image obtained when the Anscombe transformation was used before applying the 

Wiener filter. 
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 (a)       (b)           (c)    (d) 

       

Figure 5 – Study 1: results of denoising DBT projections and assess DBT projections: (a) original (noisy) image; (b) 

noiseless image used as a reference (ground-truth); (c) denoised image obtained when the Wiener filter was applied in the 

spatial domain, without using Anscombe transformation; (d) denoised image obtained when the Anscombe transformation 

was used before applying the Wiener filter. 

 

Images presented in Figure 5 show that the use of Anscombe transformation notably improved noise reduction 

achievable with Wiener filtering (Figure 5d). The adaptive filtering preserved the fine details and sharp transitions in the 

image, even for an image corrupted by a high level of quantum noise. 

Objective image quality metrics calculated for DBT projections (Study 1) are presented in Figure 6. The graphs show the 

mean values and the standard deviation of PSNR and SSIM measurements calculated for each phantom before and after 

denoising by using the Wiener filter applied with and without the Anscombe transformation. Values were calculated 

considering 15 ROIs of size 256 × 256 pixels that include the microcalcification cluster (as shown in Figure 5) extracted 

from all projections of each one of the phantoms: one ROI of each projection. 

 

  

Figure 6 – Study 1: PSNR (left) and SSIM (right) mean values and the correspondent standard deviation measured for 15 

ROIs of size 256 × 256 pixels which include the microcalcification cluster extracted from all projections of each one of the 

phantoms: one ROI of each projection. Values were calculated before and after denoising by using the Wiener filter applied 

with and without the Anscombe transformation.  

 

The average values and the standard deviation of PSNR and SSIM measurements of all ROIs extracted from the 

projections images of all 9 phantoms are shown in Table 1 (n = 15 projections × 9 phantoms = 135 images). The relative 

improvement in image quality provided by using or not the Anscombe transformation was also calculated. Paired two-

tailed Student´s t-test was used to evaluate if the improvement on image quality by using the denoising filter and by 

using the Anscombe transformation is statistically significant.  
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Table 1. Study 1: average values and the standard deviation of PSNR and SSIM measurements calculated for all projections 

images of all phantoms (135 ROIs). Values were calculated before and after denoising by using the Wiener filter applied 

with and without the Anscombe transformation. 

Denoising 

Method 

PSNR (dB) SSIM 

Before 

Denoising 

After 

Denoising 

Relative 

improvement 

(dB) 

p value 
Before 

Denoising 

After 

Denoising 

Relative 

improvement 

(%) 

p value 

W/O 

Anscombe 
30.53 ± 0.34 35.65 ± 0.35 5.12 ± 0.06 < 0.0001 0.589 ± 0.02 0.828 ± 0.01 40.78 ± 2.11 < 0.0001 

W/ 

Anscombe 
30.53 ± 0.34 39.65 ± 0.36 9.12 ± 0.11 < 0.0001 0.589 ± 0.02 0.931 ± 0.01 58.25 ± 3.34 < 0.0001 

PSNR improvement using  

Anscombe transformation (dB) 
4.00 ± 0.10 < 0.0001 

SSIM improvement using 

Anscombe transformation (%) 
17.47 ± 1.25 < 0.0001 

 

We observed through Table 1 that the Wiener filter achieved much better noise reduction when applied in the Anscombe 

domain; an average increase of 9.12 dB in the PSNR measurements was observed when denoising was applied in the 

Anscombe domain versus an average increase of 5.12 dB when denoising was applied in the spatial domain (w/o 

Anscombe), showing an increase of 4.00 dB in the image quality when using the Anscombe transformation. The same 

behavior was observed for the SSIM index, which increased 17.47% more when the Anscombe transformation was used. 

