View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Biblioteca Digital da Produgéo Intelectual da Universidade de Sé&o Paulo (BDPI/USP)

SIBi

SISTEMA INTEGRADO DE BIBLIOTECAS
UNIVERSIDADE DE SAQ PAULD

S AT
RN
llk\\‘lll
E phe

Universidade de S&o Paulo
Biblioteca Digital da Producéo Intelectual - BDPI

Departamento de Mecatrdnica e Sistemas Mecanicos - EP/PMR Comunicac¢des em Eventos - EP/PMR

2014-01-26

Reusing risk-aware stochastic abstract policies
In robotic navigation learning

http://www.producao.usp.br/handle/BDP1/46415

Downloaded from: Biblioteca Digital da Produgéo Intelectual - BDPI, Universidade de S&o Paulo

https://core.ac.uk/display/37522964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/46415

Reusing Risk-Aware Stochastic Abstract Policies
in Robotic Navigation Learning*

Valdinei Freire da Silva', Marcelo Li Koga?,
Fabio Gagliardi Cozman?, and Anna Helena Reali Costa?

! Universidade de Sio Paulo — Escola de Artes, Ciéncias e Humanidades — Sao Paulo,
Brazil.
2 Universidade de Séo Paulo — Escola Politécnica — Sao Paulo, Brazil.
{valdinei.freire,mlk,fcozman,anna.reali}@usp.br

Abstract. In this paper we improve learning performance of a risk-
aware robot facing navigation tasks by employing transfer learning; that
is, we use information from a previously solved task to accelerate learn-
ing in a new task. To do so, we transfer risk-aware memoryless stochas-
tic abstract policies into a new task. We show how to incorporate risk-
awareness into robotic navigation tasks, in particular when tasks are
modeled as stochastic shortest path problems. We then show how to use
a modified policy iteration algorithm, called AbsProb-PI, to obtain risk-
neutral and risk-prone memoryless stochastic abstract policies. Finally,
we propose a method that combines abstract policies, and show how to
use the combined policy in a new navigation task. Experiments validate
our proposals and show that one can find effective abstract policies that
can improve robot behavior in navigation problems.

Keywords: Risk-Awareness, Memoryless Stochastic Abstract Policies,
Transfer Learning

1 Introduction

Consider an agent that displays risk-awareness in the sense that she has prefer-
ences amongst risk-prone, risk-neutral and risk-averse attitudes. This agent may
face a series of tasks; for instance a robot may face navigation problems in a
variety of rooms, each one in a different day. It is reasonable to suppose that
insights obtained in the solution of the first task will be useful in the solution
of the second task, and so on. Hence the agent may be interested in learning
not only the solution of the first task, but also an abstract description of the
solution that may be used when solving the second task, and so on. How can
this risk-aware agent find a suitable abstract policy? How can the agent reuse
and transfer into new problems this abstract policy, and how useful can it be?

* This research was partly sponsored by FAPESP — Fundagao de Amparo & Pesquisa
do Estado de Sao Paulo (Procs. 11/19280-8, 12/02190-9, and 12/19627-0) and
CNPq — Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (Procs.
311058/2011-6 and 305395/2010-6).

2 V. F. Silva, M. L. Koga, F. G. Cozman, and A. H. R. Costa

Substantial previous work can be found on transfer learning methods. One
must decide what to transfer: value functions [12,19], features extracted from the
value functions [1,8], heuristics and policies [3,5]. We focus on policy transfer;
all transferred information is encoded by policies. An advantage of policy-based
transfer is that it requires only a mapping between the states/actions of the
source task and the states/actions of the target task; this amounts to less infor-
mation than required by methods that transfer value functions [5]. Policy-search
is in fact quite appropriate when coupled with abstraction [9]. Our approach is
to transfer learning by exploiting abstract policies encoded through relational
representations that compactly capture domains in terms of relations and ob-
jects [14]. Each abstract state aggregates a set of concrete states; given a single
abstract state, one cannot know which concrete state obtains, but each concrete
state is mapped to a unique abstract state. We consider abstract policies that are
memoryless and stochastic. We use the AbsProb-PI algorithm [17] to construct
such abstract policies in such a way that abstraction captures the main features
of the source task. A memoryless policy chooses actions only according to the
current observation of the system. No matter how smart the agent may be in
constructing the abstract policy from the source problems, a direct application of
an abstract policy in a new problem will almost certainly generate sub-optimal
behavior, so one must always mix actions prescribed by an abstract policy with
actions learned in the new, concrete task.

