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Abstract—Given the huge size of music collections available
on the Web, automatic genre classification is crucial for the
organization, search, retrieval and recommendation of music.
Different kinds of features have been employed as input to
classification models which have been shown to achieve high ac-
curacy in classification scenarios under controlled environments.
In this work, we investigate two components of the music genre
classification process: a novel feature vector obtained directly
from a description of the musical structure described in MIDI
files (named as structural features), and the performance of
relational classifiers compared to the traditional ones. Neither
structural features nor relational classifiers have been previously
applied to the music genre classification problem. Our hyphoteses
are: (i) the structural features provide a more effective descrip-
tion than those currently employed in automatic music genre
classification tasks, and (ii) relational classifiers can outperform
traditional algorithms, as they operate on graph models of the
data that embed information on the similarity between music
tracks. Results from experiments carried out on a music dataset
with unbalanced distribution of genres indicate these hypotheses
are promising and deserve further investigation.

Keywords-Music genre classification, music features, relational
classification, data graph models.

I. INTRODUCTION

Users who purchase or download music from online collec-

tions available on the Web often formulate their preferences

in terms of genre. A non-expert person can identify the genre

of a piece with 72% accuracy after hearing a three-second

segmentation of the music [1]. Nonetheless, this could hardly

be done manually with such a high accuracy on a large

collection. Manual classification is a demanding process due

to the time and expertise required. Moreover, results obtained

would very likely be highly dependent on the experts’s musical

knowledge and previous experience. This scenario has moti-

vated the development of several computational algorithms for

automatic music classification [2], [3].

Any classification process requires a prior step of feature

extraction. The choice of the type of feature is determined

by the properties to be considered in the classification. In the

specific case of music, features may be based on e.g., the

instruments played, the performer, the time duration of the

music, its genre, or other. Classification by genre is very usual

and distinct approaches are reported in the literature to extract

features capable of capturing the relevant properties to identify

genre. One possibility is to focus on capturing elements

of the underlying musical structure, which provides highly

informative content for this purpose. The underlying structure

of a music strongly relates to its high-level characteristics such

as repetitions, interleaving of themes and choruses, presence

of breaks, changes in time signatures, etc. Even considering

these high-level features, it is still quite difficult to represent

the music structure in a compact and meaningful form [4].

The studies reported in this paper take as input music

descriptions given in the MIDI format (Musical Instrument
Digital Interface) [5]. This representation allows reconstruct-

ing an approximate representation of the music as a symbolic

score. Now established as a standard interchange format across

multiple hardware devices and software platforms, MIDI de-

scriptions of music are particularly attractive to users with

musical knowledge and those interested in interactive appli-

cations and performances. MIDI is considered also a format

more convenient than audio file formats to extract precise high-

level musical information [6]. Due both to the symbolic nature

of the information they carry and their processing speed, MIDI

files also facilitate extracting features from entire recordings.

Once they are available, the descriptive feature vectors are

input into the classification step. Classifiers such as kNN
[7], Support Vector Machines [8]–[10], Co-training [2], [11]

among others have been employed for music genre classifi-

cation. These solutions achieve high accuracy in controlled

environments, i.e., without considering class imbalance or fea-

ture vectors of different sizes. In particular, the work by Chai

and Vercoe [12] addresses classification of MIDI recordings.

The authors employ Hidden Markov Models to classify three

types of Western folk music (Austrian, German and Irish), with

63% accuracy. Ponce de Leon and Inesta (2002) [13] describe

a system to segment jazz and classical MIDI tracks in order

to extract features, which are then classified employing Self-

Organising Maps. They report that 77% of the instances have

been classified correctly. Shank and Kuo (2003) [14] extract

features based on melodies and chords, from pieces in four

categories (Enya, Beatles, Chinese folk and Japanese folk).

They had 38-55 recordings from each category, and achieved

correctness rates ranging from 64% to 84%.

