
1

ClusterOSS: a new undersampling method for
imbalanced learning

Victor H Barella, Eduardo P Costa, and André C P L F Carvalho,

Abstract—A dataset is said to be imbalanced when its classes are disproportionately represented in terms of the number
of instances they contain. This problem is common in applications such as medical diagnosis of rare diseases, detection
of fraudulent calls, signature recognition. In this paper we propose an alternative method for imbalanced learning, which
balances the dataset using an undersampling strategy. We show that ClusterOSS outperforms OSS, which is the method
ClusterOSS is based on. Moreover, we show that the results can be further improved by combining ClusterOSS with
random oversampling.

Keywords—Imbalanced data, classification, sampling, clustering.

F

1 INTRODUCTION

A dataset is said to be imbalanced when its
classes are disproportionately represented in
terms of the number of instances they contain.
For example, in a problem about a rare dis-
ease, the number of cases of infected people
is usually much lower than that of healthy
people. Other examples of problems containing
imbalanced data are: detection of fraudulent
calls [1]; detection of fraudulent credid cards
transactions [2]; and signature recognition [3].

Traditional machine learning methods usu-
ally yield unsatisfactory results in problems of
this nature. While they present good results for
the majority classes, they perform very poorly
w.r.t. the minority classes. The main problem
with this is that, in imbalanced learning, the
minority classes are usually the classes we are
interested in. For this reason, many methods
have been proposed, as we discuss in Section
2. One popular method in this context is OSS
(One-sided Selection) [4], which artificially bal-
ance the dataset by disregarding instances of
the majority class which look to be redundant.

In this paper we propose an alternative
method for imbalanced learning in the context

• V.H. Barella, E.P. Costa and A.C.P.L.F. Carvalho are with Insti-
tuto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, 13560-970 São Carlos, SP, Brazil.
E-mail: victorhb@icmc.usp.br

Manuscript received June 2, 2014.

of binary classification; the proposed method is
based on OSS. We show that our method yields
better results than OSS. As an additional con-
tribution of this paper, we present an empirical
comparison among six methods, including OSS
and our proposed method.

The remaining of this paper is organized as
follows. In section 2 we discuss related work.
In section 3 we present our proposed method.
We present our experimental results in Section
4. We conclude in Section 5.

2 RELATED WORK

There are two main general approaches for
classification problems involving imbalanced
data: (1) pre-processing the data in order to
make it more balanced; and (2) development
of algorithms able to handle imbalanced data.
In this paper we focus on the former.

Pre-processing methods can be categorized
into two groups: undersampling and oversam-
pling methods. Undersampling methods make
the data more balanced by removing instances
of the majority class, while oversampling meth-
ods do that by inserting instances in the mi-
nority class. Both undersampling and oversam-
pling can be done randomly or according to an
informative strategy. Next we discuss the main
pre-processing strategies.

2

2.1 Random undersampling

In the random undersampling, instances of the
majority class are removed at random until a
more balanced class distribution is reached.

2.2 Random oversampling

In the random oversampling, instances of the
minority class are replicated at random until a
more balanced class distribution is reached.

2.3 SMOTE

SMOTE (Synthetic Minority Oversampling Tech-
nique) [5] is an oversampling technique that
creates artificial data by interpolation, as fol-
lows. At each iteration, SMOTE selects an in-
stance x at random in the minority class and
then it looks for the k nearest neighbors of x.
SMOTE then selects one of the neighbors z at
random and creates a new instance which is a
combination of x and z. This step is repeated
until a more balanced distribution of instances
is reached.

2.4 CBO

CBO (Cluster-Based Oversampling) [6] is an over-
sampling technique that takes into account both
inter- and intra-class imbalance. Intra-class im-
balance occurs when there is a disproportion
w.r.t. the instances which form subsets inside a
class.

This technique starts by performing a clus-
tering procedure in the instances belonging to
the majority class and the instances belonging
to the minority class, separately; this step will
generate two sets of clusters - one for each class.
Next, CBO applies random oversampling to all
clusters belonging to the majority class with
exception of the largest one. In the end, each
cluster of the majority class should have the
same number of instances as the largest one.
Finally, oversampling is applied to all clusters
belonging to the minority class such that in the
end (1) the total number of instances in the mi-
nority class equals the total number of instances
in the majority class after the oversampling,
and (2) each cluster in the minority class has
the same number of instances.

2.5 OSS

OSS (One-sided Selection) [4] is an undersam-
pling technique that keeps only the most rep-
resentative instances of the majority class. To
select those instances, OSS first chooses one in-
stance x of the majority class at random. Then,
using the instances of the minority class and x
as training data, OSS uses the k-Nearest Neigh-
bors (KNN) algorithm with k= 1 to classify the
remaining instances of the majority class. The
correctly classified instances are then excluded
of the majority class because they are con-
sidered redundant. Thus, after the undersam-
pling, the majority class will contain only the
instances which were incorrectly classified and
x. Finally, OSS uses a data cleaning technique to
remove borderline and noisy instances, which
is, originally, Tomek Links [7].

