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Abstract Species of the nudibranch Pseudovermidae Thiele,
1931 are rare but conspicuous inhabitants of the marine
mesopsammon. Their characteristic vermiform body with re-
duced cerata and acorn-shaped head lacking appendages is well
adapted to life in the interstices of sand grains. Traditionally,
species descriptions are based mainly on external morphology
and radula characteristics; knowledge on their anatomy is
scarce. Here we provide the first microanatomical redescription
of a member of Pseudovermidae based on 3D-reconstruction
from histological semi-thin section series. The present study on
Pseudovermis salamandropsMarcus, 1953 reveals several dis-
crepancies to the original description especially within the
complex triaulic genital system (i.e., absence of a connection
between vas deferens and kidney, presence of a receptaculum
seminis and a large muscular penial sheath gland). We also add
microanatomical details such as the presence of gastroesopha-
geal ganglia in the central nervous system, described for the
first time in Pseudovermidae. Concluding from the nemato-
cysts found in the cnidosacs of P. salamandrops, this species is
a cnidarivore which likely preys on various meiofaunal cnidar-
ians. We show that microanatomical redescriptions of poorly
known Pseudovermidae are needed to gather comparative data

as a backbone to place these neglected meiofaunal slugs in a
phylogeny and trace their evolutionary pathway into the
mesopsammon. Traditional characters used for species delinea-
tion are insufficient to diagnose Pseudovermis and an integra-
tive approach is needed to reliably address pseudovermid di-
versity in the future.

Keywords Meiofauna . Cnidosacs . Cnidarivore .

Aeolidoidea . Sea slug

Introduction

Sediment covered ocean floors form one of the largest habitats
on Earth and potentially presented stable environmental con-
ditions to its inhabitants over long geologic timescales
(Rundell and Leander 2010). One of the major restrictions of
the mesopsammic habitat is the limited space available, which
is reflected in conspicuous similarities in body plans among
interstitial molluscs and many other metazoa (e.g., vermiform
body shape and frequent lack of appendages). Recent molec-
ular phylogenetic analyses reveal part of the similarities in
morphology and anatomy as convergent adaptations to the
mesopsammon–termed among slugs as the ‘meiofaunal syn-
drome’ (Brenzinger et al. 2013a)–and support the hypothesis
of several independent evolutionary pathways of heterobranch
slugs into the interstitial (Jörger et al. 2010; Schrödl et al.
2011). Pseudovermidae Thiele, 1931 (Nudibranchia,
Gastropoda) are one of the best adapted of these meiofaunal
lineages in terms of body shape (Swedmark 1964, 1968;
Brenzinger et al. 2013a). They have an elongated vermiform
body with few short and slender or knob-like reduced cerata
and an acorn-shaped head, which lacks oral tentacles and
rhinophores. With their worm-like appearance, they were at
first assigned to turbellarian flatworms in the end of the 19th
century, resembling instead one of the first discovered
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members of the molluscan meiofauna (see Kowalevsky
1901). Traditionally, Pseudovermidae are placed among
cladobranch Aeolidoidea (e.g., Kowalevsky 1901; Thiele
1931; Bouchet and Rocroi 2005). In the first cladistic analyses
on nudibranch relationships, the monophyly of Aeolidoidea
was not well supported (Wägele and Willan 2000) and
reanalyses of the dataset including additional taxa like
Hancockia Gosse, 1877 further questioned aeolidoid mono-
phyly (Martin et al. 2009). Molecular phylogenetics have
contributed to an ongoing rearrangement in nudibranch sys-
tematics (e.g., Pola and Gosliner 2010; Wägele et al. 2014)
and in the relationships of several aeolidoidean subclades (see
e.g., Carmona et al. 2013). First preliminary data, which
included Pseudovermidae into a phylogenetic analysis of
aeolidoids based on two mitochondrial markers, recovered
them basal to other aeolidoids and dentronotaceans
(Alejandrino 2007), but reanalyses with larger taxon sampling
on an extended set of molecular markers are overdue to
evaluate the systematic relationships of Pseudovermidae.

