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The identification of the most influential spreaders in networks is important to control and understand the
spreading capabilities of the system as well as to ensure an efficient information diffusion such as in rumorlike
dynamics. Recent works have suggested that the identification of influential spreaders is not independent of the
dynamics being studied. For instance, the key disease spreaders might not necessarily be so important when it
comes to analyzing social contagion or rumor propagation. Additionally, it has been shown that different metrics
(degree, coreness, etc.) might identify different influential nodes even for the same dynamical processes with
diverse degrees of accuracy. In this paper, we investigate how nine centrality measures correlate with the disease
and rumor spreading capabilities of the nodes in different synthetic and real-world (both spatial and nonspatial)
networks. We also propose a generalization of the random walk accessibility as a new centrality measure and
derive analytical expressions for the latter measure for simple network configurations. Our results show that for
nonspatial networks, the k-core and degree centralities are the most correlated to epidemic spreading, whereas the
average neighborhood degree, the closeness centrality, and accessibility are the most related to rumor dynamics.
On the contrary, for spatial networks, the accessibility measure outperforms the rest of the centrality metrics
in almost all cases regardless of the kind of dynamics considered. Therefore, an important consequence of our
analysis is that previous studies performed in synthetic random networks cannot be generalized to the case of
spatial networks.

DOI: 10.1103/PhysRevE.90.032812 PACS number(s): 89.75.Hc, 89.75.Kd

I. INTRODUCTION

Spreading phenomena are ubiquitous in nature [1,2].
Rumors and viruses spread from person to person, worms con-
taminate computers worldwide, and innovations are diffused
from place to place. The advent of new technology and modern
transportation means has led to radical changes of classical
transmission channels, making, in many cases, natural and
humanmade systems more prone to contagion processes. On
the other hand, new tools have been developed to study
such phenomena, for instance, by explicitly dealing with the
topology and dynamics of so-called complex networks, which
are nothing but the backbone on top of which information and
diseases propagate [3,4].

Networks are composed of nodes, which represent the
elements of the system, and edges, which define the possible
interaction patterns among nodes [5,6]. A large body of recent
studies has verified that the way in which such nodes are
organized plays a fundamental role in spreading processes
[6,7]. For instance, Pastor-Satorras and Vespignani showed
that a disease outbreak takes place when the spreading rate,
β, is larger than the epidemic threshold [8], i.e., if β >

*francisco@icmc.usp.br

βc = 〈k〉/〈k2〉, where 〈km〉 is the m-th moment of the degree
distribution. Therefore, most scale-free networks (those for
which the degree distribution follows a power law P (k) ∼ k−γ

with γ < 3) are particularly prone to the spreading of diseases,
since βc → 0 when N → ∞. Additional network properties,
such as assortativity [9,10] or modular organization [11], also
play a fundamental role in disease spreading.

One of the most interesting challenges in network science
is to understand the relation between the structure of the
system and its emergent dynamical properties. This is why
finding determinant structural factors is important, as a better
knowledge would allow controlling the function of the system,
which for the scope of this paper, means determining what
network properties are more closely related to information
and viruses diffusion. In particular, we will focus our attention
in one topological feature: centrality. Since the most central
nodes can diffuse their influence to the whole network faster
than the rest of nodes, it is expected that such agents are
the most influential spreaders. Recently, Kitsak et al. [12]
found evidence that confirmed this hypothesis for the case
of epidemic outbreaks. The authors verified that the most
influential spreaders can be forecasted from the k-shell de-
composition analysis. Such agents are located within the core
of the network and do not need to be the most connected. Silva
et al. [13] explored the correlations between heterogeneous
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spread and central attributes of the vertices that were first
seeded with a disease, finding that degree and accessibility
are measures mostly related to the efficient spread of the
disease. On the other hand, Borge-Holthoefer and Moreno
[14] showed that, for standard rumor models, it is not possible
to identify the most influential spreaders using the same
metrics.

Although many works have provided evidence for the
presence of influential spreaders in epidemic spreading, the
conclusions are not general. Indeed, there is no general
consensus on the definition of network “centrality,” because
there are many measures able to quantify the centrality of
a node, each one considering specific concepts [4]. For
instance, the betweenness and closeness centrality take into
account only the shortest distance between pairs of nodes
[4,6], ignoring alternative paths. At the same time, the k-core
decomposition may eliminate important sets of vertices, which
can be connected to the main core through nodes with a
small number of links [15]. Thus, to overcome such a lack
of a universal definition of node centrality, it is necessary
to look at additional measures. In this paper, we study the
problem of the identification of influential spreaders using
eight centrality measures in order to complement previous
studies [12,14]. Moreover, we introduce a new metric, the
generalized accessibility, as a centrality measure that is based
on random walks. We observe that in social and scale-free
networks, the accessibility, average neighborhood degree, and
closeness centrality are the measures most related to rumor
spreading. Other measures, such as the k-core and degree,
correlate well only with epidemic spreading in social networks,
as found previously in Refs. [12,14].

Another important result is related to the kinds of networks
studied in this work. Despite the fact that many diffusion
processes take place on spatially embedded networks [16],
previous studies have disregarded spatial networks [12–14].
These networks have several topological constraints that
greatly influence the way that connections are established,
and thus, one expects an impact in network centrality metrics
and, consequently, on the spreading dynamics. In this paper,
we intend to fill this gap by exploring the role of centrality
measures in predicting the spreading capabilities of nodes of
spatial networks. Specifically, we consider both real networks
(road networks of four countries) and artificial spatial networks
with exponential and power-law degree distributions and find
that correlations between spreading capacity and centrality
measures in spatial networks differs significantly from those
observed in nonspatial networks.

This paper is organized as follows. Section II presents
the centrality measures considered in our investigations. The
generalized random walk accessibility is introduced in Sec.
III. The analytical expressions for complete graphs, stars,
and rings are also evaluated in this section. Concepts of
epidemic and rumor spreading are discussed in Sec. IV and
the databases are described in Sec. V. The analysis of spatial
networks is outlined in Sec.VII, where it is shown that the
accessibility is strongly correlated to the node capacity for
rumor and epidemic spreading. Section VIII presents the
analysis of nonspatial networks, which complements the inves-
tigations in Refs. [12,14]. Our final conclusions are developed
in Sec. IX.

II. CENTRALITY MEASURES

As mentioned before, one can in principle consider several
metrics to define the centrality of a node [4]. For completeness,
here we provide the basic definitions of those that will be used
in the rest of the paper. For more details, we refer the reader
to the literature cited.

a. Connectivity-based centrality measures. The most basic
definition of centrality takes into account the number of
connections of a node i, called node degree, ki . In this case,
the most central node has the largest number of connections.
Alternatively, the centrality of a vertex can be defined in terms
of the degree of its second neighbors, since strongly connected
vertices can surround a central node. In this case, the average
degree of the nearest neighbors of i is defined as

ri = 1

ki

∑
j∈ν(i)

kj , (1)

where ν(i) is the set of nodes connected to i. It has been verified
that the average neighborhood degree is related to epidemic
spreading in networks [3].

b. Eigenvector centrality. It considers that the centrality of
each node is the sum of the centrality values of the nodes
that it is connected to. The eigenvector centrality is defined
by the eigenvector associated to the largest eigenvalue of the
adjacency matrix A. Formally,

xi = κ−1
∑

j

Aij xj , (2)

or, in the matrix form, Ax = κx, where x is the right leading
eigenvector [4] and κ is the largest eigenvalue.

c. Distance-based centrality metrics. Centrality can also be
established in terms of the shortest distances between pairs
of nodes, since the more central a node is, the lower its total
distance to all other nodes is. The closeness centrality of i is
defined as [4]

Ci = N∑N
j=1,j �=i dij

, (3)

where dij is the shortest distance between nodes i and j , and
N is the number of nodes in the network.