In this paper, we investigate relational algorithms for music

genre classification in an imbalanced environment. Relational

approaches have been successfully applied in several data

mining tasks [15], [16] but we are not aware of previous
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efforts employing them to handle music genre classification. In

our experiments, relational classifiers outperformed traditional

classification techniques, such as Decision Trees, Naı̈ve Bayes,

Neural Networks and Support Vector Machines. Relational

representations explore information about the instances that

goes beyond the attribute values, as they operate on graph

models built from the data. In our studies we have employed

the kNN, mutual-kNN and regular-kNN graph models [17]–

[19]. We also investigate a novel feature vector derived from

the underlying musical structure, comparing its performance

with that of state-of-the-art features typically used in music

genre classification using both the relational and the traditional

classifiers.

The remaining of the paper is organized as follows: Sec-

tion II introduces the definitions and previous work on mu-

sic feature extraction, graph models employed to represent

tabular data and the relational classifiers employed in this

investigation; Section III describes the experimental setup and

discusses the experimental results obtained; finally, Section IV

summarizes the conclusions.

II. BACKGROUND

This section describes several strategies to extract features

from music, as well as the data graph models and the relational

classifiers considered in this work.

A. Music features

Albeit research related to feature extraction from music

mostly consider acoustic data as input, some approaches exist

that handle symbolic representations. In this work we consider

three distinct strategies to extract features from symbolic MIDI

representations: histograms of notes and statistical moments,

assumed as the state-of-the-art in music classification, also

structural features derived from concepts of music theory,

which have not been previously employed in this context.

Histograms of notes. Histograms are useful representations

of music signals described both in symbolic or acoustic

form [20]. In our studies we have employed a histogram of the

12 possible musical notes. From the MIDI description node

pitches have been extracted and their frequencies constitute

the histogram of notes. The MIDI specification only allows for

128 discrete notes (values between 0-127), which differentiates

two equal notes in different octaves. We adopt a scale of 12
discrete notes obtained applying the modulo operator %12 on

the total number of notes.

Statistical moments. Simple statistical measures are able to

capture the global features of a music. One approach consists

in quantifying both the speed and the musical notes of a piece,

attempting to differentiate both rhythm and melody [21] and

somehow capturing an approximation of the human perception

of such properties. The statistical moments we take as features

are the mean, standard deviation, entropy and uniformity,

computed from both the histogram of notes and the histogram

of speeds.

Musical structure. In order to identify music tonality and

chords, Soriano et al. [22] employed very basic concepts

in music theory to extract structural features from MIDI

data files. The approach starts by segmenting a music into

compasses. The next step is to identify the tone of the music

considering its progression. The harmonic is then considered

to obtain the chords in which rotates the music. The result of

these steps is a sequence of chords.

In order to identify patterns, a string matching algorithm

(e.g., the Horspool algorithm) is applied on the chords se-

quence to obtain subsets. Initially, we seek for chord subse-

quences of size S
2 , where S is the total number of chords.

This process is iterative, with the subset size decreasing by 1
at each iteration. A list of patterns of different sizes is thus

obtained, from which a feature vector is formed by numbers

representing the size of each pattern identified.

B. Data graph models

Formally, a graph G = (V,E) consists of two sets V and

E. The elements of V = {v1, v2, . . . , vN}, with cardinality

|V | = N , are the vertices of G, whereas the elements of

E = {e1, e2, . . . , eM} are the edges connecting vertex pairs,

with |E| = M . A weighted graph also includes a set of values

(weights) W = {w1, w2, . . . , wM}, wi ∈ � associated with

the edges.

Graphs 1 are widely employed to model real-world prob-

lems. In many situations a ‘natural’ graph structure exists,

such as in social, authorship or citation networks, the Internet,

power grid networks, etc. In other cases the data is not

inherently relational, but a graph may still be constructed from

a data set given by an attribute-value matrix. Several authors

have addressed the problem of building graph models from

data, and many strategies are possible [17]–[19]. It is clear

from previous work that the choice of the data graph model

affects the outcome of graph-based data mining algorithms,

i.e., the effectiveness of specific graph models will vary

depending on the specific characteristics of the problem under

analysis and the algorithms employed.

Popular data graph models are typically based on assessing

neighborhoods, or pairwise similarities between data instances.