3 PROPOSED METHOD

This section introduces our proposed method,
which is based on the OSS strategy. We first
motivate our method, by pointing out situa-
tions in which OSS might not work well. Then,
we introduce our method, called ClusterOSS.

3.1 Motivation

OSS assumes that is enough to choose only one
majority instance at random to start the under-
sampling process. However, the final result of
the undersampling method will depend on that
random choice. More importantly, OSS does
not explicitly take into account the fact that
there might exist subsets inside the majority
class (as CBO does, for example), and that the
undersampling might not work equally well in
all those subsets, given the random start.

Consider, for example, the dataset displayed
in Fig. 1. In the figure, the instances of the
majority class are represented by circles, while
the instances of the minority class are repre-
sented by triangles. Note that the majority class
is divided into two subsets - one to each side of
the minority class. Fig. 2.a shows the randomly
selected majority instance together with the
minority instances. Fig. 2.b shows the resulting
dataset given by OSS.

Note that the effect of the undersampling
process is limited by the fact the majority class
contains two subsets and by the choice of the

3

instance to start the process (which is far from
the minority class in the feature space). Most
of the instances of the majority class are kept
after the undersampling process, resulting in a
dataset which is still very imbalanced.

Suppose now the instance would have been
chosen in the center of the cluster at the right
of the figure. In this case, the undersampling
would have worked well for that cluster, but
would have had little (or no) effect on the other
subset of the majority class.

Next, we present an alternative method that
avoid these situations.

3.2 ClusterOSS

Our proposed method (ClusterOSS) is an adap-
tation of the strategy used by OSS. Before de-
scribing the ClusterOSS algorithm, we point out
the two main differences of ClusterOSS w.r.t.
OSS.

The first difference is that ClusterOSS can
start the undersampling process from more
than one instance. This, in itself, already tackles
the drawback of OSS that the quality results is
strongly dependent on the choice of that one
instance chosen to start the undersampling.

The second difference is that we do not start
the undersampling process at random. Instead,
we define how many and which instances will
be chosen to start that process. More specifi-
cally, we look for subsets in the majority class,

Fig. 1: Original dataset

Fig. 2: OSS. Left: Majority instances selected and minor-
ity instances. Right: Pre-processed dataset

by applying a clustering procedure. Then we
choose the instance at the center of each subset
to be one of the instances which will start
the undersampling. By doing this, we enhance
the effectiveness of undersampling, since the
undersampling will start from points in distinct
regions in the feature space.

Algorithm

The ClusterOSS algorithm is showed in Fig. 3.a
in the form of pseudocode. In the beginning
of the algorithm we use a clustering procedure
(e.g., k-means) to cluster the instances belonging
to the majority class. Then, for each cluster, we
use the closest instances to the center. These
instances are used to start the undersampling
process, which is identical to OSS. Finally, as in
OSS, we use the data cleaning technique Tomek
Links (Fig. 3.b) to remove borderline and noisy
instances. Basically, this technique removes ev-
ery instance z from the majority class for which
(1) its closest neighbor z′ is an instance of the
minority class, and (2) the closest neighbor of
z′ is also z.

Example

We illustrate how ClusterOSS works using the
same dataset we showed in Fig. 1. Fig. 4.a
shows the selected majority instances(each of
them being in the center of the subsets iden-
tified by k-means) together with all minority
instances. Fig. 4.b shows the resulting dataset
given by ClusterOSS.

Note that ClusterOSS is able to obtain a more
balanced dataset (Fig. 4.b) than that obtained by
OSS (Fig. 2.b). The original dataset has a pro-
portion of 1:40 (minority class:majority class),
while the proportions of the resulting datasets
are approximately 1:30 and 1:5 for OSS e Clus-
terOSS, respectively. It is important to mention
that both strategies reduce the majority class in
distant regions from the minority class. It is the
Tomek Links step that acts on the closer region
to the minority class.

4 EXPERIMENTS

We present an empirical evaluation of our
method. The main goal of it is to verify whether
the alternative undersampling strategy used
by ClusterOSS yields better results than those

4

Fig. 3: Pseudocode of ClusterOSS. GetMajInstances() re-
turns the majority instances from a dataset. Clustering()
returns a set of identified clusters. ChooseClosestInstance-
Center() returns the closest instance of the center of a
cluster. KNN() uses a train set to classify test instances,
with k = 1. GetMisclassifications() returns the misclassi-
fied instances by KNN. d() is the distance between two
instances.