Our main contribution in this paper is to incorporate risk-awareness into the
abstract policy built from a source task, so that the agent can modulate her prior
experience by her preferences over risk, when learning features of a new target
task. Introducing explicit preferences over risk requires us to measure subjective
attitudes towards risk and to evaluate policies as risky or conservative [6,15]. A
decision maker can have three distinct attitudes towards risk: averse, neutral or
prone [6]. Relatively few activity in AT and Robotics addresses risk-awareness in
policy construction, despite the practical importance of this issue, possibly due
the difficulty in optimizing risk-aware measures. Liu and Koenig [11] consider
probabilistic planning with nonlinear utility functions. Delage and Mannor [4]
consider a relaxed version of minimax by defining probabilistic constraints on
minimal performance. Mannor and Tsitsiklis [13] consider a trade-off between ex-
pected and variance of accumulated rewards. In all of these approaches, optimal
policies are non-stationary in general.

We focus on robotic navigation problems modeled as Stochastic Shortest
Path (SSP) problems.

We show here that an SSP problem, modeled as an MDP using the infinite-
horizon discounted-reward criterion, can incorporate risk-awareness by varying
the discount factor [15]. We then apply the AbsProb-PI algorithm [17] in the con-
struction of memoryless stochastic abstract policies showing different attitudes
towards risk, as a consequence of different discount factors. We also propose
a strategy that balances between risk-neutral and risk-prone attitudes when
reusing abstract policies in a new target task. Our experiments show that at
the beginning of a new task, better results are obtained by using a risk-prone

Reusing risk-aware stochastic abstract policies 3

attitude, and as the execution of the task progresses, it is better to adopt a risk-
neutral attitude. Both risk-prone and risk-neutral attitudes are dominated by
the non-stationary policy that combines both attitudes in the new target task.
The remainder of this paper is structured as follows. Section 2 presents our
proposals for tuning the discount factor in order to incorporate risk-awareness.
Section 3 explains how to use relational representations in MDPs, describes the
AbsProb-PI algorithm and presents our approach to combine different risk-aware
policies. We present experimental results and analysis in the robotic navigation
domain in Section 4. Finally, in Section 5 we draw our final conclusions.

2 DModeling Risk Sensitivity in SSPs with Negative
Constant Rewards

In this section we formalize Markov Decision Processes (MDPs) and the Stochas-
tic Shortest Path (SSP) problem we use when modeling the robotic navigation
task. We will show that risk-awareness in this setting can be equated with the
choice of the discount factor used in evaluating the performance of an agent in
an MDP.

2.1 Markov Decision Process

For our purposes an MDP is a tuple (S, A, T,(+), 8,7(:)), where S is a finite set
of process states s; A is a finite set of possible actions a; T,, : S xS — [0,1] is a
conditional probability distribution over S given each state in S; 8 : S — [0, 1] is
an initial probability distribution; and r : § x A — R is a reward function [16].
An MDP starts at a state sg € S, selected with probability B(sg). If the process
is in state ¢ at time ¢ and action a is applied, then the next state is j with
probability T,(i,7) and a reward r(i,a) is received. In an MDP, a stationary
stochastic policy m: S x A — [0, 1] specifies the probability 7(s,a) of executing
action a in state s. We denote by A® the set of allowable actions in state s; that
is the support of m(s,-).

In this paper we wish to consider risk-aware decision profiles; to do so, we
introduce a utility function that encodes preferences over the value of histories.
We denote by u(R(h)) the utility of a history. The quality of a policy is measured
by its expected utility:

E[u(R(h))] =) P(h|m)u(R(h)). (1)
h

Clearly if u(x) = Az for some A > 0, we return to the usual E[R(h)] =
>, P(h|m)R(h). If instead u(z) = e=** (exponential utility), then:

E[u(R(h))] =) P(hlm)e 2 ") (2)
h

An optimal policy 7* is a policy that yields the highest expected utility [16].