Building a graph model from tabular data typically involves

three steps: i) choosing a similarity function to obtain a

pairwise similarity matrix; ii) defining the connections to

obtain an appropriate graph model that represents the data

manifold; and iii) applying a graph-based mining algorithm.

The problem can be formulated as a supervised, unsupervised

or semi-supervised mining paradigm [18].

Consider N data points {X1, X2, . . . , XN} assumed to be

independently and identically distributed from some probabil-

ity distribution P . Each data point is mapped to a graph vertex,

with weighted edges representing the similarity between the

corresponding data point pairs. A complete graph includes

all pairwise relationships, but a strategy often found in the

literature is to connect each vertex only to its k nearest

neighbors (i.e., the k closest or most similar data points). The

resulting nearest-neighbor graphs, known as kNN graphs, are

1We do not distinguish network and graph.
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more adaptive to different domains. In this work we derive

graph models of the music data considering three variations

of the kNN strategy.
In the symmetric kNN model, or simply kNN, each vertex is

connected with its k closest neighbors as given by a similarity

function, i.e. an edge is created between vertices vi and vj if

vi ∈ kN (vj) ∨ vj ∈ kN (vi), where kN is the set of vertices

formed by the k nearest neighbors of v.
In the mutual-kNN model two vertices are connected only

if the neighborhood pertinence condition is met by both,

i.e. there is an edge between vertices vi and vj if vi ∈
kN (vj) ∧ vj ∈ kN (vi). The mutual-kNN graphs tend to

produce disconnected graphs, particularly for small values

of k. To avoid this problem we combine this method with

minimum spanning tree graphs.
The third graph construction strategy considered generates

regular graphs, and is referred as regular-kNN [19]. All

vertices have the same degree, unlike the kNN model, which

may include vertices with degree higher than k.

C. Relational classifiers
Relational classifiers require a fully described graph (ver-

tices and edges) with known labels for some of the vertices

to predict the labels of the remaining vertices. Traditional

classifiers would not work properly on graphs because they

ignore pairwise dependency relations between vertices [23]–

[25].
We considered four relational classifiers in this study:

probabilistic relational neighbor (prn), weighted vote rela-

tional neighbor (wvrn), network-only Bayes (no-Bayes) and

network-only link-based (no-lb). The prn classifier estimates

class membership probabilities by assuming that the label

of a vertex depends only on its immediate neighbors and

that linked vertices tend to belong to the same class [23].

Similarly, the wvrn classifier estimates class membership

probabilities by assuming that linked nodes tend to belong

to the same class and considering the weighted mean of

the class-membership probabilities for the neighborhood of

each vertex analyzed [25]. The no-Bayes classifier employs

multinomial naı̈ve Bayesian classification based on the classes

of the neighborhood of each vertex [25]. These three relational

classifiers use the relaxation label as a collective inference

method.
The no-lb classifier creates a feature vector for a vertex by

aggregating the labels of its neighborhood and then use logistic

regression to build a discriminative model based on those

feature vectors [24]. As proposed by Lu&Getoor [24], three

aggregation methods have been considered: binary-link (no-lb-
binary), mode-link (no-lb-mode) and count-link (no-lb-count).
Another aggregation method considered is class-distribution-

link (no-lb-distrib), proposed by Macskassy&Provost [25],

which uses the iterative classification as a collective inference

method.

III. EXPERIMENTS

We carried out experiments comparing the performance of

traditional and relational classifiers on three distinct feature

sets obtained from a music MIDI data set with imbalanced

genre distribution.

A. Data set

The music collection has been compiled by Soriano [22]

and is publicly available for research purposes2. It includes

919 MIDI files describing audio tracks with different time

durations and manually classified into four genres, namely

Classical, Brazilian Backcountry, Pop/Rock and Jazz. The

number of samples in each genre varies, as described in

Table I.

TABLE I
MUSIC GENRE DISTRIBUTION FOR THE MUSIC COLLECTION USED

Genre # Tracks
Classical 31
Brazilian Backcountry 243
Pop/Rock 550
Jazz 95

Total 919

B. Experimental setup

The experiments were carried out on distinct representations

of the music collection (i.e., three sets of feature vectors)

considering multiple alternatives of conventional and relational

classifiers for the music genre classification task.

