
 

 Universidade de São Paulo

 

2014 

The involvement of aldosterone on vascular

insulin resistance: implications in obesity and

type 2 diabetes
 
 
Diabetology & Metabolic Syndrome. 2014 Aug 24;6
http://dx.doi.org/10.1186/1758-5996-6-90
 

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Farmacologia - FMRP/RFA Artigos e Materiais de Revistas Científicas - FMRP/RFA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37523755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://dx.doi.org/10.1186/1758-5996-6-90


REVIEW Open Access

The involvement of aldosterone on vascular
insulin resistance: implications in obesity and
type 2 diabetes
Thiago Bruder-Nascimento, Marcondes AB da Silva and Rita C Tostes*

Abstract

Aldosterone, a mineralocorticoid hormone produced at the adrenal glands, controls corporal hydroelectrolytic
balance and, consequently, has a key role in blood pressure adjustments. Aldosterone also has direct effects in
many organs, including the vasculature, leading to many cellular events that influence proliferation, migration,
inflammation, redox balance and apoptosis.
Aldosterone effects depend on its binding to mineralocorticoid receptors (MR). Aldosterone binding to MR triggers
two pathways, the genomic pathway and the non-genomic pathway. In the vasculature e.g., activation of the
non-genomic pathway by aldosterone induces rapid effects that involve activation of kinases, phosphatases,
transcriptional factors and NAD(P)H oxidases.
Aldosterone also plays a crucial role on systemic and vascular insulin resistance, i.e. the inability of a tissue to
respond to insulin. Insulin has a critical role on cell function and vascular insulin resistance is considered an early
contributor to vascular damage. Accordingly, aldosterone impairs insulin receptor (IR) signaling by altering the
phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO) pathway and by inducing oxidative stress and crosstalk
between the IR and the insulin-like growth factor-1 receptor (IGF-1R).
This mini-review focuses on the relationship between aldosterone and vascular insulin resistance. Evidence indicating
MR antagonists as therapeutic tools to minimize vascular injury associated with obesity and diabetes type 2 is also
discussed.
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Aldosterone
For a long time, aldosterone was simply considered a hor-

mone that regulates renal function and corporal hydroelec-
trolytic balance/plasma osmolality and, consequently,
extracellular volume and blood pressure [1,2]. However,
aldosterone influences the function of many other organs
including the brain, the heart, and the vasculature [1,3].
Aldosterone is mainly synthesized by the adrenal glands,

at the glomerular zone. Aldosterone binds to mineralocor-
ticoid receptors (MR), a cytoplasmic receptor that oper-
ates as a transcription factor regulating gene and protein
expression, the so-called genomic pathway. Furthermore,
aldosterone rapidly activates many other signaling path-
ways, or non-genomic pathways, which are not sensitive

to translation or transcription inhibitors [4,5]. These
quick events are described as being associated to the
classic MR or to a membrane aldosterone receptor, the
G protein-coupled receptor 30 (GPR30) [6]. MR are
expressed not only in the kidneys, but also in extrarenal
tissues, such as adipocytes, cardiomyocytes, macro-
phages, endothelial cells (EC) and vascular smooth
muscle cells (VSMC) [7-9]. In these cells, aldosterone
activates inflammatory, proliferative and migratory pro-
cesses, as discussed below [7,10,11].
In the vasculature, aldosterone activates several signal-

ing proteins including mitogen-activated protein kinases
(MAPK) such as extracellular signal-regulated kinases 1
and 2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK)
[12-14], Rho kinase [11], transcriptional factors like the
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) [15], adhesion molecules including vascular
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cell adhesion molecule 1 (VCAM-1) and intercellular adhe-
sion molecule 1 (ICAM-1), and the non-receptor tyrosine
kinase protein c-Src [7], which then trigger other signaling
pathways. c-Src, for example, activates the nicotinamide ad-
enine dinucleotide phosphate (NADPH) oxidases (Noxes)
through p47phox phosphorylation, leading to the gener-
ation of reactive oxygen species (ROS) [16] and to further
activation of redox-sensitive proteins [7,17,18].
Due to its many effects in the cardiovascular system,