4 V. F. Silva, M. L. Koga, F. G. Cozman, and A. H. R. Costa

2.2 Stochastic Shortest Path Problem

A special case of MDPs is the Stochastic Shortest Path (SSP) problem with a
unique goal state s € S that is an absorbing state, i.e. if r(sg,a) =0 Va € A
and T, (s¢, sg) = 1 Va € A,,,. Additionally, we assume that at each state except
s the reward function is negative and constant, and fixed at —1. Suppose the
decision maker wishes to minimize the number of steps to reach sg. In this case
each history h is summarized by its number of transitions |h|, because

R(h) = (147 +7"+---+4"71). (3)
Focus for a moment on v < 1. Then

1 — ~lhl

R(n) = "

= ae"M — q, (4)
where @« = 1/(1 —v) and = In~v. Note that n < 0, so this expression for
R(h) holds even if history h is infinitely long (we obtain R(h) = —«). In fact in
this case —a < R(h) < 0, hence E[R(h)] exists for every policy and is finite, a
well-known result.

Additionally, if v = 1, then R(h) = —|h/|; in this case a proof that E[R(h)]
is finite depends on further conditions [2]. In particular, say that a stationary
policy is proper if the probability that it reaches sg starting from any state s goes
to 1 as t goes to infinity: If the SSP is such that there exists a proper policy, and
any policy that is not proper yields infinite expected value over histories starting
at some state, then a finite E[R(h)] exists for some stationary policy.

In fact, with an additional assumption we can even consider values of 7y larger
than one. For each fixed policy 7, write down the Markov chain that is obtained
by fixing transition probabilities at 7. Now construct an auxiliary Markov chain
M, by removing all arcs from sq into itself, and adding arcs from s to each one
of the other states, associating each arc from sg to s with 5(s). We say the SSP
problem is recurrent if each M, (for each) defines a recurrent Markov chain
[20]. Recall that a finite Markov chain is recurrent if it is irreducible (any state
can reach any state with positive probability); and if a finite Markov chain is
recurrent, it is positive recurrent (the expected number of transitions to return
to a state is finite). If the SSP problem is positive recurrent, every policy is
proper. Moreover, Expression (4) holds for values of v larger than one, and a
finite E[R(h)] exists for some stationary policy.

2.3 Risk-awareness as ~ selection

Suppose our SSP problem has a proper policy, and every non-proper policy yields
infinite expected value over histories starting at some state.

We can interpret E[R(h)] for our SSP problem as the expected utility of
another SSP problem, with the same states, actions and transition probabilities,
but where v = 1, and an associated utility function u(-). That is, the original
SSP problem is not risk-aware and runs with some v < 1, while the associated

Reusing risk-aware stochastic abstract policies 5

SSP problem is risk-aware and runs with v = 1. We can do this because when
v =1, we have R(h) = —|h|, and we can then take the utility function:

u(z) = ae™™ — .

This device produces an expression analogue to Expression (4). So, the risk-
aware analysis with v = 1 and utility function u(-) yields the same results as our
original SSP without risk-awareness.

Consequently, we can interpret « in the original problem as an expression of
a risk-aware judgement on the part of the agent [15]. We note that there exist
other interpretations of ~; for instance, v may reflect the fact that the agent
focuses more intensely in close rewards; another interpretation is that - is the
probability of surviving one more time step [21].

Obviously, if the original problem already has v = 1, then the agent already
has a risk-neutral attitude. But if v < 1 in the original problem, we can say that
the agent has a risk-prone attitude.

Now suppose our SSP is recurrent. In this case the analyzes in the previous
paragraph holds even for values of - larger than one in the original problem. In
this case we obtain 77 > 0 and the utility function reflects a risk-averse behavior.

3 Risk-Sensitive Abstract Policies

We can now use the proposed interpretation of the discount factor v to model
different attitudes toward risk of an agent aimed at solving an SSP. As stated
earlier, SSP is a special case of MDP; so we can use any algorithm that solves
MDPs to solve our SSP problem. For each solution, we can tune the agent’s
attitude towards risk by varying v . However, our interest is not only in tuning
the agent’s attitude toward risk, but also in abstracting the solution so that this
abstract solution can be reused in other new problems.