Besides the likely epibenthic and not strictly interstitial
Emble ton ia pu lchra (Alder & Hancock , 1844)
(Embletoniidae), Pseudovermis Pereyaslavtzeva, 1891–the
monotypic genus of the family–is exclusively mesopsammic
and presents the only known lineage of nudibranch gastropods
restricted to the interstitial habitat (Swedmark 1964; Arnaud
et al. 1986). These minute ‘pseudo-worms’ are easy to recog-
nize in the field due to their characteristic body shape, but
detailed accounts on their anatomy are nevertheless scarce.
Most of the 17 described species are diagnosed only via
external morphology and by details of radula and mandibles
(see e.g., Fize 1961; Salvini-Plawen and Rao 1973; Hughes
1991); their anatomical diversity is largely unknown. This
partially relates to former taxonomic tradition and partially
to the rarity of these slugs, which are often only found as
singletons and seldomly occur in high densities (see e.g., the
ecological account of Poizat (1983)). The lack of comparative
microanatomical data currently impedes the placement of
Pseudovermidae into a phylogeny of Nudibranchia via cladis-
tic analyses and the lacking knowledge on sister-group rela-
tionships evidently complicates interpretations on the evolu-
tion of these unique mesopsammic nudibranchs.

Due to the minute body size anatomical investigation via
direct dissection is problematic if not impossible and data
derived from older e.g., paraffin-based histology do not pro-
vide the accuracy needed to resolve all organ systems in full
detail (Neusser et al. 2006). In the past years, several studies
have demonstrated the power of advanced 3D-reconstructions
based on serial semi-thin sections to present themicroanatomy
of different groups of sea slugs detailed and traceable for
future research (see e.g., DaCosta et al. 2007; Martynov and
Schrödl 2011). Microanatomical revisions combined with
molecular data have raised doubts on the reliability of external
morphology as mere character sets for species delineation

especially in mesopsammic taxa, in which the habitat con-
strains external morphology (Eder et al. 2011; Neusser et al.
2011). Representatives from most meiofaunal slug lineages
have been redescribed successfully via 3D-microanatomy
(such as Acochlidia (Jörger et al. 2008; Neusser et al. 2009a;
Neusser et al. 2009b), Sacoglossa (Rückert et al. 2008),
Cephalaspidea (Brenzinger et al. 2013b) or Rhodopemorpha
(Brenzinger et al. 2011; Brenzinger et al. 2013a)). These data
allow for interpretations on the processes leading to present
day morphologies and provide comparative data to discuss the
role of certain organ systems for the habitat shifts of sea slugs
into the mesopsammon. Progenesis (i.e., accelerated sexual
development resulting in the sustaining of morphological
features of larvae or juveniles) has been discussed as a prin-
ciple in the evolution of meiofaunal taxa (Westheide 1987).
For example, the aberrant morphology of Acochlidia has been
interpreted as paedomorphic (Jörger et al. 2010), such as
several anatomical features (e.g., pentaganglionate nervous
system) in Helminthope (Rhodopemorpha) (Brenzinger et al.
2013a). The role of progenesis versus the development of
novel morphological inventions in Pseudovermidae still re-
mains to be investigated.