aldosterone plays a critical role in cardiovascular diseases
(CVD) as well as in metabolic diseases including insulin
resistance, diabetes type 2 (DM2) and obesity [1,19].
Accordingly, epidemiological studies demonstrate a
positive relationship between increased aldosterone
levels and enhanced rates of CVD [20,21] and meta-
bolic diseases [1,19,22-30].
Angiotensin II (Ang II), the most powerful biologically

active product of the Renin-Angiotensin-Aldosterone
system (RAAS), stimulates aldosterone secretion and cell
growth in adrenocortical cells [31]. The RAAS plays a
major role in the genesis and progression of CVD, in-
cluding arterial hypertension, myocardial infarction and
stroke. Of importance, aldosterone contributes along
with Ang II to the adverse actions of the RAAS in CVD
[32]. Accordingly, treatment of patients with cardio-
vascular risk like diabetic patients, with antagonists of
the Ang II type 1 receptor (AT1) or with inhibitors of
the Angiotensin Converting Enzyme (ACE) importantly
reduce cardiovascular risks [33,34]. In addition, MR an-
tagonists, such as eplerenone and spironolactone, also
have beneficial effects in patients with CVD, as discussed
below [35,36].
Clinical trials, as the Randomized Aldactone Evaluation

Study (RALES), have shown that daily treatment with
25 mg of spironolactone substantially reduces the risk of
both morbidity and death among patients with severe
heart failure. In addition, after eight weeks of treatment, if
the patient showed signs or symptoms of progression of
heart failure, the dose of spironolactone could be in-
creased to 50 mg without evidence of hyperkalemia [36].
In the Eplerenone Post-Acute Myocardial Infarction

Heart Failure Efficacy and Survival Study (EPHESUS) clin-
ical trial, patients were randomly assigned to eplerenone
(25 mg per day initially, until to a maximum of 50 mg per
day) or placebo. The addition of eplerenone to optimal
medical therapy reduced morbidity and mortality among
patients with acute myocardial infarction complicated by
left ventricular dysfunction and heart failure [37]. In
hypertensive patients, eplerenone treatment, compared
with an atenolol regimen, reduced proinflammatory
mediators, such as macrophage chemoattractant protein
1 (MCP-1), osteopontin, basic fibroblast growth factor
(bFGF), and inteleukin-8 (IL-8), as well as stiffness of
subcutaneous small resistance arteries [38]. An important

finding in clinical studies with MR antagonists is that re-
duction of cardiovascular risks does not depend on blood
pressure changes [39,40].
Aldosterone has also been implicated in the deve-

lopment of insulin resistance. One interesting study
published by Catena et al. [41] showed that patients with
tumoral and idiopathic aldosteronism present insulin
resistance, and that both surgical treatment and treatment
with aldosterone antagonists rapidly and persistently re-
store sensitivity to insulin. A positive association between
increased plasma aldosterone concentrations with plasma
glucose, insulin, C-peptides, and HOMA (Homeostasis
Model Assessment, which estimates steady state β cell
function and insulin sensitivity) has also been reported in
a population of patients with essential hypertension [42].
A positive correlation between fasting insulin and

plasma and urinary aldosterone levels was demonstrated
in patients with class II–IV heart failure included in the
ALOFT (Aliskiren Observation of Heart Failure Treat-
ment) study. In addition, early-morning fasting insulin,
homeostasis model assessment of insulin resistance
(HOMA-IR), and insulin/glucose ratio (IGR) were
higher in patients with aldosterone escape and high
urinary aldosterone excretion, when compared to the
healthy population [43]. Furthermore, in experimental
models of obesity (ob/ob and db/db mice), eplerenone
treatment also reduced the high levels of glucose,
HOMA-IR, and plasma triglyceride concentration, and
increased adiponectin levels [44].
In cultured adipocytes, basal and insulin-stimulated

glucose uptake is decreased by high aldosterone concen-
trations, an effect prevented by RU486, an antagonist of
glucocorticoid receptors. Surprisingly, eplerenone did
not abolish these effects, indicating that aldosterone has
MR-independent effects [45]. In addition, a strong rela-
tionship between genetic variants of the CYP11B2 gene,
which encodes for aldosterone synthase, and glucose
plasma levels has been reported [46].