Fig. 4: ClusterOSS. Left: Majority instances selected and
minority instances. Right: Pre-processed dataset

given by OSS. Additionally, we verify how
ClusterOSS compare to other existing meth-
ods in the literature, namely random under-
sampling, random oversampling, SMOTE, CBO
and OSS. We also evaluate how ClusterOSS
performs when combined to random oversam-
pling. The motivation for the latter being that
we want to combine the strengths of both un-
dersampling and oversampling.

4.1 Experimental Settings

We implemented ClusterOSS with the cluster-
ing method k-means, and we determine the
number of clusters by the average silhouette
of the training set. For k-means we consider
squared Euclidean distance as proximity mea-
sure, 10 as maximum number of iteration and 1
initial configuration. To obtain the average sil-
houette we consider the Euclidean distance as
proximity measure. For CBO we use the same
strategy. We combined SMOTE with random
undersampling as suggested by its creators. We
use random oversampling and random under-
sampling with final proportion of 1:1. We use
SMOTE with parameters such it increases the
minority class in 200% and decreases the major-
ity class such that the final number of instances
in the minority class is 75% of the final number
of instances in the majority class. To test the
quality of the pre-processing of the data, we
apply three different classification algorithms -
KNN (k= 3), C5.0 and SVM - to the resulting
dataset given by each method.

The evaluation was performed on 10
datasets, which are showed in Table 1; the
table contains the name, number of attributes
(including the class attribute), number of
instances and proportion ratio of the datasets.

We obtained the datasets Vowel, Haber-
man, Pima Diabetes and Yeast from the UCI
repository[8], and Cleveland, Poker and Vehi-
cle from the Keel repository[9]. Vowel, Yeast,
Cleveland, Poker and Vehicle are originally
multiclass problems and were turned into bi-
nary problems by choosing a specific class as
the positive one and making the following
relation of positive classes x negative classes:
0 x rest, 4 x rest, 0 x 4, 8 x 6 and 2 x rest,
respectively.

The three artificial datasets were created us-
ing a normal distribution for each class (or
for each subset of the class, when the class
is divided in more than one subset). The ar-
tificial datasets are used to assay the perfor-
mance of the techniques in different situations.
They are all binary problems and have three
attributes(two are numeric and one is the class).
They are plotted in the Figure 5, where the ’X’
are instances from the majority class and the

5

Fig. 5: Artificial Datasets. Top-left: Artificial dataset (a).
Top-right: Artificial dataset (b). Bottom: Artificial dataset
(c).

Dataset # Attributes # Examples Proportion
Artificial (a) 3 410 1 : 40
Artificial (b) 3 510 1 : 50
Artificial (c) 3 520 1 : 25
Vowel0 11 990 1 : 10
Haberman 4 306 1 : 3
Yeast4 8 1479 1 : 28
Pima Diabetes 9 768 1 : 1.86
Cleveland0x4 14 173 1 : 12.31
Poker8x6 11 1477 1 : 85.88
Vehicle2 19 846 1 : 2.88

TABLE 1: Dataset Information

circles are from the minority class. The dataset
(a) has two majority regions and one minority
region between them. The dataset (b) has one
majority and one minority region completely
overlapped. The dataset (c) has a majority re-
gion rounded by two minority regions.

We perform the experiments with stratified
5-fold cross validation; we do it 100 times. We
choose the stratified variant to keep the class
distribution in each fold, and we choose 5 folds
to avoid situations in which there is too few
examples in the minority class to be able to
apply the classification methods.

We used the following evaluation measures:
Positive Accuracy (TP

FN+TP
), Negative Accu-

racy (TN
TN+FP

), Geometric Mean of Accuracies
(
√
Pos.Accuracy ∗Neg.Accuracy) and the Area

Under the Roc Curve (AUC).

Measure # OSS # ClusterOSS Ties
victories victories

Positive Accuracy 4 19 7
Negative Accuracy 13 12 5
Geometric Mean 5 20 5
AUC 9 21 0

TABLE 2: OSS x ClusterOSS

4.2 Results and Discussion

First, we compare OSS and ClusterOSS. Table 2
shows the number of wins and ties for them.
For each line of the table, we show the results
for one of the evaluation measures, consid-
ering the results for the combination of the
10 datasets and the 3 classification methods.
The results show that ClusterOSS yields better
results for the positive class (minority class),
which is the class of interest. The results for
the negative class are comparable, with a slight
advantage for OSS. This shows a trade-off
between the performance in the positive and
negative classes. However, when we consider
measures that evaluate the performance on
both positive and negative classes - geometric
mean and AUC - ClusterOSS outperforms OSS.