Direct observations on their biology and ecological inter-
actions within the meiofaunal communities in the marine
mesopsammon are difficult due to minute body sizes and the
common negative phototaxis of mesopsammic organisms.
The scarce knowledge is usually based on incidental observa-
tions under laboratory conditions or indirectly inferred from
morphological analyses. Pseudovermis retained–albeit partial-
ly weakly developed–cerata from its suspected aeolidoidean
ancestry (Salvini-Plawen and Sterrer 1968). Pseudovermid
cerata are reported to contain cnidosacs with cleptocnides
(i.e., nematocysts taken up from their prey) (Kowalevsky
1901; Marcus 1953; Challis 1969). The presence of cnidosacs
was discussed as a potential apomorphy for Aeolidoidea
(Wägele and Willan 2000), but comparative studies showed
that they are actually quite heterogenous regarding structure,
function, and, potentially, evolution (Martin et al. 2009;
Martin et al. 2010). They probably serve as a storage device
for nematocysts taken up with the food and may be actively
reused for defense (Wägele and Klussmann-Kolb 2005). This
unique feature offers indirect information on the biology and
on food sources of Pseudovermidae, which can contribute to
the understanding of the mesopsammic food web and preda-
tor–prey interactions in this ecologically little explored
habitat.

The present study provides a first detailed 3D-
microana tomica l redescr ip t ion of a member of
Pseudovermidae as a first step towards an in-depth revision
of this neglected mesopsammic lineage. Pseudovermis
salamandrops Marcus, 1953 was recollected at its type local-
ity at Ilhabela, São Paulo, Brazil (see Marcus 1953).
Currently, it represents the only known Pseudovermis species
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in the Western Atlantic, avoiding taxonomic problems
resulting from conflicting literature data and, therefore,
allowing the critical evaluation of the taxonomic characters
used for species delineation in Pseudovermidae. Implications
of the microanatomy for the biology and evolution of these
mesopsammic nudibranchs are discussed.

Material and methods

Sampling and fixation

Four specimens of Pseudovermis salamandrops Marcus,
1953 were collected at and near the type locality (Marcus
1953) during the ‘Taxonomy and diversity of marine
Meiofauna’ workshop at the Centro de Biologia Marinha of
the University of Sao Paulo, Brazil in October 2012. They
were found at two subtidal collecting sites at Itaçucê, São
Sebastião (23°49′55.70″S; 045°26′35.72″W; workshop
Station 17, at 7 m depth, shell gravel collected by scuba diving
byMaikon Di Domenico, KatrineWorsaae andMarco Curini-
Galletti) and Parcel do Julião, Ilhabela (23°51′13.26″S;
045°25′2.64″W; Station 22, at 4–5 m depth, shell gravel
collected by scuba diving by Gustavo Fonseca and
Marco Curini-Galletti). The specimens were extracted
from sand samples applying a careful decantation tech-
nique in MgCl2-seawater solution as described by
Schrödl (2006). Collected specimens were documented
alive via light-microscopy (bright-field and differential
interference contrast) using a Zeiss Axiophot 2 with
mounted Sony HDR-XR250 and Zeiss Discovery V20
withmounted Nikon D5100. Prior to fixation, specimens were
relaxed using 7 % MgCl2 solution and subsequently trans-
ferred to 96 % ethanol for molecular analyses and trialdehyde
for histology.

Microanatomy

One mature specimen fixed for histology was post-fixed in
1 % OsO4 and embedded in Epon epoxy resin. Heidemarie
Gensler (LMU) serially sectioned the specimen at 1.5μmwith
a MT7000 ultramicrotome (RMC) using a diamond knife
(Histo Jumbo, Diatome, Biel, Switzerland). The ribboned
sections were stained with methylene blue-azure II according
to Richardson et al. (1960). The object slides were scanned
with an Olympus® dotSlide microscope (.vsi format) and,
subsequently, digital images of each section were recorded
with OlyVIA® 2.4 software (Olympus Soft Imaging Solutions
GmbH). All photographs (.tif format) were edited (i.e., con-
trast enhanced, converted to grey scale and reduced in reso-
lution) in Adobe Photoshop®. The 3D-reconstruction of the
microanatomy of P. salamandrops was performed in
AMIRA® 3D-rendering software 5.2. (VSG, Visualization

Sciences Group SAS, United States), largely following the
outline described by Ruthensteiner (2008).