The music collection has been pre-processed to obtain: (i)

the Histogram data set, in which each track is described by

a feature vector formed by 12 attributes, obtained from the

histogram of notes; (ii) the Moments data set, in which each

track is described by a feature vector formed by 8 attributes

generated from the statistical moments; and (iii) the Structure

data set, formed by feature vectors that capture the structural

patterns, as described in Section II. Each feature vector is

described by a varying number of attributes (at most 250),

depending on the number and size of the patterns identified.

Graph models have been constructed from each feature

data set employing the kNN, mutual-kNN and regular-kNN

strategies. For each strategy, undirected graphs have been built

varying the choice of k within the interval [1, 15]. For the

Moments data set, graph edge weights indicate dissimilar-

ity, taking the pairwise Euclidean distance between the data

points as an approximation of data point dissimilarity, whereas

for the Histogram and Structure data sets edge weights are

determined computing the pairwise DTW (Dynamic Time
Warping [26]) distance. DTW is widely employed to measure

dissimilarity between time series, since it can account for time

displacements and series of differents sizes [27]. It gave us an

appropriate alternative to compute the pairwise dissimilarities

for the Histogram and Structure feature sets.

The following traditional classification approaches have

been considered: decision tree (J48), naı̈ve Bayes (NB),

multilayer perceptron with backpropagation (MLP) and sup-
port vector machine (SMO) classifiers. We used the Weka3

2http://www.icmc.usp.br/ asoriano/download.html
3http://www.cs.waikato.ac.nz/ml/weka
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implementations with standard configuration. The follow-

ing relational classification approaches have been consid-

ered: weighted vote relational neighbor (wvrn), network-only
Bayes (no-Bayes), probabilistic relational neighbor (prn) and

network-only link-based (no-lb) classifiers, in their Netkit-

SRL4 implementations with standard configuration. For the

network-only link-based classifier we employed models mode-

link (no-lb-mode), count-link (no-lb-count), binary-link (no-
lb-binary) and class-distribution-link (no-lb-distrib). For both

traditional and relational classification we adopted the 10-fold

cross validation procedure.

C. Results

Due to the class imbalance distribution in our music col-

lection we analyze the results of the distinct classification

alternatives using the AUC (area under the receiver operating

characteristic curve) measure.

Table II shows AUC average values for the traditional

classifiers considered. Tables III, IV and V show AUC average

values for the relational classifiers operating on data graph

models built with the kNN, mutual-kNN and regular-kNN

strategies, respectively. For the relational classifiers each entry

shows, in parentheses, the choice of k which resulted in the

model leading to the best performance. In all tables, the best

results for the multiple configurations compared is empha-

sized in bold, whilst entries highlighted in gray indicate the

classification configuration that achieved the best performance

on a specific feature set (Histogram, Moments or Structure).

The last row in all tables shows the average ranking of the

performance of each classifier for the feature sets considered.

TABLE II
TRADITIONAL CLASSIFIERS PERFORMANCE MEASURED BY AUC

J48 NB MLP SMO
Histogram 0.619 0.607 0.665 0.506

Moments 0.706 0.750 0.771 0.585

Structure 0.738 0.920 0.816 0.724
Average rank 2.667 2.000 1.333 4.000

From Table II, we observe that all traditional classifier

perform better with the structural features. Observing the

behavior of each classifier, MLP outperforms the others when

histogram and moments features are used. NB outperforms the

other classifiers when structural features are used.

Figure 1 shows results from a Nemenyi post-hoc test [28]

where the critical difference (CD) calculated at 95 percentile

is 2.71. The CD value is plotted just above the diagram,

whereas the average ranks from Table II are plotted along

the horizontal axis. The lowest (best) ranks are in the left side.

We observe that the differences amongst the classifiers are not

statistically significant, so they are connected by a black line

in the diagram. Although there is no statistically significant

difference among them, we observe that MLP and NB are

those with the first and the second best overall performances,

respectively.

