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Dynamic Player Modelling in Serious Games applied to Rehabilitation
Robotics

Kleber de O. Andrade1, Guilherme Fernandes2, Glauco A. P. Caurin1, Adriano A. G. Siqueira1,

Roseli A. F. Romero3 and Rogerio de L. Pereira4

Abstract— This article proposes a reinforcement learning
approach to dynamically model the player skills in applications
that integrate games and rehabilitation robotic. The approach
aims to match the game difficulty to the player skills, keeping
proper motivation (flow) during a rehabilitation process. The
traditional rehabilitation process involves repetitive exercises.
Robots and serious games provide new means to improve user
motivation and commitment during treatment. Each person
shows different skills when facing the challenges posed by
computer games. Thus, the game difficulty level should be
adjusted to each player skill level. The Q-Learning algorithm
was adapted in this context to modify game parameters and
to assess user skills based on a performance function. This
function provides a path to an individual difficulty adjustment
and consequently a tool to keep the user exercising. Exper-
iments with thirty minutes duration are presented, involving
four players, and the results obtained indicate the proposed
approach is feasible for modeling the user behaviour getting to
capture the adaptations and trends for each player according
to the game difficulties.

I. INTRODUCTION

A worldwide concern and reality, the population aging

is directly correlated with the increase in the number of

post-stroke patients that will need some form of motor reha-

bilitation. However, conventional rehabilitation constitutes a

labor intensive, tedious and boring process, from the patient’s

perspective [1].

The integration of rehabilitation robots with serious games

[2] brings state-of-the-art instrumentation technology to mea-

sure real-time values relative to the patient performance

(range of motion, speed, strength), and even actively interacts

in the process. The obtained information is more accurate and

deterministic, allowing a better comparison to the established

parameters that are used to evaluate the patient progress,

replacing reasoned but subjective opinion of the professional.

Combined, robots and games are efficient in delivering

routine therapy activities and storing patient records that
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improve and simplify analysis and diagnosis. Nevertheless

this integration is not a trivial task.
According to the flow theory [3], a game difficulty level

should balance the proposed challenges with the users skills

in order to keep the motivation level high. This definition

assumes that the system is able to measure the player’s

abilities, ie, it makes explicit the importance of modeling

the player. In this study, we used a strategy of adjustment

difficulty of a game to model the behavior of the player. On

the other hand, if an extremely hard game impose demands

beyond the users skills, it will be a frustrating experience

for the user [4]. Usually, in commercial computer games,

the players are able to adjust the difficulty level, statically.
In section V a proposal for a flexible difficulty adjustment

is presented in together with a proposal for expanding the

concept of adaptive robot therapy. The approach is based

on reinforcement learning concepts implemented with a Q-

Learning algorithm. This paper presents the implementation

of adaptive games as key feature towards the creation of a

motivating therapy environment from the user perspective.

Experiments with 4 volunteers were carried out using a

robotic device described in the next section.

II. THE ROBOTIC REHABILITATION DEVICE

The robot was designed allowing the implementation of

active and passive therapy. A therapy is classified active

when only the patient is responsible for the efforts that

results movements, i.e. the work performed by the robot

is null (WR = 0). Passive therapy occurs when both robot

and patient produce efforts that results in movements; in this

case, the robot produces work (WR �= 0). A more detailed

description of the wrist rehabilitation robot prototype (left

top corner of Figure 1) can be found in found in [5] and [6].
The device is designed for therapy exercises with a sin-

gle degree of freedom at a time: flexion/extension; adduc-

tion/abduction; pronation/supination.
This mechanical characteristic simplifies the robot struc-

ture, weight and increases its reliability. Mechanical setups

are responsible for the choice of each wrist motion. This

simplification is supported by the evidence that simultaneous

therapy exercises with more than one degree of freedom

do not provide significant improvements when compared to

single movement exercises [7].
The mechanical structure of the device is composed by

two aluminum links connected to a rotatory joint. One link

is connected to a bracket1. During the therapy sessions, the
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2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol

978-1-4799-6711-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SBR.LARS.Robocontrol.2014.41

211



Computer (Server)

Control System

CAN\CANOpen Interface

Impedance Control

Computer (Client)

Socket
Receiver

Socket
Sender

st
ru

ct

st
ru

ct

Power suply

Encoder

Socket
Receiver

Socket
Sender

Serious Game

Fig. 1. Overview of the system.

bracket is attached to the user forearm. The second link

carries the input handle. The rotatory axis is directly coupled

to a DC servomotor without gearing providing the system

with backdriveability. The servomotor has an integrated

2000 ppt encoder. Low-level control is implemented using

a maxon EPOS 24/5 control driver. A CANOpen2 network

links the information exchange between servomotor control

driver and the communication layer.

The communication layer, between the game and the

robot, is implemented using TCP/IP sockets (Transmission

Control Protocol). The server runs on a Toradex Colibri T20

computer with an ARM Cortex A9 processor and Windows

Embedded Compact 7 RTOS. It acts as a middleware 3

monitoring the changes at the robot joints and reporting

them to the client (game) at an update rate of 200Hz. The

client (MAC mini 2.3GHz-quad core with 4GB, 1.6MHz

SDRAM DDR3 and an Intel HD Graphics 4000 graphics

card) renders model images at 60Hz. Data transmission is

implemented serializing a structure that encapsulates the

robot state variables. The information is shared by the robot

and the game.

Conceptually, the device is simple and portable. It is a

prototype aiming the development of future home therapy

devices.

III. THE REHABILITATION GAME

We extend the definition of serious games and have applied

it to healthcare. It this context serious game is defined

as: “a mental play performed in a computer, according to

specific rules that uses entertainment as a form of achieving

rehabilitation goals”. According to our definition, serious

games also incorporate entertainment aspects and combine

them with the clinical objectives.

Figure 2 displays a screenshot of the game developed

here. The game is called “Nuts Catcher” and was developed

and implemented in 3D virtual environment4. It is presented

2http://www.can-cia.org/
3Middleware describes usually a software binder, or mediator, between

two existing and independent program codes. Its function is provide the
applications with the independence of transmission systems.

4The game was developed using Unity 3D. More information at http:
//unity3d.com

to the user in a side view perspective. The player controls

the movements of a squirrel that walks on the horizontal

axis (right and left). The squirrel collects nuts falling down

from the trees. The game was developed considering a robot

attached to the user wrist as input device. The system was

conceived to accept additional inputs from commercial video

game input devices.

Fig. 2. Nuts Catcher game screenshot developed.

Rehabilitation games focus on biomechanical aspects, i.e.

it should help to improve the user’s ability to perform

movements or the user visual-motor coordination [8]. Sev-

eral requirements apply to the games processes. The game

characteristics should be tailored to fit the different behavior

and preferences of the users. The game difficulty level should

be adjusted avoiding frustrating conditions when the patient

is requested to perform exercises beyond its capacity. The

difficulty level should also be enhanced if the patient is in-

sufficiently challenged. Patients skills vary greatly according

to the tasks proposed by different games, therefore game

difficulty should be adapted according to the user limitations

and also to their accomplishments.

Some of the game parameters that are suitable interfere

in the difficulty level perceived by the player are: the fall

down velocity (v) of the nuts; the appearing frequency ( f )

of the nuts on the screen two or more nuts may appear

simultaneously; the initial distance (d) between an appearing

nut and the squirrel; the size (b) of the basket carried by the

squirrel.

IV. REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a learning technique that

allows an agent to learn from its interaction with the envi-

ronment through reinforcement and punishment mechanisms.

The learning process takes place based on the knowledge

of the current agent state (s) in the environment, the action

performed by this agent (a) and the observation of state

change arising from the action (s’). These are the basic

elements of a reinforcement learning process known as

Q-Learning [9]. Q-Learning may also be interpreted as a

Markov decision process (MDP) with unknown probabilities

and rewards.
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A. Q-Learning

The Q-learning algorithm [10] consists in updating dis-

counted values of expected rewards, Q(s,a). At each iteration

with the environment, the Q-values are updated according to

Eq. 1.