Results

External morphology

Body size of extended specimens of Pseudovermis
salamandrops varied between 2 and 5 mm (Fig. 1a). The adult
specimen described herein measured up to 3.5 mm when
crawling and 1.8 mm in the contracted and fixed state. The
worm-like body is highly flexible and contractible (Fig. 1b).
In living specimens the body is translucent whitish, with the
light yellowish colored and black spotted digestive gland
shining through the epidermis (Fig. 1a). A movie of a living
P. salamandrops is provided in Additional material 1. The
head lacks appendages (i.e., labial tentacles or rhinophores)
and is anteriorly broadened and rounded (Fig. 1a, b). Eyes are
lacking. The epidermis of the head is densely ciliated. The foot
is not clearly separated from the rest of the body but detectable
as heavily ciliated gliding sole which extends from the mouth
opening nearly all the way to the posterior end of the animal.
On histological sections, the gliding sole is bordered by paired
rows of single celled glands, which accumulate near the
mouth opening (Fig. 2c) and towards the posterior end.
Typically, in the first pair of cerata, which is located directly
behind the head, both cerata are positioned oppositely, the
following cerata are arranged alternately (Fig. 1a, b). In the
largest collected specimen (see Fig. 1a, b; Additional material
1), there are eight cerata on the left side of the animal and six
on the right side. The sectioned smaller, but also mature
specimen, bears four cerata on each side. The cerata are
finger-shaped and decrease in size towards the posterior end
of the animal (Fig. 1a).

Microanatomy

All major organ systems of P. salamandropswere reconstruct-
ed based on the histological section series. An overview on the
microanatomy and the relative position of the organ systems is
given in Fig. 1c.

Nervous system The central nervous system (CNS) is highly
concentrated and lies post-pharyngeally (see Fig. 1c). It com-
prises the paired cerebro-pleuro-visceral ganglia, pedal gan-
glia and buccal ganglia, the latter having a tiny gastroeso-
phageal ganglion attached dorsally (Fig. 3a, b; for identifica-
tion of the ganglia, see Discussion). The cerebro-pleuro-
visceral ganglia are the largest ganglia (approx. 90 μm) of
the CNS and are connected via a thick commissure
(Fig. 3a, b), which passes the esophagus dorsally. There is a
double connective between the cerebro-pleuro-visceral
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ganglion and the pedal ganglion, i.e,. the cerebro-pedal and
pleuro-pedal connectives (see Fig. 3c). The pedal ganglion is
located ventrally and slightly posteriorly of the cerebro-
pleuro-visceral ganglion. No visceral nerve cord and no eyes
were detected. Each of the paired statocysts contains one
statolith and is positioned dorsolaterally of the pedal ganglion
and innervated via the thin static nerve by the cerebral gan-
glion. Two major cerebral nerves arise from each cerebral
ganglion (one dorsally and one more lateroventrally) and pass
anteriorly (Fig. 3a). Each nerve bifurcates directly at its root
with the cerebro-pleuro-visceral ganglion (see Fig. 3a, b).
These cerebral nerves are partially swollen in their anterior
course. The swellings are identified herein as ‘accessory gan-
glia’ (Fig. 3a, d). The pedal ganglia (approx. 80 μm) are
connected via a strong pedal commissure and a second thin
commissure, herein identified as parapedal commissure

(Fig. 3a, e). Three pedal nerves were detected emerging from
each pedal ganglion, which all lead ventrally (Fig. 3c). The
small buccal ganglia (approx. 25 μm) (Fig. 3e, f) are located
postero-ventrally to the cerebro-pleuro-visceral ganglia and
antero-dorsally to the pedal ganglia (Fig. 3a, b). The
cerebro-buccal connective (Fig. 3c, e) is comparably thin
and slender. A thin buccal nerve innervates the pharynx. A
tiny gastroesophageal ganglion (approx. 15 μm) (Fig. 3a, f) is
attached dorsally to each buccal ganglion.