Alternatively, the effective load of a node can also be
considered as a centrality measure. Betweenness centrality
quantifies the load as the number of times a node acts as a
bridge along the shortest path between two other nodes [17].
Thus, for a node i,

Bi =
∑
(a,b)

σ (a,i,b)

σ (a,b)
, (4)

where σ (a,i,b) is the number of shortest paths connecting
vertices a and b that pass through vertex i and σ (a,b) is the
total number of shortest paths between a and b. The sum is
over all pairs (a,b) of distinct vertices. In this case, a central
node is crossed by many paths and shows the highest value of
Bi .

d. Clustering. The clustering coefficient quantifies the
occurrence of triangles in the networks. It is defined as [6]

cc(i) = N	(i)

N3(i)
, (5)
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where N	(i) is the number of triangles involving the node i and
N3(i) is the number of triples centered around i. cc(i) can be
also understood as a centrality measure in the sense that if two
nodes are connected only via the node i, this node can control
the information flow [4]. Thus, the clustering coefficient could
be thought off as a local version of the betweenness centrality.
Note that cc(i) takes smaller values for more central nodes, in
opposite to the other centrality measures.

e. Coreness. The k-shell decomposition partitions a network
into substructures and assigns an integer index to each node
i, kc(i), in such a way that kc(i) = k if i belongs to the k-
core, but it is not in the (k + 1)-core [15]. Nodes with low
values of kc are located at the periphery of the network. This
measure was adopted recently to detect influential spreaders in
networks [12]. The most central nodes should have the highest
values of coreness, whereas high-degree nodes localized in the
periphery of networks should display small values of coreness
[12]. Therefore, only hubs at the main core of networks present
the highest values of kc.

f. Random-walk based centrality measures. The number of
visits that a given node receives when an agent travels through
the network without a preferential route can also be taken into
account to quantify the node centrality. In this case, a possible
measure is the Google PageRank [18]. PageRank is calculated
as

πT = πT G, (6)

where G is the Google matrix, i.e.,

G = κ

(
P + aeT

N

)
+ (1 − κ)

N
eeT , (7)

and a is the binary vector called dangling node vector (ai is
equal to 1 if i is a dangling node and 0 otherwise), e is a vector
of ones of length N , and P is the transition probability matrix
of the respective network [P (i,j ) = 1∑

j Aij
, where Aij are the

elements of the adjacency matrix]. The original version of the
algorithm considers κ = 0.85 [18]. The PageRank of a node
i, πi , is given by the i-th entry of the dominant eigenvector
π of G, given that

∑
i πi = 1. πi can be understood as the

probability of arriving at the node i after a large number of
steps following a random walk navigation through the network.

III. GENERALIZED RANDOM WALK ACCESSIBILITY

The accessibility is related to the diversity of access of
individual nodes through random walks [19]. This measure
has been considered for identification of the border of complex
networks [20]. Let P (h)(i,j ) be the probability of reaching node
j by performing random walks of length h departing from i.
The accessibility of the node i for a given distance h is defined
by the exponential of the Shannon entropy [19], i.e.,

αh(i) = exp

⎛
⎝−

∑
j

P (h)(i,j ) log P (h)(i,j )

⎞
⎠ , (8)

where 1 � αh(i) � N . The maximum value corresponds to the
case in which all nodes are reached with the same probability
1/N . Note that this metric was defined in a multilevel
fashion, depending on the parameter h that defines the scale

of the dynamics [19,20]. In addition, though here we will
be constrained to random walks, virtually any other type of
dynamics yielding transition probabilities between adjacent
nodes can be considered in the accessibility, which makes this
measurement adaptable to the dynamics of each problem being
studied.

In order to generalize the accessibility, here we introduce
a new version of this metric, which is based on the matrix
exponential operation [22]. This matrix enables the calculus
of the probability of transition considering walks of all lengths
between any pair of vertices. In this way, if P is the transition
matrix, the exponential of P is defined as

W =
∞∑

k=0

1

k!
P k = eP . (9)

The matrix W is based on a modified random walk, which
penalizes longer paths. To construct such stochastic process
we consider an usual random walk (Xn)n�0, where Xn

represents the node visited by the agent at time n. We take a
collection of independent and identically distributed uniform
random variables in the interval (0,1), i.e., {U1,U2, . . .}, which
represents a kind of “fitness” associated to each step of the
walk. Also, we assume independence between the collection
of uniform random variables and the random walk. This
modified random walk, which we call accessibility random
walk (ARW) in the rest of the paper, considers walks through
the network such that all associated fitnesses along a trajectory
are in ascending order. We say that node j is visited by the
ARW, at time n, if Xn = j and U1 < U2 < U3 < · · · < Un.
We denote by (X̃n)n�0 the new process and note that {X̃n = j}
implies {Xn = j}, but the opposite is not necessarily true. A
quantity of interest is the number of visits that a given node j

receives when an agent travels through the network according
to the ARW. This quantity can be written as

∑∞
n=1 I{X̃n=j},

where IA is the indicator function of the event A. We are
interested in the mean of this value by assuming that the agent
starts from node i, i.e.,

∑∞
n=1 E(I{X̃n=j}|X̃0 = i). In order to

compute this value we observe that the term of the sum is
the probability P (X̃n = j |X̃0 = i) which, by our definition,
is equal to P ({Xn = j} ∩ {U1 < U2 < U3 < · · · < Un}|X0 =
i). This probability is exactly (1/n!)P (n)(i,j ), where P (n)(i,j )
is the probability of transition from i to j through walks of
length n. Therefore, the matrix W considered in Eq. (9) is
a matrix of mean values associated to the ARW. The element
W(i,j ) provides the mean number of visits that node j receives
when the agent starts at node i and follows the ARW.

The probability of transition between any pair of vertices
through ARW is given by

P = W
e

. (10)

Note that the matrix W weights all walks by the inverse of the
factorial of their lengths. Therefore, this definition penalizes
longer walks, i.e., the shortest walks receive more weight than
the longest ones. We define the generalized expression for the
accessibility as

α(i) = exp

⎛
⎝−

∑
j

P(i,j ) log P(i,j )

⎞
⎠ , (11)
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FIG. 1. (Color online) Illustration of the concept of the accessi-
bility [values calculated from Eq. (11)] in the Zachary karate club
network [21]. Nodes at the center of the network present the highest
accessibility.

which we call generalized random walk accessibility.
Figure 1 illustrates this measure.

We note that the exponential matrix is also considered in
the definition of the communicability [23,24]. The difference
is that the accessibility is based on the concept of diver-
sity [25,26], whereas the communicability is associated to the
communication between any pair of vertices [24]. Moreover,
the former is related to the probability transition matrix,
whereas the latter on the adjacency matrix. In this way, there
is no trivial relation between these two measures in irregular
graphs.

Let us provide in what follows some exact expression for the
metric just introduced. Although the graphs considered below

are not representatives of real-world networks, the analysis
helps understanding what can be learned from the new
metric. In addition, there are structures that already capture
some important features of real networks, such as the star
graph, which is an extreme example of an heterogeneous
configuration, but that have provided insightful hints about
the dynamics under study in other cases [27,28].

A. Accessibility in star graphs

For a star graph, the probability of transition between the
central node i and any of the k leaves considering an ARW is
given by [see Eqs. (9) and (10)]

P(i,j ) = 1

ek

∞∑
n=0

1

(2n + 1)!
= 1

ek
sinh(1), i �= j, (12)

and between the leaves and central node i,

P(j,i) = sinh(1)

e
. (13)

In addition,

P(i,i) = cosh(1)

e
. (14)

The probability of transition between leaves j and l is given
by

P(j,l) = 1

ek
[cosh(1) − 1], (15)

and for l = j ,

P(j,j ) = 1

e
+ 1

ek
[cosh(1) − 1], (16)

Therefore, the general form of the exponential matrix, consid-
ering the node number 1 as the hub of the star graph, is given
as

P = 1

e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh(1) 1
k

sinh(1) · · · · · · 1
k

sinh(1)

sinh(1) 1 + 1
k
[cosh(1) − 1] 1

k
[cosh(1) − 1] · · · 1

k
[cosh(1) − 1]

... 1
k
[cosh(1) − 1]

. . .
...