4http://netkit-srl.sourceforge.net/index.html

1 2 3 4

MLP

NB J48
SMO

CD

Fig. 1. Post-hoc test results for traditional classifiers performance

From Tables III, IV and V, we observe that all relational

classifiers perform better with the structural features. In gen-

eral, this scenario occurs with the networks built taking k ≥ 11
for no-lb-count, no-lb-distrib and wvrn classifiers and taking

k ≤ 9 for the remaining relational classifiers. Inspecting the

behavior of each classifier, no-lb-count, no-lb-distrib and wvrn
outperform the others.

Figures 2, 3 and 4 show results from a Nemenyi post-

hoc test, considering relational classifiers operating on data

graph models obtained with the kNN, mutual-kNN and regular-

kNN techniques, respectively. The critical difference (CD)

for all post-hoc tests calculated at the 95 percentile is 5.20.

We observe that, although the performance differences are

not statistically significant, the classifiers no-lb-distrib, no-lb-
count and wvrn deliver the three best overall performances.

1 2 3 4 5 6 7

no-lb-distrib
no-lb-count

wvrn
no-lb-binary

prn
no-Bayes
no-lb-mode

CD

Fig. 2. Post-hoc test results for relational classifiers built on kNN networks

1 2 3 4 5 6 7

no-lb-distrib
wvrn

no-lb-count
no-lb-binary

no-Bayes

prn
no-lb-mode

CD

Fig. 3. Post-hoc test results for relational classifiers built on mutual-kNN
networks

1 2 3 4 5 6 7

no-lb-distrib
wvrn

no-lb-count
no-lb-binary

no-lb-mode

prn
no-Bayes

CD

Fig. 4. Post-hoc test results for relational classifiers built on regular-kNN
networks

Aiming to identify which networks resulted in the best

classifier performances we pick just the best results from

each relational classifier on each network built, i.e. entries
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TABLE III
RELATIONAL CLASSIFIERS PERFORMANCE EVALUATED BY AUC IN kNN NETWORKS

no-lb-mode no-lb-count no-lb-binary no-lb-distrib wvrn no-Bayes prn
Histogram 0.575 (k=11) 0.723 (k=9) 0.622 (k=2) 0.71 (k=8) 0.712 (k=9) 0.515 (k=1) 0.537 (k=1)

Moments 0.547 (k=5) 0.635 (k=13) 0.575 (k=8) 0.644 (k=7) 0.644 (k=9) 0.563 (k=2) 0.571 (k=3)

Structure 0.834 (k=7) 0.939 (k=14) 0.851 (k=4) 0.945 (k=14) 0.931 (k=15) 0.922 (k=15) 0.903 (k=9)
Average rank 6.333 2.000 4.667 1.667 2.333 5.667 5.333

TABLE IV
RELATIONAL CLASSIFIERS PERFORMANCE EVALUATED BY AUC IN MUTUAL-kNN NETWORKS

no-lb-mode no-lb-count no-lb-binary no-lb-distrib wvrn no-Bayes prn
Histogram 0.621 (k=1) 0.712 (k=10) 0.626 (k=2) 0.735 (k=12) 0.727 (k=13) 0.555 (k=1) 0.571 (k=1)

Moments 0.570 (k=1) 0.657 (k=14) 0.588 (k=2) 0.633 (k=15) 0.630 (k=14) 0.578 (k=1) 0.574 (k=1)

Structure 0.864 (k=1) 0.955 (k=14) 0.818 (k=2) 0.963 (k=15) 0.964 (k=14) 0.913 (k=6) 0.902 (k=2)
Average rank 6.000 2.333 5.000 1.667 2.000 5.333 5.667

TABLE V
RELATIONAL CLASSIFIERS PERFORMANCE EVALUATED BY AUC IN REGULAR-kNN NETWORKS

no-lb-mode no-lb-count no-lb-binary no-lb-distrib wvrn no-Bayes prn
Histogram 0.608 (k=1) 0.724 (k=8) 0.611 (k=2) 0.737 (k=12) 0.730 (k=12) 0.544 (k=1) 0.553 (k=1)