Digestive system (including cnidosacs) The mouth opening is
located ventrally in the mid-head region (see Figs. 1c and 2a).
The digestive tract comprises the short oral tube, the muscular
pharynx, which contains themandibles and the radula, the short
esophagus, the spacious stomach, the well-developed digestive
gland and intestine (see Fig. 2a). The transition of the oral tube

Fig. 1 External morphology and microanatomy. a, b Light-microscopic
image of living specimen. a extended while gliding. b slightly contracted
state. c 3D-reconstruction (right view) showing all organ systems. a anus;

am ampulla; c ceras; cns central nervous system; cs cnidosac; dg digestive
gland; e esophagus; gf female gonad; gm male gonad; gp gonopore; h
head; k kidney; mo mouth opening; ph pharynx; r radula; st stomach
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to the pharynx is marked by a folded cuticular ring (Fig. 2c).
The bulbous pharynx contains the two chitinous mandibles
(= jaws) and the hook-shaped radula (Fig. 2a, b), with the
formula 1.1.1. Light-microscopy of the radula shows a
rhachidian tooth with a large and pointed central cusp and 4–
5 lateral denticles, which increase in size towards the outer
most; the lateral tooth is narrow, slightly curved and pointed
(see Additional material 1). The inner borders of the mandibles
are thickened (Fig. 2d). The short esophagus with thin epithe-
lium emerges postero-dorsally from the pharynx (Fig. 2b) and
opens into the spacious stomach (Fig. 2a), which has a large
lumen and the inner side of the epithelium is covered with
mucus (Figs. 3c and 4c). A pair of roundish salivary glands lies
posterior to the esophagus ventrally to the stomach (Fig. 2a).
No salivary ducts were detected. The cells of the salivary glands
are vacuolous and contain some dark blue stained droplets
(Fig. 2e). On the left lateral dorsal side of the stomach emerges

the intestine (Fig. 2a). Ventrally the stomach widens into the
large sac-like, unbranched digestive gland. The digestive gland
occupies large parts of the posterior body cavity (Fig. 2a), and it
slightly protrudes into six out of eight cerata in the sectioned
specimen (see an example in Fig. 6c). The epithelium of the
digestive gland is glandular (Figs. 2e and 4f) and bears some
vacuoles containing small yellowish light-refracting roundish
structures (see Fig. 6d) and especially in the vicinity of the
cerata dark blue staining nematocysts (Fig. 6c, d). The intestine
emerges from the stomach on the dorsal left side, passes to the
right of the animal and then runs ventrally (Fig. 2a). It is a thin
tube and its epithelium is heavily ciliated (Figs. 4c and 5b). The
anus (Figs. 1c and 2a) opens on the right mid side of the animal
to the exterior opposite of the second left ceras.

The first ceras to the right is situated nearby the stomach. The
posteriormost ceras on the right is separated from the digestive
system by the male part of the gonad. In the remaining cerata the

Fig. 2 Digestive system. a, b 3D-reconstructions (right view), c–e
Histological longitudinal sections. a Position of the digestive system
within the body. b Pharynx with mandibles and radula. c Cuticular ring
anterior to the pharynx. d Mandibles within the pharynx. e Stomach and
digestive gland. a, anus; bg buccal ganglion; c, ceras; cr cuticular ring; cs,

cnidosac; dg, digestive gland; e esophagus; gl gland cells in the anterior
foot region; i, intestine; k kidney; m mandible; ot, oral tube; p penis; pg
pedal ganglion; psgl penial sheath gland; ph, pharynx; ps penial sheath;
psg glandular part of penial sheath; r, radula; rpd renopericardioduct; sgl,
salivary gland; st, stomach
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digestive gland approaches or slightly protrudes into the lumen
of the cerata (Fig. 6c). Each ceras contains a cnidosac
(Fig. 6a, c), which is surrounded by a thin epithelium and filled
with numerous large cnidophages (Fig. 6c), which each contain
several (unfired; i.e., histologically intact) nematocysts (Fig. 6b).
No connecting duct between digestive tract and cnidosacs could
be detected, nor a pore at the tip of the ceras opening to the
exterior. However, some cerata are ruptured at the tip, releasing
the cnidophages (Fig. 6d). Using light-microscopy, we observed