The relationship between obesity, insulin
resistance and aldosterone secretion
Recently, Briones and colleagues showed that aldoster-

one is also produced by the perivascular adipose tissue
(PVAT) [9]. Their study showed that adipocytes express
aldosterone synthase and produce aldosterone in an Ang
II/AT1/calcineurin/nuclear factor of activated T-cells
(NFAT)-dependent manner. Interestingly, adipocyte-
derived aldosterone regulates adipocyte differentiation
and vascular function in an autocrine and paracrine
manner, respectively. These findings indicate that adipo-
cytes may represent an important source of aldosterone
as well as the putative link between aldosterone and vas-
cular dysfunction in metabolic diseases, such as diabetes
mellitus and obesity. Goodfriend and colleagues have
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previously suggested that aldosterone can be released
by visceral fat in obese male and female voluntaries
[47]. These authors also found that certain fatty acids
stimulate aldosterone production in vitro by rat adrenal
cells incubated with rat hepatocytes, but not in adrenal
cells alone, suggesting that fatty acids from visceral
adipocytes induce hepatic formation of an adrenal
secretagogue [48].
Leptin plays a crucial role on body fat gain. Leptin in-

creases energy expenditure and induces satiety [49]. Obese
and insulin-resistant patients exhibit higher leptin plasma
levels than control subjects, i.e. they become leptin-
resistant, exhibiting a loss of leptin effects. There is a con-
troversy regarding the effects of leptin on aldosterone re-
lease. For example, renin and aldosterone levels do not
change after treatment of rats with leptin [50]. In addition,
leptin infusion leads to natriuresis and diuresis [51] and
stimulation of primary adrenal cell cultures with leptin in-
hibits adrenocortical steroid production [52].
On the other hand, increased plasma renin activity is

observed in rats chronically treated with leptin [53]. Fur-
thermore, Belin de Chantemelle and colleagues showed
that plasma aldosterone levels are increased in obese
mice and further increase with sustained leptin infusion,
and the chronic α1-adrenergic receptor antagonism with
prazosin blunted obesity-induced increased aldosterone
levels and also abolished leptin-stimulated aldosterone
secretion in obese mice [53]. These data indicate that
obesity-associated increased renin activity and leptin-
stimulated aldosterone production may result from in-
creased sympathetic activity. These results also suggest
that leptin may influence aldosterone secretion and per-
haps participate in obesity- and type 2 diabetes-associated
insulin resistance. Accordingly, aldosterone would be an
interesting target to minimize insulin resistance- and/or
obesity-associated deleterious effects.
Reinforcing this suggestion, aldosterone has been shown

to inhibit insulin effects in the vasculature, i.e. aldosterone
induces vascular insulin resistance [19]. Although still
unclear, some potential mechanisms for aldosterone-
induced insulin-resistance are already described, inclu-
ding desensitization of proteins involved in insulin
effects, such as Insulin Receptor Substrate (IRS)-1,
Phosphatidylinositide 3-Kinase (PI3K), Akt and nitric
oxide synthase (NOS). Oxidative stress, possibly medi-
ated by increased NAD(P)H-oxidase activity, as well as
hybridization of insulin receptor (IR) and insulin-like
growth factor-1 receptor (IGF-1R) are also candidate
mechanisms [1,2,19].
The relationship between aldosterone and vascular in-

sulin resistance is discussed in detail in the next section.
Evidence suggesting the MR antagonists as therapeutic
tool to minimize vascular injury associated with obesity
and diabetes type 2 is also discussed.