3.1 Relational Representations and Abstraction

Let us introduce some definitions first. C is a set of constants, Pg is a set of state
predicates and Py is a set of action predicates. If t1,...,t, are terms, each one
being a constant (represented with lower-case letters) or a variable (represented
with capital letters), and if p/n is a predicate symbol, p € Pg (or p € Pa),
with arity n > 0, then p(t1,...,t,) is an atom. If an atom does not contain
any variable, it is called a ground atom. We call a set of atoms a conjunction.
The state set S of a relational MDP is defined as the set of possible ground
conjunctions over Pg and C, and the action set A is the set of possible ground
atoms over P4 and C (for more details, please refer to [14,7]).

When § and A in a relational MDP are ground sets, we call this a concrete
MDP. Note that a relational representation enables us to aggregate states and
actions by using variables instead of constants in the predicate terms. A sub-
stitution 6 is a set {X1/t1,...,Xn/ts}, binding each variable X; to a term t;.

6 V. F. Silva, M. L. Koga, F. G. Cozman, and A. H. R. Costa

We call abstract state o (and abstract action «) the representation in which
all the constants of a ground state s (and a ground action a) are replaced by
variables. In this work we consider only the level of abstraction that preserves
every predicade in the conjunction without any constants in the terms. We de-
note by S, the set of ground states covered by an abstract state ¢. Similarly
we define A, as the set of all ground actions covered by an abstract action .
We also define Sy, and A, as the set of all abstract states and the set of all
abstract actions in a relational representation of an MDP, respectively. Consider
an abstract state o = {p1(X1),p2(X1,X2)}, 0 € Sap; a ground state s; € S,
s1 = {p1(t1),p2(t1,%2)} is abstracted by o with 8 = {X;/t1,X2/t2} and a ground
state so € S, s2 = {p1(t3),p2(ts, t4)} is abstracted by o with 6 = {X1/t3,X2/t4}.
In this case o represents an abstraction of both s; and s5, and s1,s9 € S,.

An abstract policy 7w, specifies a mapping from abstract states into abstract
actions: map @ Sap X Aap — [0,1]. The challenge is to apply an abstract policy
in a concrete problem: we must provide a way to translate from the concrete to
the abstract level, and vice-versa. Problems that can use the same predicates to
describe its states and actions are in the same domain class; that is, problems
that have the same spaces of abstract states Sy, and abstract actions A, are
in the same domain class. When the set of objects and a transition function
are added, we specifie a domain D. It describes the dynamics of the world and
also the number of states and actions are now fixed. Finally, a task (2 is a
tuple (D,r,G, 3), where D is a domain, r is the reward function, G is the set
of goal states, that indicates which states of the domain are desirable and S is
the probability distribution over initial states. A task fully describes an MDP.
Furthermore, in this work we focus on the transfer learning among different tasks
within the same domain class.

Now we can explain how to use an abstract policy in a concrete MDP. Assume
a stochastic abstract policy 7, is given. For a ground state s we find the corre-
sponding abstract state o so that s € S,, i.e., £5(s) = 0. The current stochastic
abstract policy 7, defines a probability distribution over abstract actions Agp
to be applied in the abstract state o € S,. We then choose probabilistically the
abstract action a € A, to be executed in o. Note that an abstract action «
defines A,; thus, applying the abstract policy ., results in the mapping from
an abstract state into a set of ground actions. To produce a particular ground
action, we define &, : A, — A. Here we define &, as a function that randomly
selects (with uniform probability) a concrete action a from the set of concrete
actions A, N A%, which combines A, with the set A® of allowable actions in
state s € S. Obviously, other schemes may be used to produce a concrete ac-
tion a. This whole process yields the grounding of a stochastic abstract policy
Tap(€s(s),), denoted by a = grounding, , (a,s).