Q(s,a)← Q(s,a)+α
[

r+ γ max
a′

Q(s′,a′)−Q(s,a)
]

(1)

where γ is the discount factor used to ensure that the values

of Q are finite and α is the learning constant, and 0 < α ≤ 1

and 0 < γ ≤ 1.

Performing an action a, the agent changes from state s to

the state s′, and receives an immediate reward r. In state s′ a

search is made within the available actions to find the action

a′ that leads the agent to a state with the highest reward

value, represented as maxa′Q(s′,a′) in equation 1.

One advantage of the Q-Learning approach is it enables

the implementation of an agent based online learning pro-

cess. However, the optimal convergence of the actions can

be slow, depending on the adopted model [11].

B. SARSA

A powerful variation for the Q-Learning is implemented

holding the action update value at each step [12] as described

below:

Q(s,a)← Q(s,a)+α
[
r+ γQ(s′,a′)−Q(s,a)

]
(2)

If the chosen action a′ is maxa′Q(s′,a′), the algorithm

becomes equivalent to the standard Q-Learning algorithm.

Additionally, the SARSA algorithm allows a′ to be randomly

chosen using a predefined probability. Eliminating the max
operator from the actions makes SARSA faster than the

standard Q-learning, especially for applications with high

cardinality actions sets. A common choice consists in adopt-

ing the maximum reward value for 70% of the evaluations

and a random reward value for the remaining 30% cases.

The procedure is useful to avoid local maximum.

V. REINFORCEMENT LEARNING APPROACH FOR

“NUTS CATCHER”

The problem here may be summarized in inducing the

agent to learn, at runtime, how the player responds to changes

in the game difficulty level. For this modeling process, it

is necessary to define: the set of possible game states s,

representing part of the environment, the set of actions A(s),
the form of the reward, r; and the function that evaluates the

player performance at each state, P(s).
As explained in the next section, the performance is a

serious game measure composed not only by the game scores

but also by the amount of exercise (movement) the user

executes. The goal is to maximize the performance function

keeping the game a challenging and entertaining task while

the user executes repetitive movements.

Variables that act directly on the game difficulty were

chosen to serve as environment states. In the performed

experiments only two parameters were adopted for difficulty

adjustment purposes, namely the “nut drop rate” (v) dis-

cretized in m values and the “distance to nut” (d), discretized

in n states. The combination of these two variables define a

matrix of possible states and the number of states (si, j) and

stotal = m×n. For experimental reasons, in this work we set

m = 5 and n = 5, so that during the therapy sessions, most

of the states can be visited by the software agent.

In this specific case, the agent navigates through the states

towards the direction of the most difficult game level (sm,n).

However, as difficulty increases, it becomes harder to the

player to collect the same number of nuts. The actions that

change the game difficulty are defined as:

A = {le f t (←),up (↑),right (→),down (↓)} (3)

where, the ← action represents a reduction of the distance

(si, j−1), ↑ reduces the velocity (si−1, j), → increases distance

(si, j+1) and ↓ increases the velocity (si+1, j). Actions leading

to undefined states, outside the predefined ranges are not

allowed.

Each agent action changes the game difficulty. The param-

eters are updated and kept for a period that corresponds to

the release of (η) of nuts. Currently this set η = 2 nuts. After

this period, a performance value (P) is taken as an estimate

of the player behavior/adaptation to the new therapy exercise

condition.

P(s) = αθ · τθ +αv · τv +αe · τe (4)

where, αθ , αv and αe are weighting variables for the

importance of the three performance components.

τθ measures if the player is using the maximum range of

motion. 0 ≤ τθ ≤ 1 and it is given by:

τθ =
θextesion +θ f lexion

θmax
(5)

where θextension is the maximum wrist extension value (radi-

ans), θ f lexion is the maximum wrist flexion value and θmax
is the some of the flexion and extension values found in the

literature [13].