Insulin resistance
Pancreatic β-cell dysfunction plays an important role

in the pathogenesis of DM1 and DM2. Insulin is a pep-
tide hormone composed of 51 amino acids that is syn-
thesized, packaged, and secreted in pancreatic β cells. It
was the first protein whose primary structure was eluci-
dated. This feat was accomplished by Fred Sanger and
led to a Nobel Prize [54,55].
Insulin is synthetized in the pancreatic β cells as pre-

proinsulin and then processed to proinsulin, whose
structure is stabilized by three disulfide bonds. In the
Golgi apparatus insulin is sorted into secretory vesicles,
where it is converted to insulin and C-peptide. These
peptides are stored in organized mature secretory vesi-
cles/granules, awaiting their regulated on-demand dis-
charge into the bloodstream [56-58]. Insulin is secreted
primarily in response to glucose, while other nutrients
such as free fatty acids and amino acids can augment
glucose-induced insulin secretion. In addition, various
hormones, such as melatonin, estrogen, leptin, growth
hormone, and glucagon like peptide-1 also regulate
insulin secretion. In these cases aerobic glycolysis and
mitochondrial oxidation produce metabolic signals,
including a rise in the ATP to ADP concentration ratio.
This closes ATP-dependent potassium (K+-ATP) chan-
nels, leading to depolarization of the plasma membrane,
which causes calcium (Ca2+) influx that stimulates
insulin exocytosis [56-58]. β cells are especially adapted
to support these processes in the face of varying
demands. However, high-level stimulation of insulin
synthesis, such as in diabetes, may lead to β cells
damage or death [56-58].
Insulin receptors are composed of two extracellular α-

subunits that are each linked to a β-subunit and to each
other by disulfide bonds. Reduction of the bonds that
link the α-subunits produces a α-β monomer that binds
insulin with reduced affinity and is devoid of insulin-
stimulated tyrosine kinase activity [58-60]. Recons-
titution of such hetero-dimers into hetero-tetramers
restores both high affinity insulin binding and insulin-
stimulated kinase activity [58-60].
The main effects of insulin in the organism include

glucose uptake in muscle and adipose tissues, glycolysis,
glycogen synthesis, protein synthesis and uptake of ions,
including K+. Otherwise, insulin blocks glucogenesis,
glycogenolysis, lipolysis and proteolysis [56-58]. Insulin
also contributes to nutrient and hormone delivery to
skeletal muscle by increasing blood flow and recruiting
capillaries [61]. Insulin-induced vasodilatation and capil-
laries recruitment in skeletal muscle seem to depend on
NO, since a nitric oxide inhibitor, L-NG-Nitroarginine
Methyl Ester (L-NAME), inhibits the microvascular
effects of insulin [62]. In addition to promote endothelium-
dependent vasodilation and NO release, insulin also
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stimulates production of vasoconstrictors agents, such
as endothelin-1 (ET-1), mediated by Ras/MAPKs signal-
ing [63,64]. Although there are controversies on insulin
effects, it is suggested that insulin-induced NO produc-
tion limits the contractile, proliferative, and inflamma-
tory actions of insulin-stimulated growth factor
production [65,66].
Aldosterone may impair insulin-signaling pathway in

skeletal muscle by different mechanisms: by reducing
NO bioavailability and Akt activity, by increasing the
sources and production of ROS and insulin-like growth
factor-1 (IGF-1) signaling pathway. These mechanisms
are detailed in the next section, but with emphasis on
the role of aldosterone on vascular insulin resistance.
In the vasculature, insulin directly promotes vasodila-

tion through changes in Ca+2 sensitivity and Ca+2 hand-
ling mechanisms in VSMC, and indirectly through
activation of PI3K/inducible NO synthase (iNOS)/cyclic
guanosine monophosphate signaling, and phosphoryl-
ation of Akt or PKB in the endothelial cells [67,68].
Thus, insulin induces vasodilation mediated by IRS/PI3K
signaling both in VSMC and EC.
Resistance to insulin signaling is a cardiovascular risk

factor that underlies the pathophysiology of the meta-
bolic syndrome. Although insulin in compensatory
hyperinsulinemia has adverse mitogenic and proin-
flammmatory effects, at normal physiologic concentra-
tions, preserved sensitivity to insulin signaling has a
protective effect in the vasculature [69].
Insulin resistance is characterized by the inability of a

tissue to respond to insulin, which will impair the input
of glucose into the cell as well as the sensitivity of IRS/
PI3K/NO signaling pathway [64,68]. Vascular insulin re-
sistance is considered an early contributor to vascular
damage [40]. Under insulin resistance conditions, the
antioxidant, anti-inflammatory, anti-atherogenic proper-
ties of insulin, as well as its ability to induce PI3K/NO-
dependent vasodilation are attenuated, prevailing its
deleterious effects [30,64,68,70,71].