3.2 Solving MDPs with AbsProb-PI

The task of the agent in an MDP is to find a policy. In a concrete fully-observable
MDP, the set of deterministic memoryless policies, 7 : S — A, contains an
optimal policy [16,10]. When considering abstract states and actions, stochastic

Reusing risk-aware stochastic abstract policies 7

policies are appropriate, because as they are more flexible by offering more than
one choice of action per state, they can be arbitrarily better than deterministic
policies [18,17]. We define a memoryless stochastic abstract policy as map : Sap X
Aoy = [0,1], with P(alo) = map(0, @), 0 € Sap, @ € Agp.

AbsProb-PI [17] is an algorithm that, given an MDP, uses cumulative dis-
counted reward evaluation to build an abstract policy. It is a model-based algo-
rithm, i.e., it requires prior knowledge of the whole model, including transition
and reward functions. AbsProb-PI is a Policy Iteration algorithm, designed to
perform in an abstract level. At each iteration, a gradient function G is used to
determine the improvement direction of the current policy. As the abstract state
space S, does not necessarily hold the Markov property, AbsProb-PI considers
the initial state distribution $(sp). Two parameters must be defined: ¢ > 0 which
guarantees that the policy converges at most to an e-greedy policy; and p(i), the
step size used in the gradient descent method for each iteration 7. We refer to
[17] for a thorough presentation of AbsProb-PI.

The use of a relational representation enables us to generalize experiences
and to define abstract policies, making it easier to transfer knowledge between
tasks in different domains. Abstract policies can effectively be used in new similar
problems, or even be used to accelerate reinforcement learning [14,7], as we show
in Section 4.

3.3 Transferring Risk-Aware Abstract Policies

To achieve transfer learning, we first need to decide which policy will be trans-
ferred. Policies found using different risk attitudes result in different perfor-
mances (i.e., history size) of the agent. Figure 1 shows the probability as a
function of history size |h| (number of steps to reach goal) given discount factors
v = 1.0 and v = 0.9 for several tasks (i.e., several goal states) on the navi-
gation environment shown in Figure 2-left (see section 4 for the environment
description). This figure shows that: () if v is small (risk-prone attitude) there
is a high probability for short histories, but also high probabilities for very long
histories (histories with || > 200 steps accumulate almost half of the histories);
and (i) if v is large (risk-neutral attitude) there is a medium probability for
short histories, but also low probability for very long histories (histories with
|h| > 200 steps happen with probability lower than 0.02).

We have options: we can transfer a risk-prone policy mgrp (found with dis-
count factor ypp), or a risk-neutral policy mry (found with yry, with yrp <
vrn). Under mrp there are higher probabilities for short histories, whereas un-
der gy there are lower probabilities for longer histories. Our strategy is to
combine both. It starts by applying mrp, and then changes to mzy as time goes
on. The transition between policies is done linearly with time, i.e., let 74 ¢ be
the abstract policy applied at time step ¢, then the non-stationary policy 7l ¢
is defined by:

mhs(o,a) = (1 — ut))mrp(0, @) + u(t)TrN (0, a) Yo € Sup, Yo € Ay,
with z(¢) = min {-,1}.

8 V. F. Silva, M. L. Koga, F. G. Cozman, and A. H. R. Costa

Stationary Policy vs Non-Stationary Policy (source tasks)
1 T T T

0.9]
0.8]
_E 0.7f]
2
S 0.6F
4
[a]
o 05r 1
=
2 04t —&— gamma = 1.00 1
E —o&— gamma = 0.90
O 0.3F —— threshold = 25)
—+— threshold = 50
0.2 threshold = 100)
0.1p]
] . : :
0 50 100 150 200

Number of Steps

Fig. 1: Probability of success versus history size of stationary policies found with
different ~ values and non-stationary policies with different threshold values.

The parameter thr is such that mgy is fully applied for ¢ > thr. Figure 1
also shows the performance of such strategy under different values of thr; our
strategy is applied on source tasks, in which the policies mrp and wry were
found. If threshold parameter thr is well tuned, the non-stationary policy wyg
shows a better balance between short histories and long histories.

Now that we have a policy to transfer, we have to reuse this policy when
learning a new task. This policy is used preferably to guide the exploration of
the space state. Obviously, other approaches can be used.