...
...

. . . 1
k
[cosh(1) − 1]

sinh(1) 1
k
[cosh(1) − 1] · · · 1

k
[cosh(1) − 1] 1 + 1

k
[cosh(1) − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

In this way, since k = N − 1, the accessibility of the hub i

is

α(i) = exp

[
−x log(x) − y log

(
y

N − 1

)]
, (18)

where x = cosh(1)
e

and y = sinh(1)
e

. For any leaf j connected
with i,

α(j ) = exp[−x log(x) + (N − 2)y log(y)

+ (1/e + y) log(1/e + y)], (19)

where x = sinh(1)
e

, y = (cosh(1)−1)
e(N−1) .

We show in Fig. 2 the results obtained for the accessibility
on top of different networks and configurations. As it can be

seen, Eq. (18) can be considered to be a good predictor of
the accessibility of the hubs in scale-free networks. However,
as expected from the fact that the star graph does not capture
any topological aspect of homogeneous networks, the star-
graph approximation is not accurate for random Erdös-Rényi
networks.

1. Eigendecomposition analysis

The exact values of accessibility in star graphs can also
be calculated by the eigen-decomposition analysis of P . The
exponential matrix, Eq. (9), can be obtained as

W = eP = VDV−1, (20)
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FIG. 2. (Color online) Accessibility calculated in star [from
Eqs. (18) and (19)], complete, ring, and line graphs (extreme nodes)
compared to the maximum value obtained in Erdös-Rényi (ER)
random graphs, scale-free networks of Barabási-Albert (BA), and
spatial scale-free networks (SSF). N is the network size. For complex
networks, each point is an average over 50 networks with 〈k〉 ≈ 4.

where V is a matrix whose columns are the eigenvectors of
the matrix W and D is a matrix whose diagonal presents the
exponential of each eigenvalue of P ,

(P − λI) v = 0, (21)

where P is the transition matrix, λ is its eigenvalue, and v is
the associated eigenvector.

In this way, for the star graph, the transition matrix is
sparse and its characteristic polynomial, det(P − λI ) = 0, is
calculated by the Laplace rule as

det(P − λI ) = (−λ)N − (−λ)(N−2)

= (−λ)(N−2) [(−λ)2 − 1] = 0, (22)

whose solutions are λ1 = −1, λ2 = 1 and λi = 0, ∀i =
2,3, . . . ,N . Therefore, using the definition of an eigenvalue
and eigenvector problem, it is possible to obtain the following
equations for the eigenvectors. For λ1 = −1,

v11 = − 1

N − 1

N∑
j=2

v1j

(23)
v1j = −v11, j = 2,3, . . . ,N,

where vpj is the j -th element of the eigenvector vp associated
with the eigenvalue λp. For λ = 1,

v21 = 1

N − 1

N∑
j=2

v2j

(24)
v2j = v21, j = 2,3, . . . ,N ;

finally, for λp = 0 where p = 3, . . . ,N , which has multiplicity
(N − 2),

0 = 1

N − 1

N∑
j=2

vpj

(25)
vp1 = 0,

which yields the matrix

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · · · · 0
1 1 −1 · · · · · · −1
...

... 1 0 · · · 0
...

... 0
. . .

...
...

...
...

. . . 0
1 1 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

whose inverse is

V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

1
2(N−1)

1
2(N−1) · · · 1

2(N−1)
1
2

1
2(N−1)

1
2(N−1) · · · 1

2(N−1)

0 −1
N−1

N−2
N−1

−1
N−1

...
...

. . .
...

0 −1
N−1 · · · N−2

N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Note that we used nonunit vectors to construct the matrices V .
This is not necessary since D is also multiplied by V−1 and the
nonunit norms are compensated. Substituting in matrices (26)
and (27) in Eq. (20), after some algebra, we recover Eq. (17).
The accessibilty of hubs and leaves are calculated by Eqs. (18)
and (19), respectively.

B. Accessibility in ring graphs

The generalized random walk accessibility can also be
calculated exactly in rings that are a special case of K-regular
graphs, where K = 2. The probability transition matrix has
the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2 0 · · · 0 1

2

1
2

. . .
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0
. . .

. . . 1
2

1
2 0 · · · 0 1

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

Such matrix has a well-known spectra and is widely used in
finite difference methods [29]. As exposed in Ref. [29], the
eigenvalues of P are

λp = 1

2

[
exp

(
2πip

N

)
+ exp

(−2πip

N

)]
= cos

(
2πp

N

)
,

(29)
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where i = √−1 and the associated elements of the eigenvector
can be expressed as

upj = exp
( 2πipj

N

)
√

N
, (30)

where
√

N is just a normalization factor. This set of eigenvec-
tors diagonalizes the matrix P as P = U
UH , where 
 is the
diagonal matrix with the eigenvalues of P [Eq. (29)], U is the
matrix whose columns are the eigenvector of P , and UH is
the conjugate transpose of U . We can write the closed
expression for P as

P(j,k) = 1

e

∑
p

exp(λp)upju
∗
pk, (31)

where u∗
pj is the conjugate transpose of upj . Note that we

used the complex domain to solve the problem; however, the
solution is on the real domain. Using Eqs. (29) and (30), we
obtain

P(j,k) = 1

eN

N∑
p=1

exp

(
cos

(
2πp

N

))
exp

[
2πip(j − k)

N

]
,

(32)

which is a closed form for the evaluation of P in ring graphs.
Furthermore we can use some graph spectra properties to
separate the first eigenvalue from the summation

P(j,k) = 1

e

(
kj

2M

)
exp(1)

+ 1

N

N∑
p=2

exp

{
cos

(
2πp

N

)
+

[
2πip(j − k)

N

]}
.

(33)

Figure 2 shows the comparison between network models and
the analytical solutions for the regular structures. Note that
the solution for the ring does not depend on the network size.
The results for the line graph, which again do not depend
on the network size, are also presented in this figure. We also
remark that the extremes of the line present the lowest values of
accessibility, whereas the nodes in the center have the highest
values.

C. Accessibility in complete graphs

The generalized random walk accessibility can also be
calculated exactly for a complete graph, in which every pair
of nodes is connected without self-connections. In this way,
the probability of transition between any pair of nodes is
P (i,j ) = 1

N−1 and the exponential matrix [see Eq. (9)] is given
by

P(i,j ) = 1

eN

∞∑
n=0

(N − 1)n + (−1)n(N − 1)

(N − 1)nn!

= exp(1) + (N − 1) exp
( −1

N−1

)
eN

, i �= j. (34)

The main diagonal of P, which considers the paths starting and
ending at the same node, is expressed as

P(i,i) = 1

eN

∞∑
n=0

(N − 1)n + (−1)n+1

(N − 1)nn!

= exp(1) − exp
( −1

N−1

)
eN

. (35)

Therefore, the general form of the exponential matrix is
given as

P = 1

e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp(1)+(N−1) exp( −1
N−1 )

N

exp(1)−exp( −1
N−1 )

N
· · · exp(1)−exp( −1

N−1 )
N

exp(1)−exp( −1
N−1 )

N

. . .
...

...
. . .