τv gives a time measure of the synchronization between

the nut movement and the users movement and it is given by

Eq. 6. This is measured indirectly if the player has to wait

until the nuts fall on the squirrel basket. The idea behind this

performance component is to induce the player to execute

more movements.

τv = η · nutsstart
y −groundy

vi
−

η

∑
j=1

Δtnuts
j (6)

where nutsstart
y and groundy are constants representing the

y coordinate (height) on the screen where the nut appears

and the y coordinate of the ground, respectively, vi is the nut

falling velocity and ∑η
j=1 Δtnuts

i is the accumulated sum of

the time periods when the player waited for the nut and did

not move the handle.
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τe represents the relative error in x screen coordinates

between a nut fall position di and the current character

position (imposed by the user) (px), 0 ≤ τe ≤ η dn
2 being

τe given by Eq. 7 and px calculated by using Eq. 8. This

performance component privileges the player motion. The

farther the nuts fall more the player will need to move the

robot handle.

τe = max

(
η · dn

2
−

η

∑
j=1

∣∣∣∣di

2
− px

∣∣∣∣ ,0
)

(7)

px =

⎧⎪⎪⎨
⎪⎪⎩

(
θmotor

θextesion

)
·d, i f θmotor ≥ 0

(
θmotor
θ f lexion

)
·d, otherwise

(8)

θmotor =
pulse∗360

2000
(9)

where θmotor is the angular value provided by the encoder

(Eq. 9).

The immediate reward given at each step interaction is

calculated using the inverse of the Euclidean distance from

the current state to the final state (Eq. 10). The reward

represents how far is the player from the hardest game

level. Although the player can performance poorly in the

higher difficulty levels, it is necessary to test how much

challenge that player may handle. The reward is chosen in the

attempt to maximize challenge trying the user for larger wrist

displacements while avoiding to reduce the player scores.

r =
1√

(vm − vi)2 +(dn −d j)2
(10)

The Q-Learning approach algorithm has been adapted and

implemented to work with the “Nuts Catcher” game and it

is presented in Algorithm 1.

Algorithm 1 Q-Learning for “Nuts Catcher”

Require: Load or Initialize Q(s,a) with arbitrary values
Calibrate θextension and θ f lexion of the player
for all episodes do

Initialize s randomly
for step ← 1 to 5 do

for all A(s’) do
Execute action a with η nuts
Observe the player for each s′
P(s) = αθ · τθ +αv · τv +αe · τe

end for
Choose action a in state s, using ε-greedy policy
Q(s,a)← Q(s,a)+α [r+ γQ(s′,a′)−Q(s,a)]
s ← s′

end for
end for

During the game play, the user interacts with the virtual

environment through the robotic device. The game keeps

record of the current state, the rules set, provides feedback

about the next difficulty state, the validity of a particular

action and the reward for a particular action. Using the

adopted policy, the Q values are calculated, consequently

updating the game state and then selecting a new action (new

speed and distance values for the game). Figure 3 shows this

process that happens throughout the game.

Player

Interact

Visual and audible feedback

Policy

Exercise in Dispositvo Robótico

Robotic System Game (Nuts Catcher)

Q-Learning

Q-values

State, 
Update

 Action
(v,d) Feedback

Fig. 3. Block diagram of the user interaction with the game.

The algorithm updates the value Q after every episode,

and after each update new speeds and distance conditions are

tested, observing the player performance and thus improving

the information about user skills. It is important to notice

that, the algorithm randomly selects the start state, thus the

game may start at either an easy level or a very difficult level.

The players did not receive training before the conduction

of the experiments.

VI. EXPERIMENTS

For the tests, an experimental setup was built. It is com-

posed by a robotic device with one degree of freedom and

the development of single player adaptive game. Experiments

with thirty minutes duration were conducted with 4 healthy

volunteers. The robot attached to the user wrist captured

extension and flexion movements and forwarded them as

inputs to the rehabilitation game. The robot system also

collected the motion data during the experiment. In Fig. 4 is

shown one of the volunteers playing.

Fig. 4. Healthy volunteer playing with the robotic system handle the game
“Nuts Catcher”.