We now perform a comparative analysis of
all 8 methods considered in our experiments.
To summarise the results, we count the number
of victories for each pre-processing technique
in each dataset and in each classification algo-
rithm for different measure performances. The
results are shown in Fig. 6 which represents this
rank. The dark bar represents the number of
victories a technique perform compared to the
others, and the white bar represents how many
times a technique is in the top 3 performances.

First of all, we can see that the dataset with-
out pre-processing yields the best results for
the negative class, but very poor results for
the positive class. This is expected, since the
imbalance of the datasets leads to a bias w.r.t.
the negative class.

Random undersampling presents an oppo-
site behaviour. While, it gives the best perfor-
mance w.r.t. the positive accuracy, it presents a
poor performance w.r.t. the negative accuracy
when compared to the other methods. Because
of this difference in the results, random un-
dersampling is outperformed by other methods
(e.g., SMOTE and ClusterOSS followed by ran-

6

(a) Pos. Accuracy (b) Neg. Accuracy

(c) Geometric Mean (d) AUC

Fig. 6: Best and top 3 best performances. 1:Non pre-
processed dataset; 2:oversampling; 3:CBO; 4:SMOTE;
5:Random undersampling; 6:OSS; 7:ClusterOSS; 8:Clus-
terOSS followed by random oversampling

Measure # SMOTE # ClusterOSS + random Ties
victories oversamplig victories

Positive Accuracy 18 10 2
Negative Accuracy 9 21 0
Geometric Mean 16 14 0
AUC 15 15 0

TABLE 3: SMOTE x ClusterOSS followed by random over-
samplig

dom oversampling) w.r.t. AUC and the geometric
mean.

Even though we saw that ClusterOSS out-
performs OSS, the comparative analysis with
all methods shows that ClusterOSS does not
rank among the best methods. However, when
we combine ClusterOSS and random oversam-
pling, the results are compared to those o
SMOTE; these 2 methods being the best ones
in a general analysis of the measures.

Now, we have a closer look at the results
of ClusterOSS followed by random oversampling,
and SMOTE. We show the comparative analysis
of these 2 methods in Table 3. We can see
that while SMOTE performs better w.r.t. the
positive accuracy, ClusterOSS followed by random
oversampling performs better w.r.t the negative
accuracy. For the other 2 measures the results
are comparable.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new under-
sampling method to pre-process imbalanced
datasets. Our method, which we call Clus-
terOSS, outperforms OSS, which is the method
ClusterOSS is based on. Moreover, we showed
that when we combine ClusterOSS with ran-
dom oversampling, the results are comparable
with those of the state-of-the-art SMOTE.

As future work, we will investigate why
SMOTE performs better than ClusterOSS with
random oversampling regarding the positive
class, in order to see possible directions in
which we can improve our results.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian
research agencies FAPESP, CAPES and CNPq
for financially supporting this work.

REFERENCES

[1] T. Fawcett, Foster, and F. Provost, “Adaptive Fraud De-
tection,” Data Mining and Knowledge Discovery, vol. 1, pp.
291–316, 1997.

[2] S. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, W. Fan,
and P. K. Chan, “JAM: Java Agents for Meta-Learning over
Distributed Databases,” in In Proc. 3rd Intl. Conf. Knowledge
Discovery and Data Mining. AAAI Press, 1997, pp. 74–81.

[3] M. Souza, G. D. C. Cavalcanti, and T. I. Ren, “Off-line
Signature Verification: An Approach Based on Combining
Distances and One-class Classifiers,” in Tools with Artificial
Intelligence (ICTAI), 2010 22nd IEEE International Conference
on, vol. 1, Oct 2010, pp. 7–11.

[4] M. Kubat and S. Matwin, “Addressing the Curse of Im-
balanced Training Sets: One-Sided Selection,” in In Pro-
ceedings of the Fourteenth International Conference on Machine
Learning. Morgan Kaufmann, 1997, pp. 179–186.

[5] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling
Technique,” J. Artif. Int. Res., vol. 16, no. 1, pp. 321–357,
Jun. 2002.

[6] T. Jo and N. Japkowicz, “Class Imbalances Versus Small
Disjuncts,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 40–49,
Jun. 2004.

[7] I. Tomek, “Two Modifications of CNN,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. SMC-6, no. 11, pp.
769–772, 1976.

[8] K. Bache and M. Lichman, “UCI machine
learning repository,” 2014. [Online]. Available:
http://archive.ics.uci.edu/ml

[9] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac,
S. Garcı́a, L. Sánchez, and F. Herrera, “KEEL Data-
Mining Software Tool: Data Set Repository, Integration of
Algorithms and Experimental Analysis Framework,” 2011.
[Online]. Available: http://sci2s.ugr.es/keel/datasets.php