The role of aldosterone on vascular insulin
resistance
There is growing interest in the role of aldosterone and
its receptors in the pathogenesis of insulin resistance
[71]. As already discussed, evidence points that aldoster-
one plays an important role on the metabolic syndrome
[1,19]. Elevated levels of aldosterone are present in obese
and insulin-resistant patients and rodent models [23-25],
leading to proliferation, inflammation, oxidative stress,
contributing to impaired insulin signaling, decreasing
glucose transport, inducing vascular dysfunction and
cardiovascular abnormalities [26-30,70,71].
In 3T3-L1 adipocytes, aldosterone blocks insulin-

induced glucose uptake and induces degradation of

IRS-1 and 2, an effect that depends on ROS generation;
in human adipocytes aldosterone also impairs insulin
sensitivity, implying that aldosterone induces insulin
resistance in the adipose and vascular tissues [70,71].
Aldosterone exerts negative effects on structural and

functional integrity of the pancreatic β-cell by favoring
inflammatory and oxidative stress conditions, which lead
to decreased insulin release and actions, including ac-
tions in the vasculature [72].
A model of dietary salt restriction, associated with

increased aldosterone production, exhibits impaired
insulin-induced vasodilation, as well as increased sys-
temic insulin resistance [73], indicating that even mild
elevations in plasma aldosterone produce significant
effects on vascular insulin sensitivity and may influ-
ence cardiovascular outcomes [40]. Furthermore, rats
infused with aldosterone also develop systemic and
vascular insulin resistance, effects that might be re-
lated to increased levels of insulin-like growth factor-1
receptor (IGF-1R) and to hybridization of IGF-1R and
IR [71]. Since these effects are prevented by a MR
antagonist and tempol, an antioxidant agent, a role for
MR receptor and ROS generation, probably from
NAD(P)H oxidase source, has been suggested [70,71].
Compared with IR, IGF-1R is more abundant in
VSMCs, and expression of IGF-1R is increased in aor-
tas of diabetic animals. Furthermore, subunits of IR
and IGF-1R easily build hybrid receptors that have
higher affinity for IGF-1 than for insulin. IGF-1
induces hypertrophic changes and insulin resistance
via IGF-1R in the vasculature. Although the affinity of
IGF-1R for insulin is lower compared with IGF-1, high
concentrations of insulin, which are often observed in
patients and animal models with insulin resistance,
may affect intracellular signaling pathways dependent
on IGF-1R or hybrid receptors [74-78].
Signaling mechanisms by which insulin regulates endo-

thelial NO production have been substantially clarified. In-
sulin receptor phosphorylation of IRS-1, which binds and
activates PI3K, leads to activation of 3-phosphoinositide-
dependent protein kinase-1 (PDK-1), which in turn phos-
phorylates and activates Akt. Akt directly phosphorylates
eNOS at Ser1177, resulting in increased eNOS activity and
NO production. Endothelium-derived NO diffuses into
adjacent vascular smooth muscle, where it evokes vasore-
laxation [65,79-81].
Aldosterone can affect insulin-induced eNOS activa-