...

exp(1)−exp( −1
N−1 )

N
· · · · · · exp(1)+(N−1) exp( −1

N−1 )
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

The accessibility of each node is

α(i) = exp{−P(i,i) log (P(i,i)) + −(N − 1)P(i,j ) log (P(i,j ))} = e(a−(N−1)a/eb−b/e), (37)

where

a = 1

eN

[
exp(1) − exp

( −1

N − 1

)]
(38)

and

b = 1

eN

[
exp(1) + (N − 1) exp

( −1

N − 1

)]
. (39)

In the complete graph all nodes present the same value of
accessibility and, since a random walker needs just one step

to reach any other node, this value is the upper bound of the
maximum value of accessibility for a network with N nodes.
Figure 2 shows the variation of the accessibility in complete
graphs as a function of the network size.

1. Eigendecomposition analysis

The exact values of accessibility in complete graphs can
also be obtained by the eigen-decomposition analysis, the
graph spectra, and its eigenvectors, as performed for the star
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graph. In this way, we get the following system [from Eq. (21)]:⎡
⎢⎢⎢⎢⎢⎣

−λ 1
N−1 · · · 1

N−1

1
N−1

. . .
...

...
. . .

...
1

N−1 · · · · · · −λ

⎤
⎥⎥⎥⎥⎥⎦

v = 0, (40)

which yields

N∑
i,i �=j

vpi

(
1

N − 1

)
− λpvpj = 0, ∀i,j ; i �= j, (41)

where vpj is the j -th element of the eigenvector vp associated
with the eigenvalue λp.

The eigenvalues of P for a complete graph is the spectrum
of the adjacency matrix multiplied by 1

N−1 , i.e., λ1 = 1, λ2 =
λ3 = . . . = λN = 1

N−1 [30]. Therefore, for λ1 = 1 we have

(N − 1) v1j =
N∑

i,i �=j

v1i , ∀i,j ; i �= j. (42)

The solution is v1i = v1j . On the other hand, for λp = −1
N−1 ,

where p = 2,3, . . . ,N ,

N∑
i,i �=j

vpi

(
1

N − 1

)
+ 1

N − 1
vpj = 0, (43)

i.e.,
(

1

N − 1

) N∑
i

vpi = 0, ∀i,j ; i �= j. (44)

The respective solution is
∑N

i vpi = 0. Note that both solu-
tions are not unique, whereas Eq. (20) has a unique solution.
Without loss generality, we assume

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 · · · −1
1 1 0 · · · 0
... 0

. . .
...

...
...

. . .
...

1 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

whose inverse is

V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N

1
N

1
N

· · · 1
N

−1
N

(N−1)
N

−1
N

· · · −1
N

... −1
N

. . .
...

...
...

. . .
...

−1
N

−1
N

· · · (N−1)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

Substituting matrices V and V−1 in Eq. (20) and using the
information about the eigenvalues, we obtain the matrix
in Eq. (36) and the same expression for the accessibility
[Eq. (37)].

As a practical comment about the matrix exponential, it is
important to mention that it should be computed by the Padé
approximation [31,32] and not by the truncated Taylor series

or by Eqs. (20). The former method is more precise and has
a lower computational cost. However, Eq. (20) is important
for theoretical analysis, since it transforms the calculus of
accessibility into a eigenvector and eigenvalue problem, which
is well studied in the literature.

IV. EPIDEMIC AND RUMOR SPREADING

Many mathematical models have been developed to study
epidemic spreading in complex networks [33,34]. A particu-
larly important model is the susceptible-infectious-recovered
(SIR) model, in which each node can be in one of three states:
(i) susceptible, (ii) infected, or (iii) recovered. Susceptible
nodes are healthy and can catch the disease, whereas infected
individuals are the ones actually transmitting the disease.
Finally, individuals in the recovered state are immune to the
disease and, therefore, play no role on the dynamics. The
transitions between the first two states, i.e., from healthy to
infected subjects, occurs via contacts between individuals. At
each time step, the infectious nodes spread the disease to their
susceptible neighbors with probability β and an infected node
becomes recovered with probability μ. This is a spontaneous
process and does not depend on any contact. The epidemic
spreading process terminates when there is no infected node
in the network and the disease cannot propagate anymore.

Rumor dynamics are in some aspects similar to epidemic
spreading [35,36]. Rumor diffusion is simulated considering
that nodes are spreaders, ignorants, or stiflers. Spreaders are
those individuals that know the rumor and want to spread it to
ignorants, whereas stiflers are those that know the rumor but are
not interested in the information anymore. The main difference
between rumor and epidemic spreading is that a spreader turns
into a stifler by a process that involves contacts, whereas
infected nodes become recovered by a spontaneous process.
The fraction of ignorants (ψ(t)), spreaders (φ(t)), and stiflers
(s(t)) at time t are defined such that ψ(t) + φ(t) + s(t) = 1.
The process starts with one spreader and N − 1 ignorants,
where N is the number of nodes in the network. At each time
step, spreaders try out to spread the rumor to their ignorant
neighbors at a rate λ. On the other hand, if a spreader contacts
another spreader or a stifler, such a spreader becomes a stifler
at rate δ. This process corresponds to the model proposed
by Maki and Thompson (MT model) [36]. In the version
proposed by Daley and Kendall (DK model), two interacting
spreaders become stiflers at rate λ [36]. Moreover, Monte Carlo
simulations of a rumor spreading dynamics can be performed
in two different ways. In a contact process (CP), only one
random neighbor of a spreader is contacted at each time step.
In the truncated process (TP) the neighbors of a spreader are
contacted in a random way until all of them are contacted or the
spreader turns into a stifler. The rumor dynamics terminates
when there is no spreader in the network and the rumor cannot
propagate anymore.

Here we consider that the spreading dynamics begin in
a single seed node, whereas the remaining nodes are in
the susceptible (or ignorant) state. In the SIR model, the
spreading potential of each vertex is quantified in terms of
the total prevalence of the epidemic process. The spreading
capacity of i is the fraction of recovered vertices at the
end of the process given that the dynamics started in i, i.e.,
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TABLE I. Structural properties of the complex networks.

Network N 〈k〉 〈cci〉 〈Bi〉 〈Ci〉 〈ri〉 〈π〉 〈α〉 〈xi〉 〈kc〉
Spatial Japan 2130 3.792 0.24 3.731 × 104 0.03 4.290 4.695 × 10−4 6.95 2.892 × 10−3 2.523

England 4460 3.415 0.14 8.163 × 104 0.03 3.557 2.242 × 10−4 6.65 1.401 × 10−3 2.062
United States 6443 3.098 0.09 1.605 × 105 0.02 3.302 1.552 × 10−4 6.178 9.328 × 10−4 2.038
Germany 3555 3.068 0.08 5.944 × 104 0.03 3.173 2.813 × 10−4 6.243 2.668 × 10−3 1.988
SpatialSF 5000 3.998 0.04 1.226 × 104 0.17 9.291 2.000 × 10−4 9.793 6.001 × 10−3 2.000
Waxman 4883 4.078 0.14 4.598 × 104 0.05 4.863 2.048 × 10−4 8.071 1.433 × 10−3 2.570

Non-spatial advogato 5054 15.58 0.25 5.748 × 103 0.31 9.962 × 101 1.979 × 10−4 28.92 6.819 × 10−3 8.137
e-mail 1133 9.622 0.22 1.475 × 103 0.28 1.790 × 101 8.826 × 10−4 17.88 1.764 × 10−2 5.349
Political blogs 1222 27.36 0.32 1.061 × 103 0.37 1.001 × 102 8.183 × 10−4 33.08 1.681 × 10−2 14.82
Google+ 23613 3.319 0.17 3.580 × 104 0.25 7.270 × 102 4.235 × 10−5 15.13 2.301 × 10−3 1.669
BA 10000 3.999 5.76 × 10−3 2.005 × 104 0.20 1.706 × 101 1.000 × 10−4 10.57 3.108 × 10−3 2.000

M(i) = r(t → ∞). Similarly, the spreading capacity of a node
i in rumor dynamics is quantified by the percentage of stiflers at
the end of the process given that the spreading started at i, i.e.,
M(i) = s(t → ∞).