at least four distinct undischarged capsule types densely packed
within cnidosacs. The largest (11.0–12.5×9.7–11.2 μm) type of
nematocyst was almost roundish with a tubule evenly coiled
perpendicular to the main axis of the capsule, identified as
holotrichous isorhiza (haplonemes). The most common nema-
tocyst (7.1–10.8×4.8–8.4 μm) was oval with a protruding an-
terior end and a shaft in the center of the capsule (possibly a
stenotele). Among these two types, there were a few unidenti-
fied bean-shaped capsules (7.5×3.3 μm) and several smaller

Fig. 3 Central nervous system (CNS). a Schematic overview, nerves
omitted for clarity except for cerebral nerves (dorsal view, not to scale). b
3D-reconstruction (dorsal view, accessory ganglia omitted). c–f
Histological longitudinal sections (c, e anterior side of the animal facing
upwards. d, f anterior side facing to the right). c Cerebro-pleuro-visceral
ganglia with double connective to the pedal ganglion (see arrow heads). d
CNSwith accessory ganglia and statocyst. e Pedal ganglia with parapedal

commissure. f Buccal and gastroesophageal ganglia. ag accessory gan-
glion; bg, buccal ganglion; bgc buccal-gastroesophageal connective; cbc
cerebro-buccal connective; cn, cerebral nerve; cpvg, cerebro-pleuro-vis-
ceral ganglion; dn, dorsal cerebral nerve; e, esophagus; geg, gastroesoph-
ageal ganglion; m mandible; pg, pedal ganglion; ph, pharynx; pn pedal
nerve; ppc, parapedal commissure; s, statocyst; sgl, salivary gland; st,
stomach; vn, ventral cerebral nerve
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nematocysts (6.2–6.7×4.1–4.7 μm) that looked like
desmonemes. We noted a variation in type and size of the
encountered nematocysts in a second specimen. The

nematocysts observed here were fewer in number and smaller
in size (desmonemes: 4.2–4.8×3.0–3.1 μm; stenoteles: 7.7–
8.8×4.7–6.9 μm; bean-shaped: 6.6–6.7×3.0–3.2 μm); the large

Fig. 4 Histological sections of the genital system. a Tip of the penis with
cuticular lining. b Base of the penis cuticular lining. c Prostate. d Penial
sheath, penial sheath gland and ampulla. e Receptaculum seminis and
membrane-mucus gland. f Gonad with male and female follicle. am
ampulla; ca cuticular lining at the apical tip of the penis; cb cuticular

lining at the base of the penis; dg digestive gland; gf female gonad; gm
male gonad; i intestine; k kidney; mmg mucus-membrane gland; od
oviduct; p penis; pad post-ampullary duct; pr prostate; ps penial sheath;
psg glandular part of penial sheath; psgl penial sheath gland; rs
receptaculum seminis; st stomach

Fig. 5 Excretory and circulatory systems. a 3D-reconstruction (dorsolateral right view, arrow, unidentified part of the kidney), b Histological section.
dg, digestive gland; i, intestine; k, kidney; pc, pericardium; rpd, renopericardioduct
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putative holotrichous isorhiza present in the other specimen was
not observed.

Excretory and circulatory systems The excretory and circula-
tory systems are located at the right side of the middle of the
body (Fig. 1c). The kidney is an elongated bent sac (Fig. 5a)
with glandular epithelium (Fig. 5b). The small and inconspicu-
ous pericardium is situated dorsally to the kidney and connected
to the latter by the short and narrow renopericardioduct (with
ciliated epithelium) (Fig. 5a, b). Further comparative and ultra-
structural investigation is needed to clarify whether this ciliated
renopericardioduct represents a syrinx. The renopericardioduct
is located between the kidney and the body wall and bears a
small lumen (Fig. 5a, b). No heart could be detected by light-
microscopy of living specimens (see Additional material 1) or
on the histological sections. No nephroduct could be detected
histologically. A thin-walled, yet unidentified structure of un-
clear origin is situated dorsally to the kidney (see arrow in
Fig. 5a).