A. Game settings

The first time the player uses the game, he is puts your

personal data, generating a log file. This file encompasses:
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user name, gender, age and handedness (left or right handed).

After that, an evaluation is performed providing individual

movement limits. The maximal flexion (θ f lexion) and exten-

sion (θextension) wrist amplitudes are introduced and stored at

this movement. This procedure allows amplitude calibration

every time the game initiates, whereas personal data are input

only once, being queried to additional sessions.

The amplitude of player’s movement is used to calculate

the positions where nuts may appear and fall. Fig. 5 shows

how these coordinates are configured.
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nz = σnz
w
2

(11c)

d = w−2(bz+ cz) (11d)

dmin = d −2nz (11e)

dmax = d +2cz (11f)

where, bz is a distance constraint that presents the creation

of nuts outside the screen and w is the screen size in pixels.

Two zones are created: a challenge zone (cz) that exceeds

the player’s movement reach and a normal zone (nz), that

is compatible with the player’s maximum range of motion.

Player’s movement distance d defines, in pixels, how the

maximum range of motion is represented on screen.

The σ variables are constant defined either by the pro-

grammer or by a therapist. In this case, σbz = 0.04, σnz =
0.3 and σbz = 0.3 if θ f lexion + θextension < θmax. Otherwise,

σbz = 0 because the additional amplitude increase would not

be feasible.

The nut fall velocity range is defined empirically using

visual inspection. Minimum (vmin) and maximum (vmax)

velocities were assigned to 3m/s and 20m/s.

B. Results and discussion
During the game, the parameters of the game were adapted

according Algorithm 1. In Figure 6 shows the performances

of each individual player and the corresponding tendency

curve. The number of episodes ranged from 54 to 83. This

number is a result of the nuts dropping down during the

30 minutes experiment. One may observe that players show

distinct responses to different difficulty levels. For example

players 2 and 3 shows a more stable behaviour while players

1 and 4 performances oscillate.
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Fig. 6. Performance of players throughout the episodes in a single session.

Figure 7 displays the percentage of nuts captured by

each player. The percentage of captured nuts stabilize for

all players after approximately the fifteenth episode. The

percentage of captured nuts is connected to the response

each player gives to each game difficulty level, the more

difficult the game, the less nuts are captured, conversely the

easier game , higher is number of captured nuts. In this case

the players captured between 65% and 85% of the available

(released) nuts.
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Fig. 7. Percent taken along nuts of the episodes.

Figure 8 shows the cumulative rewards each player had

over the episodes. The greater the received reward, the higher

the selected game difficulty. Player 4 has accumulated the

highest amount of rewards. He remained at more difficult

game levels and captured a smaller number of nuts. Probably

he is the more skilled player.
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Figure 9 shows an state array (velocity × distance) for

player 4, with the corresponding Q values. The state with

the speed range of 2 and 4 present the highest Q values. The

array demonstrates how the approach maps difficulty states

with respect to the player skills
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VII. CONCLUSIONS

In this work, the Q-learning algorithm was implemented

to map how a player responds to variations in the game

difficulty parameters. Experiments were carried out cover-

ing the state space formed by two game parameters: one

related to motion amplitude and another parameter related to

velocity. The results indicated the capacity of the approach

to dynamically adapt the game difficulty according to each

player, indirectly modeling the player skills. The approach

stimulates the player disturbing the game conditions, mea-

sures the responses using performance functions and tries to

find trends for each player.

Although the experiments are still preliminary and a

larger number of samples and tests are necessary, the results

obtained so far indicates that the approach is feasible for

modeling the user behavior and encourage us to extend the

studies to experiments with clinical subjects. The obtained

map may be used as a guideline on how to make the game

easier or harder for each individual player.

It also important to notice, that Q-learning is one of the

simplest reinforcement learning mechanisms. Therefore we

intent to compare it with other RL approaches, such as R-

Learning, H-Learning and Z-Learning. As future work, we

are also planning to include robot impedance as an additional

parameter for game difficulty adaption.
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