 

3.2 Study 2 – Denoise projections – Assess slices 

Figure 7 shows one example reconstructed slice (0.5 mm thick) generated by using denoised projections (Study 2), i.e., 

denoising was applied to all projections (before reconstruction), but the image quality assessment was done considering 

the resulted slices (after reconstruction). A ROI of size 256 × 256 pixels, which includes the microcalcification cluster, 

was extracted from one of the slices generated by reconstructing synthetic projection images of one of the phantoms. 

Image on the left (a) shows the original (noisy) image; image (b) is the noiseless image used as a reference (ground-

truth); (c) is the denoised image generated when the Wiener filter was applied in the projections without using 

Anscombe transformation and (d) is the denoised image generated when the Anscombe transformation was used before 

applying the Wiener filter to the projections. 

 

(a)        (b)           (c)    (d) 

       

Figure 7 – Study 2: results of DBT reconstructed slices when the denoising was applied to all DBT projections before 

reconstruction: (a) original (noisy) image; (b) noiseless image used as a reference (ground-truth); (c) denoised image 

obtained when the Wiener filter was applied to the projections in the spatial domain, without using Anscombe 

transformation; (d) denoised image obtained when the Anscombe transformation was used before applying the Wiener filter 

to the projections. 
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Images presented in Figure 7 show that even after reconstruction the improvement in noise reduction by using the 

Anscombe transformation is still perceptible (Figure 7d). Objective image quality metrics were also calculated for DBT 

slices (Study 2) and are presented in Figure 8. The graphs show the mean values and the standard deviation of PSNR and 

SSIM measurements calculated for each phantom after reconstruction by using original and denoised projections. Values 

were calculated considering 7 ROIs of size 256 × 256 pixels (as shown in Figure 7) extracted from 7 slices of each one 

of the phantoms: one ROI of each slice. Slices were selected considering a center slice where the microcalcification 

cluster was on focus plus three slices below and three slices above this one, considering a step of 0.5 mm. 

The average values and the standard deviation of PSNR and SSIM measurements of all ROIs extracted from the 

reconstructed slices of all 9 phantoms are shown in Table 2 (n = 7 slices × 9 phantoms = 63 images). The relative 

improvement in image quality provided by using or not using the Anscombe transformation was also calculated. Again, 

paired two-tailed Student´s t-test was used to evaluate if the improvement on the quality of the reconstructed slices by 

using the denoising filter and the Anscombe transformation is statistically significant.  

 

  

Figure 8 – Study 2: PSNR (left) and SSIM (right) mean values and the correspondent standard deviation measured for 7 

ROIs of size 256 × 256 pixels extracted from 7 tomographic slices (0.5 mm thick) of each one of the phantoms: one ROI of 

each slice. Slices were selected considering a center slice where the microcalcification cluster was on focus plus three slices 

below and three slices above this one, considering a step of 0.5 mm. Values were calculated before and after denoising by 

using the Wiener filter applied to the projections (before reconstruction) with and without using the Anscombe 

transformation.  

 

Table 2. Study 2: average values and the standard deviation of PSNR and SSIM measurements calculated for selected 

reconstructed slices of all phantoms (63 ROIs). Values were calculated before and after denoising by using the Wiener filter 

applied with and without the Anscombe transformation. 

Denoising 

Method 

PSNR (dB) SSIM 

Before 

Denoising 

After 

Denoising 

Relative 

improvement 

(dB) 

p value 
Before 

Denoising 

After 

Denoising 

Relative 

improvement 

(%) 

p value 

W/O 

Anscombe 
41.54 ± 0.39 44.00 ± 0.38 2.46 ± 0.02 < 0.0001 0.944 ± 0.004 0.969 ± 0.002 2.66 ± 0.21 < 0.0001 

W/ 

Anscombe 
41.54 ± 0.39 46.32 ± 0.32 4.78 ± 0.13 < 0.0001 0.944 ± 0.004 0.983 ± 0.001 4.21 ± 0.35 < 0.0001 