4 Experiments

We conducted experiments to evaluate our proposal; that is, to find and use
a risk-aware abstract policy in inter-task transfer applications. All experiments
were made on a simulated robotic navigation domain, described below.

Navigation Domain Class

We use a robotic navigation domain class, in which the task of the agent is
to navigate through an environment to reach a specific location. The space is
divided in several cells of equal size, each representing a single state. Besides,
the results of actions are probabilistic: if the agent performs a movement action,
there is a probability p (we use p = 0.9) that it succeeds (and thus changes
state), while it does not move with probability 1 — p. Figure 2 shows instances
of this domain.

Reusing risk-aware stochastic abstract policies 9

| 1 [z 3 4 [rs 15 [« [s 19 Jrio
3 3 3 2 3 k4
un = = — a5 I ar | as P —I— | a11 I
a

&
— &P — w— [r11

ds

— a13 a16 —

113 (14 [r1s

115
116 117 [r1s 119

r4

01—

e q2s—d

d4

— i — 60 —

— d24 ——— d25 a27 a28 d30 —
23 r24 r25 |r,16 127 28 r29 r30 r31
c - £ ‘ T |§

9P

35 —

r32 [r34

L 36 ——— a3t
=
@
P

I~
| =

— d3

—d37

o
1

Fig. 2: The robotic navigation domain class. Left: an environment with 11 rooms
(source domain). Right: an environment with 34 rooms (target domain).

There are four types of objects the agent can recognize: rooms, doors, markers
and corridors. Additionally, it has a positioning system as well, being able to tell
if it is near or far from the goal location. Therefore, we describe each ground state
and action using the relational alphabet C'U PgU Py4. C' is the set of objects. Pg
describes predicates related to observations, Ps = {inRoom(R), inCorridor(C),
seeDoorFar(D), seeAdjRoom(D), seeAdjCorridor(D), seeEmptySpace(M),
nearGoal, farGoal, appGoal(X), awayGoal(X)}, where R is a room, C is a
corridor, M is a marker, D is a door and X is any object. The range of vision of
the robot is of one cell for markers, but it can perceive doors that are two cells
distant. The predicate seeDoorFar means that the robot can see a door, but it
is at least two cells distant, whereas seeAdjRoom(D) and seeAdjCorridor(D)
indicate that the robot is so close to that door (one cell distant) that it can even
see what lies through it (if it is a room or a corridor). seeEmptySpace(M) means
that the robot sees a free space with a marker, where it could move to. nearGoal
is true if the robot is at a close distance to the goal, i.e., at a Manhattan distance
to the goal smaller than 5 and farGoal is true if the robot is at a far distance
from the goal, i.e., at a Manhattan distance to the goal bigger than 8. There
are indications of two possible directions: appGoal(X) (approaching goal) or
awayGoal(X) (moving away from the goal) and these predicates indicates that
the object X is closer or farther than the goal in relation to the agent.

All actions the agent can take moves the agent toward an object, with a
step of one cell (unless it stays in the same state due to environment dynamics).
Agent also has to consider whether it is approaching the goal or moving away
from it. That being said, the predicates for actions are:

P4 = { goToDoorAppGoal(di), goToDoorAwayGoal(di),
goToRoomAppGoal(ri), goToRoomAwayGoal(ri),
goToCorridorAppGoal(ci), goToCorridorAwayGoal(ci),
goToEmptyAppGoal(mi), goToEmptyAwayGoal(msi)}.

10 V. F. Silva, M. L. Koga, F. G. Cozman, and A. H. R. Costa

Each task has a unique goal state (G = {s¢}), which in our experiments is
always the cell in the center of a room. The experiments conditions and their
results are discussed in the next section.