V. DATABASE

We performed numerical simulations of epidemic and
rumor spreading processes on top of real-world and artificial
networks. Table I presents some network properties of the road
maps and networks generated by the spatial models.

A. Network models

Barabási and Albert proposed a model which considers
growth and preferential attachment rules [37]. In this case,
a network is generated starting with a set of m0 connected
vertices. After that, new vertices with m edges are included in
the network. The probability of the new vertex i to connect
with a vertex j in the network is proportional to the number
of connections of j , i.e.,

p(i,j ) = kj∑
u ku

. (47)

The most connected vertices have greater probability of
receiving new vertices. In this way, networks generated by this
model present a power-law degree distribution, P (k) = k−γ ,
where γ = 3 in the thermodynamic limit (N → ∞) [37], N

being the number of nodes.
We also take into account two spatial models. The model

proposed by Waxman [38] considers that nodes are uniformly
distributed into a square of unitary area and each pair of nodes
is connected according to a probability that depends on their
distances, i.e.,

p(i,j ) = η exp(−ηdij ), (48)

where η is a parameter that controls the average degree and dij

is the Euclidean distance between nodes i and j . Such model
generates networks with an exponential degree distribution,
which means that the probability of a node having a degree
that differs from 〈k〉 decays exponentially.

The model introduced by Barthélemy [39], on the other
hand, produces scale-free networks embedded in space. Con-
sidering a regular d-dimensional lattice with length L, the
algorithm has three main steps. Initially, n0 initial active nodes

are selected at random. Next, an inactive node i is randomly
selected and connected to an active node j with probability

p(i,j ) ∝ kj + 1

exp(dij /rc)
, (49)

where kj is the number of connections of node j , rc is a finite
scale parameter, and dij is the Euclidean distance between
nodes i and j . Finally, the node i becomes active and the
second and third steps are repeated until all nodes are active.
For each node, the second and third steps are repeated m times
in order to set the average connectivity as 〈k〉 = 2m [39].
The parameter rc controls the clustering coefficient [40] and
assortativity [9] of the network. Here we considered rc = 0.05,
L = 1, and d = 2. These values are similar to those used in
the original paper [39].

B. Road networks

The road networks have been extracted from the maps
available as a portable format (pdf) at the United Nations
website. 1 Initially, the maps have been preprocessed in order to
eliminate irrelevant information and keep only the main roads.
After that, the skeletonization procedure has extracted the
so-called skeleton of the image [41]. The node identification
has been performed by applying an 8-connected hit-or-miss
convolution filter [42]. Finally, a label propagation procedure
has been implemented from each node. When two pair of labels
i and j find each other, a connection is established between
them. Here, we have considered the networks extracted from
maps of Germany, Japan, England, and United States.

C. Social networks

The social networks considered here are as follows: (i)
the email contact network obtained from messages exchanged
between users within the Universitat Rovira i Virgili [43]; (ii)
the political blogs network, composed of hyperlinks between
web blogs obtained over the period of 2 months preceding
the U.S. presidential election of 2004 [44]; (iii) the advogato
network, which is an online community dedicated to free
software development launched in 1999 [45,46]; and (iv) the
Google+ network, which is composed by users connected

1http://www.un.org
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according to their circles of friendships [47,48]. Avogato,
political blogs, and Google+ networks are directed networks.
Moreover, advogato is also a weighted network. However, here
we consider only the unweighted and undirected versions of
these networks. In addition, our analysis uses only the nodes
in the giant component.

VI. PARAMETER ANALYSIS

The efficiency of a particular node in the spreading process
depends not only on its topological characteristics but also on
the parameters of the epidemic and rumor models. Here we
calculate the above correlations between spreading capacity
and the degree, k, k-core index, kc, and accessibility, α,
covering all possible combinations of parameters (β × μ for
epidemic spreading and λ × δ for rumor propagation). Figure 3
shows the results for the road networks of the U.S. and
Germany. The accessibility is the most correlated with the
spreading capacity in all cases, whereas the k-core yields the
smallest correlation for all set of parameters. On the other hand,
the degree is most correlated with the spreading capacity in the
SIR model for small values of β. In this case, the propagation
reaches only the immediate neighbors of the infected node and,
thus, the nodes with the largest degrees are the most efficient
as far as the spreading is concerned. In addition, note that the
correlation decreases for β close to 1, because the epidemics

will succeed in reaching most of the nodes, regardless of the
initial seeded node. For the rumor spreading, the correlation
between the accessibility and the final fraction of stiflers is the
highest for δ > λ. The same relationship is observed for the
degree, but the correlations are smaller than those observed for
the accessibility measure.

Figure 4 shows the results for the social networks of email
and political blogs cases. The results indicate that the degree,
the k-core, and the accessibility yield similar correlations,
which point out that the central nodes show the highest values
of such measures simultaneously. Thus, these networks tend
not to have peripheral hubs. The highest correlations occur
for small values of β and λ, indicating that the infections
or rumors do not propagate past the first neighbors of the
origin and thus the nodes with the largest degree are the most
efficient in spreading. These nodes also present the highest
values of accessibility and k-core. For β and λ close to 1,
the correlation is close to zero, because most of the nodes
will become recovered or stifler independently of the initial
spreader.

Having completed the previous analysis, we consider in the
next sections the following parameter values: (i) β = 0.8,μ =
1.0 and (ii) β = 0.3,μ = 1.0 for the epidemic spreading and (i)
λ = 0.8,δ = 1.0, (ii) λ = 0.8,δ = 0.3, (iii) λ = 0.3,δ = 1.0,
and (iv) λ = 0.3,δ = 0.3 for the rumor dynamics. Note that
previous investigations used δ = 1 [12] and μ = 1 [14] for

FIG. 3. (Color online) Correlation between spreading capacity and the degree, k, k-core index, kc, and accessibility, α, covering all possible
combinations of parameters (β × μ for epidemic spreading (SIR model) and λ × δ for rumor propagation (MT-TP model) for the road networks
of US and Germany.
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FIG. 4. (Color online) Correlation between spreading capacity and the degree, k, k-core index, kc, and accessibility, α, covering all possible
combinations of parameters (β × μ for epidemic spreading (SIR model) and λ × δ for rumor propagation (MT-TP model) for the email contact
network and political blogs (polblogs).

epidemic and rumor spreading, respectively. Here, we consider
also the cases in which the spreading rate is higher than the
stifling rate and one situation in which both have the same
values. These values represent the cases in which the dynamics
are dependent on the network structure, i.e., correlations are
higher than zero, as we can see in Figs. 3 and 4.

VII. SPATIAL NETWORKS

As outlined in Sec. II, we have studied different centrality
metrics: the degree (k), clustering coefficient (cc), betweenness
centrality (B), average neighborhood degree (r), PageRank
(π ), eigenvector centrality (x), k-core index (kc), closeness
centrality (C), and accessibility (α). We have considered only
the unweighted and undirected versions of these measures.
Table I presents the average values obtained for the road
maps and networks generated by the Waxman and scale-free
spatial models. Spatial networks are sparse and have large
characteristic path lengths and nonzero clustering coefficients.
In addition, scale-free spatial networks have the smallest
average geodesic distance due to the presence of hubs.

We have conducted numerical simulations of the SIR
(epidemic) and MT (rumor) models to inspect correlations
between nodes’ centrality (as given by the different metrics
above) and the final dynamical outcome of the system,
the latter being measured by the density of removed and

stiflers after the dynamics has come to an end, respectively.
Such correlations have been determined by the Spearman
rank correlation coefficient, which is defined as the Pearson
correlation coefficient between the ranked variables [49]. The
reason of our choice is that the Spearman coefficient quantifies
monotonic relationships, whereas the Pearson correlation mea-
sures linear relationships. As shown below, these correlations
can be monotonic, but not necessarily linear.