Moments 0.569 (k=1) 0.652 (k=13) 0.571 (k=1) 0.620 (k=8) 0.625 (k=6) 0.560 (k=1) 0.565 (k=1)

Structure 0.904 (k=1) 0.948 (k=11) 0.82 (k=1) 0.967 (k=15) 0.966 (k=15) 0.923 (k=3) 0.904 (k=2)
Average rank 5.333 2.333 5.000 1.667 2.000 6.000 5.667

emphasized in black in Tables III, IV and V, and analyze them

statistically. Figure 5 shows the critical difference diagram

obtained from this analysis where the CD value calculated at

95 percentile is 1.25. We observe that differences in classifier

performance considering distinct networks are not statistically

significant, but regular-kNN network strategy provided the best

network to leverage the relational classifiers.

1 2 3

regular-kNN

mutual-kNN
kNN

CD

Fig. 5. Post-hoc test results for identify the influence of network construction
techniques in relational classifiers

Figure 6 shows the performance of all relational classifiers

in regular-kNN networks obtained with different values of

neighborhood size k. From Figure 6 we observe that all

classifiers maintain a stable behavior as k varies, with the

exception of the no-lb-binary classifier, for which performance

decays as k increases when employing regular-kNN networks

built from the structural features. When regular-kNN networks

are built from the histogram and moments features the classi-

fiers performance remains under 0.75 of AUC. When regular-

kNN networks are built based on structural features most

relational classifiers perform above 0.8 of AUC for any choice

of k. We also observe that no-lb-distrib, no-lb-count and wvrn
outperform the other classifiers in all regular-kNN networks

built, for all choices of k.

Finally, we compare the performance of traditional and

relational classifiers. For this purpose we consider the two best

performing traditional classifiers from Table II, i.e. MLP and

NB, as well as the two best performing relational classifiers

from Table V, i.e. no-lb-distrib and wvrn from regular-kNN

network. Figure 7 shows results from a Nemenyi post-hoc

test comparing the best traditional and relational classifiers.

The CD value calculated at 95 percentile is 2.71. We observe

that although differences are not statistically significant, the

relational classifiers are the best positioned.

1 2 3 4

no-lb-distrib

wvrn MLP

NB

CD

Fig. 7. Post-hoc test results for the comparison between the best traditional
and relational classifiers

IV. CONCLUSION

We report an investigation on the performance of relational

algorithms for music genre classification. These approaches

require deriving a relational representation of the input fea-

tures. We considered several alternative graph construction

strategies to obtain a relational representation of a particular

music collection described in the MIDI format.

In addition to traditional features employed in the literature

to represent music instances, such as histograms of notes

and statistical moments, we also consider a novel feature

vector, obtained from a MIDI description, that summarizes

the musical structure and compare its effectiveness with that

263263



1 3 5 7 9 11 13 15
0.4

0.6

0.8

1

k

A
U

C

(a) Performance on Histogram
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(b) Performance on Moments

1 3 5 7 9 11 13 15
0.4

0.6

0.8

1

k

A
U

C

(c) Performance on Structure

no-lb-distrib no-lb-mode no-lb-count no-lb-binary no-Bayes wvrn prn

Fig. 6. Relational classifiers performance evaluated by AUC in regular-kNN networks using different k values

of the conventional features. We evaluated the classifiers on

a particular music collection characterized by an imbalanced

distribution of four music genres. The performance of the

classifiers has been evaluated using the AUC.

Regarding the music features considered, results suggest

that musical structure yields better classification performance

as compared to histograms of notes or statistical moments,

i.e., the features computed by inspecting the musical structure

resulted in improved performance from both traditional and

relational classifiers.

Regarding the relational data graph models considered,

results suggest that best results are obtained with the regular-

kNN graphs as compared to the graph models obtained with

the kNN and the mutual-kNN graph construction strategies,

i.e., the regular-kNN networks provided the relational model

most suitable to improve the performance of the relational

classifiers.

Regarding the performance of the relational versus the

traditional classifiers, results suggest that relational classifiers

perform better on this problem, i.e., they are more effective

in capturing the musical features and their described dissim-

ilarities resulting in improved accuracy in the music genre

classification task.
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