tion at different points. Aldosterone increases IGF-1R,
which is an important negative regulator of insulin sen-
sitivity in the endothelium. This has been confirmed by
deletion of IGF-1R, which culminates in increase in NO
bioavailability [82]. In addition, aldosterone increases
ROS production [16], which attenuates insulin signaling by
impairing NOS activity and reducing NO bioavailability.
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Accordingly, superoxide anion (-O2) interacts with NO,
forming peroxynitrite (-ONOO), which has less ability
than NO to induce relaxation. Also, the overproduction
of ROS leads to oxidation of tetrahydrobiopterin (BH4),
which is an essential cofactor for eNOS. The reduction
of BH4 converts eNOS to a -O2- producing enzyme,
leading to reduced NO release and enhanced oxidative
stress [83]. This phenomenon impairs insulin signaling
and insulin-induced vascular relaxation. Aldosterone
also leads to proteosomal degradation of IRS-1, increas-
ing IGF-1 signaling, which attenuates insulin-induced
Akt phosphorylation and NOS activation, and decreases
glucose uptake in VSMC [30,70,71,84,85].

Sherajee and colleagues determined the effects of insu-
lin on Akt phosphorylation in aortas from control rats
and rats treated with aldosterone plus salt. Incubation
with insulin for 30 minutes increased Akt phosphorylation
in aortas from the control group, but was significantly less
in aortas from rats treated with aldosterone plus salt, indi-
cating that insulin effects are attenuated by aldosterone
actions on Akt signaling. Decreased Akt phosphorylation
leads to decreased NOS activity and, consequently, to
reduced NO bioavailability. Treatment with spirono-
lactone and tempol recovered Akt phosphorylation,
reinforcing the involvement of ROS on aldosterone-
induced impairment of insulin signaling [70,71,86].

Figure 1 Effects of aldosterone in vascular signaling. Aldosterone activates several pathways in the vasculature, both in endothelial and
vascular smooth muscle cells, that interfere with insulin signaling. Aldosterone activates NAD(P)H oxidase-dependent reactive oxygen species
(ROS) generation or, more specifically, superoxide anion (O2

- ) generation, which interacts with nitric oxide (NO) forming peroxinitrite (-ONOO).
Aldosterone reduces tetrahydrobiopterin (BH4), which is an essential NOS cofactor, leading to reduced NO release and impaired vascular
relaxation. Aldosterone stimulates mitogen-activated protein kinases (MAPKs) phosphorylation, which leads to activation of proliferative, migratory
and inflammatory pathways. Aldosterone activates the formation of hybrid receptors between insulin receptor (IR) and Insulin like Growth
Factor-1 receptor (IGF-1R) and induces proteasomal degradation of insulin receptor substrate-1 (IRS-1), decreasing Akt phosphorylation and nitric
oxide synthase (NOS) activation. Aldosterone also increases the expression of adhesion molecules, such as vascular cell adhesion molecule 1
(VCAM-1) and Intercellular Adhesion Molecule 1 (ICAM-1), and activates transcription factors, including Nuclear Factor Kappa B (NFkB). Aldosterone
increases calcium (Ca+2) influx, further decreasing vascular relaxation and favoring contractile responses. (+) indicates activation; (-), inhibition.
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Although MR signaling has been discussed as the
primary responsible in outcomes related to diabetes
and obesity, it is important to recognize that others
mediators, including cytokines, also contribute to vas-
cular insulin resistance. Thus, aldosterone and MR
binding, synergistically, converge to effects from others
pathways [40].
In summary, substantial evidence indicates that al-

dosterone plays a key role in CVD, with MR antago-
nists representing potential excellent tools to minimize
the risks of CVD. Moreover, both obesity and DM2 are
associated with elevated plasma aldosterone levels and
vascular abnormalities. Vascular insulin resistance is
considered an early contributor to vascular damage
[40]. Some of the mechanisms by which aldosterone
interferes with insulin signaling and induces vascular
dysfunction in obesity and DM2 are already clarified
and include increased IGF-1R expression; augmented
hybridization of IGF1-R and IR, which are dependent
on the degradation of IRS-1 by the proteasome; de-
creased NO bioavailability and Akt phosphorylation.
Interestingly, ROS generation modulates the activity/
expression of most of these potential players in insulin
resistance, strengthening the concept that aldosterone-
induced oxidative stress impairs vascular insulin sig-
naling Figure 1. However, more studies are necessary
to find other contributing mechanisms to aldosterone-
induced vascular dysfunction in obesity and DM2.
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