Figures 5 and 6 show the scatter plots for the epidemic
and rumor dynamics in the U.S. road network, respectively.
The strongest correlation corresponds to the degree centrality,
while for other metrics, correlations are weak and positive,
though not zero. On the contrary, the clustering coefficient
leads to a negative correlation because the more central a
node is, the smaller its clustering coefficient is. On the other
hand, Figs. 7 and 8 show that the correlations between the
generalized random walk accessibility and the potential of
rumor and epidemic spreading processes are almost linear and
positive for all road networks analyzed.

Furthermore, Table II shows that for both spreading pro-
cesses, the highest correlations between a centrality measure
and the impact of the disease or rumor correspond to the
case of the generalized accessibility centrality, which values
often higher than 0.7. Interestingly, the k-core centrality yields
small correlation values, contrary to what has been observed in
Ref. [12], which considered networks not embedded in space.
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FIG. 5. The percentage of recovered individuals in the SIR
epidemic spreading model (β = 0.3,μ = 1.0) according to the local
measures for the US road network: (a) degree; (b) clustering coeffi-
cient; (c) average degree of the nearest neighbors; (d) betweenness
centrality; (e) PageRank; (f) k-core index; (g) eigenvector centrality;
and (h) closeness centrality.

However, this result agrees with Ref. [14], in the case of rumor
dynamics. The node degree is highly correlated with the final
fraction of recovered nodes but less so if we look at the results
corresponding to the final fraction of stiflers, mainly for the
case of a MT model simulated using a contact process, as found
in Ref. [14]. Moreover, PageRank, closeness, and betweenness
centrality metrics do not show significant correlations with
disease and rumor spreading capabilities, −except when the
parameter δ in rumor models is small, in which case the
closeness gives a high correlation. It is also worth noticing
that the eigenvector centrality shows high correlation only for
the spatial scale-free network model.
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FIG. 6. The percentage of stiflers on the MT (TP) rumor model
(λ = 0.3,δ = 1.0) according to the local measures for the United
States network: (a) degree; (b) clustering coefficient; (c) average
degree of the nearest neighbors; (d) betweenness centrality; (e)
PageRank; (f) k-core index; (g) eigenvector centrality; and (h)
closeness centrality.

A. Road networks

Focusing on real networks, Fig. 9 shows results obtained
for the generalized random walk accessibility of each node
for the road networks of Japan, England, United States, and
Germany. In Japan, the most influential spreaders are the cities
of Nagoya, Osaka, and Hiroshima. Tokyo is highly connected,
but does not have the same spreading capability of these cities,
since it is a peripheral hub. London, Liverpool, and Manchester
have the highest values of accessibility in England, while in
the U.S., the cities with the highest accessibility are New
York, Houston, Dallas, and Chicago, −interestingly enough,
these cities are also air transportation hubs−. Finally, Berlin,
München, and Düsseldorf have the highest accessibility in
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FIG. 7. The percentage of recovered individuals on the SIR
epidemic spreading model (β = 0.3,μ = 1.0) according to the
accessibility measure for the road networks of (a) Japan, (b) England,
(c) United States, and (d) Germany.

Germany. Note that nodes at the border of the countries
present the smallest values of accessibility. Therefore, this
measure can be considered for identification of border of
networks, as previously pointed out for the original definition
of accessibility in Ref. [20].

Figure 10 presents the probability distribution of the acces-
sibility. For all cases, the distribution is asymmetric, presenting
a long tail for higher values of accessibility and centered at the
same value. It is interesting to note that Germany and England
has the smallest variation in the accessibility, whereas Japan
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FIG. 8. The percentage of stiflers on the MT (TP) rumor model
(λ = 0.3, δ = 1.0) according to the accessibility measure for the road
networks of (a) Japan, (b) England, (c) United States and (d) Germany.

has the highest one. This fact can be related to the rough of
Japan, which influence directly how highways are distributed.

VIII. NONSPATIAL NETWORKS

We have also studied what happens for nonspatial networks
using the same set of measurements considered in Secs. VII
and II. Table I presents the average values of these measures
calculated in the social networks and in synthetic BA networks.
Table III presents the Spearman correlation coefficient calcu-
lated between the centrality metrics and final fraction of stiflers
or recovered nodes in the epidemic and rumor processes,
respectively. The results agree with the analysis of epidemic
spreading presented in Ref. [12] and with the study of rumor
diffusion in Ref. [14]. In the case of the SIR model, the k-core
and degree centralities are the most correlated with the final
fraction of recovered nodes. Thus, the main hubs on the social
networks are located in the center of the network, because
they have the highest coreness, suggesting that such networks
tend not to present peripheral hubs. Moreover, correlations are
stronger when the parameter β is decreased. On the contrary,
the random walk accessibility yields the highest Spearman
correlation for BA networks and for political blogs (for β =
0.3), although the correlation values are close to those obtained
for the degree and k-core. All the remainder metrics exhibit
smaller correlation coefficients than the k-core, k, and α.

With respect to the rumor dynamics, the CP and TP cases
present different results. In the first case, the eigenvector and
accessibility centralities are strongly correlated with the final
fraction of stiflers, whereas, for the second case, closeness
centrality and average neighborhood degree show the highest
correlations. Considering the TP case with a stifling rate
λ = 1, if the spreading rate is high, the average neighborhood
degree is more related to the dynamics. However, for lower
spreading rates the distance from one node to the rest of
the network is more critical. This property is evinced in
Table III. Note that r presents higher correlations for higher
spreading rates, whereas the closeness centrality is more
correlated when spreading rates are smaller. Such an analysis
suggests that shortest paths get more important for information
propagation proportionally to the inverse of the spreading rate.
Furthermore, the k-core and degree centralities have not been
found to exhibit strong correlations with the final fraction of
stiflers, supporting the results in Ref. [14]. Finally, we note
that, at variance with previous cases, for the rumor dynamics
on nonspatial networks, there is no single metric that has
yielded the highest correlations for all the networks analyzed.
In particular, the accessibility centrality does not seem to be in
this case as distinct as before, likely because, as seen in Fig. 11,
the distributions of accessibility in nonspatial networks are
asymmetric, with different mean values and characterized by
a long tail distribution.

IX. CONCLUSIONS

In this paper we have studied the relation between the
centrality of a node and the outcome of epidemic and
rumor processes initiated in that node by means of extensive
numerical simulations on top of several complex networks.
We have considered eight network centrality metrics and two
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TABLE II. Correlation between centrality measures and the final fraction of recovered individuals (SIR model) or the final fraction of
stiflers [MT model for the contact (CP) or truncated (TP) cases]. The measures are the degree (k), clustering coefficient (cc), betweenness
centrality (B), average neighborhood degree (r), PageRank (π ), eigenvector centrality (x), k-core index (kc), closeness centrality (C), and
accessibility (α). The highest correlations are in bold.