PSNR improvement using  

Anscombe transformation (dB) 
2.33 ± 0.11 < 0.0001 

SSIM improvement using 

Anscombe transformation (%) 
1.55 ± 0.15 < 0.0001 
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As expected, we observed through Table 2 that the quality of the reconstructed slice is far better than the quality of each 

individual projection before reconstruction. Before applying denoising, mean value of PSNR for the original projections 

was 30.53 dB and the SSIM index was 0.589 (Table 1); after reconstruction, mean value of PSNR for the slices was 

improved to 41.54 dB and SSIM index was improved to 0.944 (Table 2). Regarding the effect of denoising, data in 

Table 2 show that the quality of reconstructed slices is still better when the projections were denoised in the Anscombe 

domain; an average increase of 4.78 dB in the PSNR measurements when denoising was applied to projections in the 

Anscombe domain versus an average increase of 2.46 dB when denoising was applied in the spatial domain (w/o 

Anscombe), showing and increase of 2.33 dB in the image quality when using the Anscombe transformation before 

reconstruction. However, the effect of denoising is more perceptible when the assessment was performed on the 

projections than on the slices, because the quality of the original image (noisy) is worst when considering only the 

projections as the reconstruction algorithm improves the image quality. Moreover, the same behavior was observed for 

the SSIM index, which increased only 1.55% more for the slices when the Anscombe transformation was used before 

reconstruction. 

 

3.3 Study 3 – Denoising slices – Assess slices 

The last study (Study 3) was performed applying denoising after reconstruction, i.e., tomographic slices were generated 

by using noisy (original) projections and denoising was applied to the reconstructed slices, using the Wiener filter with 

and without Anscombe transformation. Figure 9 shows one example when the denoising was applied after 

reconstruction. A ROI of size 256 × 256 pixels that includes the microcalcification cluster was extracted from one of the 

slices generated by reconstructing synthetic projection images of one of the phantoms. Image on the left (a) shows the 

original (noisy) image; image (b) is the noiseless image used as a reference (ground-truth); (c) is the denoised image 

generated when the Wiener filter was applied to the slices (after reconstruction) without using Anscombe transformation 

and (d) is the denoised image generated when the Anscombe transformation was used. 

 

(a)       (b)           (c)    (d) 

       

Figure 9 – Study 3: results of DBT reconstructed slices when the denoising was applied after reconstruction: (a) original 

(noisy) image; (b) noiseless image used as a reference (ground-truth); (c) denoised image obtained when the Wiener filter 

was applied to the slices in the spatial domain, without using Anscombe transformation; (d) denoised image obtained when 

the Anscombe transformation was used. 

 

Analyzing the images presented in Figure 9 we noticed that the Anscombe transformation did not influence the 

performance of the denoising filter after reconstruction. In this case, there was no improvement in noise reduction by 

using the Anscombe transformation (Figures 9c and 9d). Objective image quality metrics were calculated for DBT slices 

in this case (Study 3) and are presented in Figure 10. The graphs show the mean values and the standard deviation of 

PSNR and SSIM measurements calculated for each phantom after reconstruction, before and after denoising. Values 

were calculated considering 7 ROIs of size 256 × 256 pixels extracted from 7 slices of each one of the phantoms: one 

ROI of each slice. Slices were selected considering a center slice where the microcalcification cluster was on focus plus 

three slices below and three slices above this one, considering a step of 0.5 mm. 
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Figure 10 – Study 3: PSNR (left) and SSIM (right) mean values and the correspondent standard deviation measured for 

7 ROIs of size 256 × 256 pixels extracted from 7 tomographic slices (0.5 mm thick) of each one of the phantoms: one ROI 

of each slice. Slices were selected considering a center slice where the microcalcification cluster was on focus plus three 

slices below and three slices above this one, considering a step of 0.5 mm. Values were calculated before and after 

denoising by using the Wiener filter to the slices, after reconstruction, with and without using the Anscombe transformation.  