Results

We use two domains in our experiments, both of which are represented in Fig-
ure 2. The first one, the source domain, contains 11 rooms and the center of
all of them is used as the goal state for a task, resulting in a total of 11 tasks.
The second one, the target domain, contains 34 rooms, and similarly, 34 tasks.
Considering all 11 tasks together in the source domain, the agent groups them
as a single big task and then uses AbsProb-PI with v = 0.9 and v = 1.0 to find,
respectively, abstract policies mrp and mwry. Parameters used in AbsProb-PI
were: p(i) = ﬁ, e = 0.05, initial state distribution is uniform for all states,
and stop criterion after 500 iterations. With these two learned policies at hand, a
non-stationary policy myg is also created after setting thr = 50. To assess if the
non-stationary policy performs better than policies mgp and mrx When applying
in different tasks (transfer), we execute them in each task of the target domain,
one at a time. Figure 3-left shows the probability of success versus histories size
|h| when applying these three policies. We also compare against random policy
Trand @S a reference point.

Q-Learning with Different Exploration Strategies

Stationary Policy vs Non-Stationary Policy (target tasks)
T T T -400

4
™

o
3

-500

o
o

<7 o—0—6—6—6—6—6—6—6—6—6—0—0—4 ool

o
@

—&— gamma = 1.00 -700+

—&— gamma = 0.90

Policy Value

Non-Stationary Policy
— — — Risk-Neutral Policy

threshold = 50 i
—— random 800}

o
w

Cumulative Dristribution
o
=

Risk-Prone Policy
Random Policy

o
N

-900 -

o
s

L L L ~1000 L L
0 50 100 150 200 0 500 1000 1500

Number of Steps Number of Episodes

Fig. 3: Left: Cumulative probability distribution over history size of mrp, TrN
and 7yg. Right: Transfer learning with the combined policy 7myg compared to
learning reusing 7rp, Try and Trandom-

One can notice that the non-stationary policy indeed explores the best of the
two stationary policies and all of them are substantially better than the random
policy.

We now evaluate the effectiveness of transfer learning when using risk-prone,
risk-neutral, non-stationary, and random policies. On each of the 34 tasks in the
target domain, an agent learns a policy using the Q-Learning algorithm with an

Reusing risk-aware stochastic abstract policies 11

e-greedy exploitation/exploration strategy. We always use the transferred policy
in the exploration phase. We used the random policy in the exploration phase
as traditionally is done in the e-greedy strategy and compared the results when
replacing it by a past abstract policy (trp, Try or mns). It is worth mentioning
that the abstract policies are also stochastic and all actions have a minimum
probability of €, hence exploration is guaranteed. We set learning rate to 0.05 for
the Q-Learning algorithm, € = 0.1 and v = 0.999. Each episode has maximum
number of steps 1,000 and learning was done for 15,000 episodes; each task in
the target domain was learned 5 times.

Results for transfer learning are shown on Figure 3-right that plots the cur-
rent policy value versus the number of steps. We observe that the non-stationary
policy outperforms all of them.

5 Conclusions

In this paper we have proposed algorithms for a risk-aware robot that must
transfer abstract policies from already solved tasks to new tasks. Our abstract
policies employ relational representations, and our policies are memoryless, hence
compact, and stochastic. We have derived the necessary algorithms, and our
experiments demonstrate that our methods are effective in navigation problems.

We have presented a formulation of risk-aware SSP problems (with constant
negative reward and unique goal state) that reduces risk-awareness to vy-tuning;
our analysis is novel in that it justifies even values of - that are larger than one.
We then used these insights to combine abstract policies learned by the AbsProb-
PI algorithm. This algorithm generates policies under the infinite-horizon dis-
counted criterion; by appropriately changing v, we obtain risk-aware behavior
out of AbsProb-PI. We have proposed a method that combines linearly the
various abstract policies generated by AbsProb-PI, emphasizing a risk-prone be-
havior in the first stages of learning, and a risk-neutral behavior in latter stages.
The resulting combined policy is not only stochastic, but also non-stationary.
Our experiments have focused on a robot in indoor navigation, and have shown
that a robot that mixes the combined policy with learning in a new task does
have an advantage over a robot learning from scratch a new policy in the new
task.

Our contributions are both an extended interpretations for y-tuning as risk-
awareness, and a method that employs risk-awareness in transfer learning. It is
necessary still to better understand the risk-averse behavior that obtains when
v > 1 is employed; we plan to focus on this development in the future.