Process Rates Network k cc B r π x kc C α

SIR β = 0.8,μ = 1.0 Japan 0.40 0.11 0.24 0.26 0.27 0.27 0.35 0.47 0.47
England 0.55 0.10 0.26 0.38 0.30 −0.04 0.21 0.27 0.58

USA 0.60 0.25 0.19 0.53 0.28 0.49 0.26 0.41 0.73
Germany 0.54 0.05 0.42 0.35 0.20 0.22 0.19 0.34 0.63
SpatialSF 0.81 0.25 0.65 −0.04 0.75 0.35 – 0.32 0.60
Waxman 0.74 0.34 0.47 0.29 0.62 0.05 0.70 0.19 0.73

β = 0.3,μ = 1.0 Japan 0.65 0.30 0.31 0.65 0.37 0.36 0.65 0.41 0.79
England 0.68 0.13 0.27 0.61 0.31 −0.07 0.38 0.21 0.76

USA 0.77 0.38 0.10 0.68 0.38 0.59 0.37 0.14 0.86
Germany 0.69 0.08 0.46 0.42 0.31 0.22 0.19 0.25 0.74
SpatialSF 0.70 0.39 0.70 0.46 0.49 0.72 – 0.66 0.91
Waxman 0.68 0.30 0.42 0.58 0.45 0.04 0.72 0.30 0.81

MT-TP λ = 0.8,δ = 1.0 Japan 0.50 −0.08 0.43 0.48 0.29 0.33 0.45 0.42 0.81
England 0.54 −0.20 0.43 0.49 0.22 −0.03 0.34 0.32 0.85

USA 0.67 0.11 0.22 0.62 0.30 0.55 0.33 0.24 0.90
Germany 0.57 −0.24 0.62 0.41 0.20 0.24 0.18 0.33 0.88
SpatialSF 0.63 0.29 0.71 0.55 0.40 0.75 – 0.70 0.94
Waxman 0.56 0.06 0.52 0.46 0.37 0.04 0.58 0.45 0.76

λ = 0.8,δ = 0.3 Japan 0.17 −0.02 0.22 0.23 0.04 0.26 0.21 0.66 0.35
England 0.32 −0.07 0.31 0.38 0.05 0.05 0.26 0.60 0.53

USA 0.26 0.00 0.25 0.29 0.07 0.08 0.12 0.83 0.43
Germany 0.29 −0.12 0.46 0.28 0.01 0.45 0.17 0.67 0.52
SpatialSF 0.40 0.16 0.43 0.28 0.27 0.41 – 0.37 0.53
Waxman 0.61 0.13 0.51 0.38 0.47 0.06 0.62 0.31 0.74

λ = 0.3,δ = 1.0 Japan 0.77 0.22 0.43 0.61 0.54 0.25 0.59 0.28 0.88
England 0.77 0.03 0.34 0.53 0.47 −0.07 0.30 0.16 0.83

USA 0.84 0.32 0.19 0.63 0.50 0.56 0.35 0.13 0.91
Germany 0.73 0.01 0.45 0.40 0.39 0.17 0.19 0.20 0.79
SpatialSF 0.34 0.32 0.53 0.71 0.12 0.89 – 0.84 0.77
Waxman 0.84 0.30 0.56 0.59 0.64 0.06 0.77 0.25 0.94

λ = 0.3,δ = 0.3 Japan 0.37 0.00 0.32 0.50 0.13 0.35 0.42 0.49 0.68
England 0.42 −0.09 0.34 0.52 0.07 0.01 0.37 0.38 0.71

USA 0.54 0.12 0.15 0.64 0.16 0.54 0.33 0.28 0.80
Germany 0.42 −0.20 0.54 0.41 0.06 0.29 0.18 0.39 0.73
SpatialSF 0.42 0.31 0.53 0.62 0.19 0.71 – 0.65 0.84
Waxman 0.44 0.08 0.41 0.46 0.25 0.09 0.51 0.55 0.64

MT-CP λ = 0.8,δ = 1.0 Japan 0.42 0.05 0.30 0.57 0.16 0.32 0.48 0.42 0.73
England 0.43 −0.10 0.32 0.56 0.08 −0.05 0.36 0.32 0.73

USA 0.57 0.16 0.13 0.682 0.17 0.55 0.34 0.24 0.82
Germany 0.45 −0.18 0.52 0.44 0.07 0.26 0.18 0.35 0.75
SpatialSF 0.26 0.27 0.42 0.69 0.02 0.75 – 0.71 0.73
Waxman 0.50 0.13 0.39 0.57 0.27 0.04 0.59 0.38 0.72

λ = 0.8,δ = 0.3 Japan 0.17 0.01 0.18 0.28 0.01 0.27 0.26 0.67 0.36
England 0.24 0.00 0.24 0.37 −0.03 0.16 0.29 0.70 0.43

USA 0.29 0.04 0.20 0.36 0.04 0.20 0.16 0.74 0.47
Germany 0.20 −0.07 0.41 0.24 −0.05 0.51 0.16 0.81 0.40
SpatialSF 0.28 0.22 0.36 0.46 0.10 0.48 – 0.44 0.61
Waxman 0.54 0.16 0.44 0.55 0.34 0.10 0.64 0.44 0.76

λ = 0.3,δ = 1.0 Japan 0.60 0.18 0.36 0.66 0.34 0.28 0.56 0.31 0.82
England 0.58 −0.02 0.31 0.60 0.25 −0.10 0.31 0.18 0.77

USA 0.68 0.26 0.12 0.71 0.30 0.56 0.35 0.14 0.85
Germany 0.55 −0.10 0.45 0.47 0.20 0.17 0.18 0.21 0.74
SpatialSF 0.23 0.27 0.42 0.71 0.01 0.81 – 0.77 0.70
Waxman 0.68 0.24 0.45 0.67 0.45 0.06 0.72 0.26 0.87

λ = 0.3,δ = 0.3 Japan 0.37 0.03 0.27 0.54 0.12 0.33 0.45 0.46 0.68
England 0.40 −0.08 0.32 0.53 0.06 −0.01 0.36 0.36 0.69

USA 0.54 0.14 0.13 0.65 0.14 0.53 0.33 0.27 0.79
Germany 0.40 −0.20 0.52 0.43 0.03 0.27 0.18 0.39 0.72
SpatialSF 0.27 0.27 0.43 0.67 0.03 0.71 – 0.66 0.75
Waxman 0.44 0.10 0.38 0.51 0.23 0.05 0.53 0.46 0.65
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FIG. 9. (Color online) Network visualization of the real road networks of (a) Japan, (b) England, (c) United States, and (d) Germany. The
colors represent the values of the accessibility.

different kinds of networks: spatial and nonspatial. Networks
generated by the Barabási-Albert, Waxman, and scale-free
spatial models have also been considered. We have proposed a
generalization of the accessibility measure introduced in [19],
which allows the quantification of the potential of each node
in accessing in a balanced and homogeneous manner other
nodes. Such generalization takes into account walks of all
lengths weighted by the inverse of the factorial of their
lengths.

Our results have shown that the generalized accessibility
is the best metric to measure a node’s spreading capacity in
spatial networks. On the contrary, in nonspatial networks, the
best correlations between a centrality metric and the dynamical
outcome depends on the process. Thus, the degree and coreness
(as given by the k-core) are the ones more suited when it

comes to analyze epidemic spreading, confirming the results
in Ref. [12]. However, these measures are not the best when
a rumor model is considered. Indeed, for the latter case, the
average neighborhood degree, the closeness centrality, and
accessibility give higher correlations.

We verified that the generalized accessibility is more related
to spreading processes in spatial networks than in nonspatial
networks. Indeed, Table III shows that this metric is the
structural property that exhibits the highest correlation in most
of the cases when the underlying network is spatial. Figures 12
and 13 show that the relationship between the accessibility
and centrality measures are almost linear in spatial networks,
whereas in nonspatial networks, such a relationship is also
almost linear but only for values below a given threshold.
Beyond that value, the fraction of stiflers and recovered nodes
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TABLE III. Correlation between centrality measures and the final fraction of stiflers [MT model for the contact (CP) or truncated (TP)
cases] or recovered individuals (SIR model). The measures are the degree (k), clustering coefficient (cc), betweenness centrality (B), average
neighborhood degree (r), PageRank (π ), eigenvector centrality (x), k-core index (kc), closeness centrality (C), and accessibility (α). The highest
correlations are in bold.