 

The average values and the standard deviation of PSNR and SSIM measurements of all ROIs extracted from the 

reconstructed slices of all 9 phantoms are shown in Table 3 (n = 7 slices × 9 phantoms = 63 images). The relative 

improvement in image quality provided by using or not using the Anscombe transformation after the reconstruction was 

also calculated. Again, paired two-tailed Student´s t-test was used to evaluate if the improvement on the quality of the 

reconstructed slices by using the denoising filter and the Anscombe transformation is statistically significant.  

 

Table 3. Study 3: average values and the standard deviation of PSNR and SSIM measurements calculated for selected 

reconstructed slices of all phantoms (63 ROIs). Values were calculated before and after denoising by using the Wiener filter 

applied with and without the Anscombe transformation. 

Denoising 

Method 

PSNR (dB) SSIM 

Before 

Denoising 

After 

Denoising 

Relative 

improvement 

(dB) 

p value 
Before 

Denoising 

After 

Denoising 

Relative 

improvement 

(%) 

p value 

W/O 

Anscombe 
41.54 ± 0.39 42.78 ± 0.38 1.24 ± 0.02 < 0.0001 0.944 ± 0.004 0.959 ± 0.003 1.60 ± 0.13 < 0.0001 

W/ 

Anscombe 
41.54 ± 0.39 43.80 ± 0.02 2.26 ± 0.02 < 0.0001 0.944 ± 0.004 0.969 ± 0.002 2.61 ± 0.21 < 0.0001 

PSNR improvement using  

Anscombe transformation (dB) 
1.02 ± 0.02 < 0.0001 

SSIM improvement using 

Anscombe transformation (%) 
1.01 ± 0.08 < 0.0001 

 

In this case (Study 3), we observed through Table 3 that the performance of denoising after reconstruction is worst than 

in the case that the denoising was applied to the projections before the reconstruction. Data in Table 3 show that the 

quality of reconstructed slices after denoising improved only slightly (1.24 dB on PSNR w/o Anscombe and 2.26 dB w/ 

Anscombe and 1.6% on SSIM w/o Anscombe and 2.61% w/ Anscombe). Moreover, the Anscombe transformation 

increased the performance of our filter by only 1.02 dB for PSNR and 1.01% for SSIM. 
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4. CONCLUSIONS  

In this work we investigated the use of the Anscombe transformation and the adaptive Wiener filter for denoising of 

DBT images. Denoising was applied separately to the projections (before reconstruction) and to the tomographic slices 

(after reconstruction). Moreover, we investigated the use of the Anscombe transformation to convert the Poisson noise 

into Gaussian noise before applying the denoising filter.  

Improvements in DBT image quality resulting from the denoising method were evaluated considering objective 

measurements (PSNR and SSIM). Results suggested that denoising using our adaptive Wiener filter worked better for 

tomosynthesis when applied in each projection image before reconstruction. Moreover, the use of the Anscombe 

transformation improved the performance of our denoising filter in about 4.00 dB considering PSNR measurements. It 

means that the dominant noise in DBT projections is Poisson distributed which was better removed in the Anscombe 

domain. However, no significant improvement was reported when the Anscombe transformation was applied for 

denoising reconstructed slices, suggesting that after reconstruction, noise characteristics of the tomographic slices is not 

Poisson distributed because the filtered backprojection changed the nature of the noise of the DBT projections. 

Some of the limitations of this paper and future directions are now addressed. One limitation is that all DBT images used 

in this study are synthetic images. We chose to use synthetic images because such images provide ground-truth 

information (noiseless images), which allowed us to use signal-fidelity measurements to calculate objective data about 

the benefits of using denoising and Anscombe transformation to DBT imaging. Although our synthetic images were 

acquired by a 3D anthropomorphic breast phantom model and can provide realistic simulation of the breast, a further 

study using clinical DBT data must be conducted to properly evaluate the benefits of denoising in the quality of DBT 

imaging. 
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