References

1. Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: Proc.
of the twentieth Int. Jt. Conf. on Artif. Intell. pp. 672-677. AAAI Press (2007)

2. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. of Oper. Res. 16(3), 580-595 (1991)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

V. F. Silva, M. L. Koga, F. G. Cozman, and A. H. R. Costa

Bianchi, R., Ribeiro, C., Costa, A.: Accelerating autonomous learning by using
heuristic selection of actions. J. of Heuristics 14, 135-168 (2008)

Delage, E., Mannor, S.: Percentile optimization for markov decision processes with
parameter uncertainty. Oper. Res. 58(1), 203—213 (2010)

Fernandez, F., Garcia, J., Veloso, M.: Probabilistic Policy Reuse for inter-task
transfer learning. Robotics and Auton. Syst. 58(7), 866-871 (Jul 2010)

Howard, R.A., Matheson, J.E.: Risk-sensitive markov decision processes. Manage-
ment Science 18(7), 356-369 (1972)

Koga, M.L., Silva, V.F., Costa, A.H.R.: Speeding-up reinforcement learning tasks
through abstraction and transfer learning. In: Proc. of the twelfth Int. Jt. Conf.
on Auton. Agents and Multiagent Syst. (AAMAS ’13). pp. 119-126 (2013)
Konidaris, G., Scheidwasser, 1., Barto, A.: Transfer in reinforcement learning via
shared features. J. of Mach. Learn. Res. 13, 1333-1371 (2012)

Li, L., Walsh, T.J., Littman, M.L.: Towards a Unified Theory of State Abstraction
for MDPs. In: Proc. of the ninth Int. Sympos. on Artif. Intell. and Math. pp.
531-539. ISAIM (2006)

Littman, M.L.: Memoryless policies: theoretical limitations and practical results.
In: Proc. of the third Int. Conf. on Simul. of Adapt. Behav.: from animals to
animats 3. pp. 238-245. MIT Press, Brighton (1994)

Liu, Y., Koenig, S.: Probabilistic planning with nonlinear utility functions. In:
ICAPS. pp. 410-413 (2006)

Liu, Y., Stone, P.: Value-function-based transfer for reinforcement learning using
structure mapping. In: Proc. of the twenty-first Natl. Conf. on Artif. Intell. pp.
415-420. AAAI Press (2006)

Mannor, S., Tsitsiklis, J.: Mean-variance optimization in markov decision processes.
In: Proc. of the twenty-eighth Intl. Conf. on Mach. Learn. (ICML ’11). pp. 177-184.
ACM (2011)

Matos, T., Bergamo, Y.P., Silva, V.F., Cozman, F.G., Costa, A.H.R.: Simultaneous
Abstract and Concrete Reinforcement Learning. In: Proc. of the ninth Symp. of
Abstr., Reformul., and Approx. (SARA’11). pp. 82-89. AAAI Press (2011)
Minami, R., da Silva, V.F.: Shortest stochastic path with risk sensitive evaluation.
In: Proc. of the eleventh Mexican Int. Conf. on Artif. Intell. (MICAT’12). pp. 370-
381. Springer (2012)

Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc. (1994)

Silva, V.F., Pereira, F.A., Costa, A.H.R.: Finding memoryless probabilistic rela-
tional policies for inter-task reuse. In: Proc. of the fourteenth Int. Conf. on Inf.
Process. and Manag. of Uncertain. (IPMU’12). Communications in Computer and
Information Science, vol. 298, pp. 107-116. Springer (2012)

Singh, S.P., Jaakkola, T., Jordan, M.I.: Learning without state-estimation in par-
tially observable markovian decision processes. In: Proc. of the eleventh Int. Conf.
on Mach. Learn. (ICML ’94). vol. 31, p. 37. Morgan Kaufmann (1994)

Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for
temporal difference learning. J. of Mach. Learn. Res. 8(1), 2125-2167 (2007)
Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer
(2003)

Whittle, P.: Why discount? the rationale of discounting in optimisation problems.
In: Heyde, C., Prohorov, Y., Pyke, R., Rachev, S. (eds.) Athens Conference on
Applied Probability and Time Series Analysis, Lecture Notes in Statistics, vol.
114, pp. 354-360. Springer New York (1996)