Process Rates Network k cc B r π x kc C α

SIR β = 0.8.μ = 1.0 advogato 0.76 0.47 0.66 0.14 0.71 0.65 0.76 0.63 0.70
email 0.67 0.41 0.57 0.09 0.64 0.58 0.67 0.57 0.63

polblogs 0.57 0.29 0.51 0.04 0.55 0.55 0.57 0.55 0.57
Google+ 0.81 0.67 0.61 0.17 0.64 0.50 0.81 0.48 0.63

BA 0.19 0.13 0.39 0.48 −0.02 0.45 – 0.49 0.60
β = 0.3.μ = 1.0 advogato 0.97 0.40 0.85 0.19 0.92 0.88 0.97 0.84 0.92

email 0.97 0.34 0.85 0.25 0.94 0.88 0.96 0.89 0.94
polblogs 0.89 0.25 0.78 −0.08 0.86 0.85 0.89 0.82 0.88
Google+ 0.81 0.67 0.61 0.23 0.60 0.56 0.81 0.54 0.68

BA 0.18 0.18 0.48 0.73 −0.10 0.66 – 0.72 0.77
MT-TP λ = 0.8.δ = 1.0 advogato 0.23 0.17 0.26 0.55 0.17 0.38 0.22 0.43 0.35

email 0.62 0.19 0.61 0.13 0.60 0.56 0.58 0.60 0.64
polblogs −0.16 −0.09 −0.06 0.35 −0.17 −0.16 −0.21 −0.07 −0.13
Google+ 0.04 0.03 0.00 0.78 −0.07 0.27 0.04 0.25 0.40

BA 0.16 0.19 0.48 0.76 −0.12 0.70 – 0.75 0.78
λ = 0.8.δ = 0.3 advogato 0.05 0.15 0.10 0.51 0.02 0.20 0.05 0.27 0.16

email 0.29 0.22 0.30 0.06 0.28 0.24 0.26 0.28 0.30
polblogs −0.37 −0.01 −0.26 0.48 −0.37 −0.34 −0.39 −0.22 −0.33
Google+ 0.00 0.03 −0.05 0.69 0.01 0.11 0.004 0.09 0.27

BA 0.14 0.19 0.47 0.77 −0.11 0.79 – 0.82 0.72
λ = 0.3.δ = 1.0 advogato 0.54 0.11 0.47 0.64 0.45 0.74 0.55 0.76 0.73

email 0.77 0.03 0.71 0.59 0.70 0.89 0.76 0.91 0.89
polblogs 0.19 0.05 0.19 0.41 0.17 0.19 0.16 0.31 0.26
Google+ 0.20 0.17 0.14 0.84 −0.12 0.63 0.20 0.61 0.65

BA 0.35 0.11 0.46 0.34 0.20 0.47 – 0.48 0.51
λ = 0.3.δ = 0.3 advogato 0.36 0.19 0.31 0.57 0.29 0.53 0.37 0.57 0.52

email 0.70 0.19 0.62 0.35 0.65 0.71 0.70 0.74 0.77
polblogs −0.16 0.09 −0.12 0.52 −0.18 −0.13 −0.18 −0.02 −0.10
Google+ 0.14 0.16 0.05 0.76 −0.01 0.36 0.15 0.34 0.47

BA 0.33 0.19 0.59 0.67 0.06 0.67 – 0.73 0.85
MT-CP λ = 0.8.δ = 1.0 advogato 0.47 0.14 0.35 0.52 0.36 0.63 0.50 0.62 0.65

email 0.69 0.19 0.56 0.57 0.61 0.81 0.73 0.79 0.81
polblogs 0.29 0.14 0.21 0.26 0.25 0.28 0.29 0.34 0.34
Google+ 0.40 0.32 0.31 0.55 −0.12 0.84 0.40 0.76 0.75

BA 0.56 0.19 0.78 0.63 0.30 0.74 – 0.80 0.94
λ = 0.8.δ = 0.3 advogato 0.29 0.14 0.21 0.35 0.21 0.38 0.31 0.39 0.41

email 0.45 0.22 0.36 0.32 0.40 0.48 0.47 0.50 0.52
polblogs 0.01 0.14 −0.01 0.26 −0.03 0.02 0.00 0.07 0.05
Google+ 0.32 0.27 0.23 0.52 −0.10 0.64 0.33 0.60 0.64

BA 0.24 0.21 0.58 0.80 −0.02 0.87 – 0.91 0.79
λ = 0.3.δ = 1.0 advogato 0.52 0.08 0.39 0.59 0.40 0.72 0.55 0.71 0.73

email 0.64 0.05 0.55 0.68 0.55 0.83 0.67 0.82 0.80
polblogs 0.51 0.14 0.39 0.25 0.46 0.52 0.51 0.56 0.57
Google+ 0.37 0.28 0.32 0.55 −0.15 0.89 0.38 0.84 0.75

BA 0.82 0.10 0.67 −0.01 0.74 0.31 – 0.34 0.52
λ = 0.3.δ = 0.3 advogato 0.46 0.15 0.34 0.50 0.35 0.60 0.48 0.60 0.63

email 0.68 0.23 0.55 0.50 0.60 0.76 0.71 0.76 0.79
polblogs 0.19 0.14 0.13 0.27 0.15 0.18 0.18 0.24 0.23
Google+ 0.39 0.32 0.30 0.55 −0.11 0.80 0.40 0.74 0.74

BA 0.67 0.19 0.79 0.49 0.43 0.66 – 0.72 0.89

reaches a plateau, which is the maximum value of the dynamic
measure in the networks. Such a plateau reduces the Spearman
correlation between the accessibility and the fraction of stiflers,
since the relationship between these structural and dynamical

measures is better defined for low values of accessibility.
Therefore, due the higher distances in spatial networks, the
value of accessibility does not saturate (i.e., there is no plateau),
resulting in higher correlations.
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FIG. 10. (Color online) Probability distribution of the accessibil-
ity in the road networks of Japan, Germany, U.S., and England.

The previous conclusions can be understood by looking
with more care to the meaning of the new metric here
discussed. The definition of the accessibility in terms of
random walks is strictly related to the spreading processes [50]
and it is defined in terms of the diversity index of order one [25].
Thus, the higher the number of neighbors that a node can access
with similar probability, the higher the expected number of
infected nodes. In this way, the accessibility quantifies how
many nodes can be effectively accessed during the spreading
process. As reported in Ref. [51] this quantity is maximum
whenever the exploration time is minimum. Thus, nodes
presenting higher values of accessibility propagate viruses or
rumors to the whole network faster than the nodes with smaller
values, which results in a higher fraction of infected nodes
before they become recovered. In summary, nodes with higher
accessibility values should be the most influential spreaders.

The analysis presented here can be extended by considering
other definitions of the accessibility in terms of other diversity
indices [26]. The role of the generalized random walk
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FIG. 11. (Color online) Probability distribution of the accessibil-
ity in the social networks of advogato, email, political blogs, and
Google+.
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FIG. 12. Scatter plots of the accessibility measure and the final
percentage of recovered individuals on the SIR epidemic spreading
model (β = 0.3,μ = 1.0) for the networks of (a) advogato, (b)
political blogs, (c) email, and (d) Google+.

accessibility in other types of dynamical processes, such as
social dynamic models [36] and synchronization, are also
possible further studies. Ultimately, one important conclusion
of our study, beyond the fact that the new metric appears
to be the best way to detect influential spreaders in spatial
networks, is that previous claims about whether a class of
nodes are influential depends on both the metric used and,
most importantly, on the kind of network under study.
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FIG. 13. Scatter plots of the accessibility measure and the final
percentage of stiflers on the MT (TP) rumor model (λ = 0.3,δ = 1.0)
for the networks of (a) advogato, (b) political blogs, (c) email, and
(d) Google+.
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