Reproductive system The reproductive system of
Pseudovermis salamandrops is hermaphroditic and has a
triaulic condition (Fig. 7a). The male part of the genital system
comprises the male follicle of the gonad, the vas deferens, the
prostate and the penis surrounded by a penial sheath and an
attached penial sheath gland. The female part of the genital
system comprises the female follicles of the gonad, the oviduct,
the receptaculum seminis and two histologically distinct
nidamental glands. The male and female parts of the genital

system connect close to the hermaphroditic genital opening (see
Fig. 7a), which is located on the right side of the body posteri-
orly to the anus (Fig. 1c).

The hermaphroditic gonad is large and occupies most of
the posterior part of the body next to the digestive gland. It is
well-separated into the female portion (divided into several
female follicles separating oocytes in various stages of matu-
ration (approx. 25 μm)) and the male one on the right side of
the animal (one elongated male follicle containing the
autosperm) (Figs. 4f and 7a, b). The gonad passes into the
large, tubular ampulla, which is packed with randomly orien-
tated sperm (Figs. 4d, e and 7a). The post-ampullary gonoduct
splits into the vas deferens and the oviduct (Figs. 4d and 7a, b).
The short and narrow vas deferens leads into the tubular
prostate (Figs. 4c and 7a, b) from which the small distal vas
deferens connects to the muscular penis. The latter is lined on
one side with a thin cuticle which slightly extends over the tip
of the penis (Figs. 4a, b and 7d). The penis is surrounded by a
loose thin-walled penial sheath (Fig. 7d), which is glandular at
the base (Fig. 4a, b). A sac-like penial sheath gland (Fig. 7a–c)
discharges its content into the distal part of the penial sheath.
This conspicuous muscle-lined gland is filled with very fine
dark blue droplets (Fig. 4d). The penial sheath joins the
hermaphroditic duct just at the common hermaphroditic gen-
ital opening (Figs. 1c and 7a). The proximal oviduct is com-
parably long. The small, sac-like and ciliated receptaculum
seminis (Fig. 4e) branches off from the oviduct (Fig. 7c). No
allosperm was encountered in the receptaculum seminis. The
distal oviduct portion bearing two discernable female

Fig. 6 Cerata with cnidosacs. a, b Light-microscopical images. c, d
Histological sections. a Ceras with cnidosac, showing nematocysts also
in the stomach. b Cnidosac filled with nematocysts. c Digestive gland

extending into the ceras. d Ruptured ceras and cnidosacs (arrow heads
unidentified yellowish structures in digestive gland cells). c ceras; cp
cnidophage; cs cnidosac; dg digestive gland; nc nematocyst
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glands, is separated from the vagina, and leads to a
partially triaulic condition. The proximal female gland
is smaller and tube-like with elongated wedge-shaped
cells filled with dark blue staining granules, identified as
albumen gland. The distal female gland is larger with large
vacuolous cells and identified as membrane-mucus gland
(Figs. 4d, e and 7a–c). Oviduct and vagina unite leading to
the hermaphroditic gonopore.

Discussion

Species delineation in Pseudovermidae

Traditionally, species delineation in Pseudovermidae relies on
characters from the external morphology (e.g., number, size, and
relative position of cerata were regarded of considerable

importance), as well as radula and mandibles (see Salvini-
Plawen and Sterrer 1968; Urgorri et al. 1991). As reported
previously and shown in Fig. 1a, b for Pseudovermis
salamandrops, the body of Pseudovermis is contractile and body
size can vary in extended vs. contracted states of an individual.
The number of cerata varies in the ontogeny of Pseudovermis
(Fize, 1961; Challis, 1969; Salvini-Plawen, 1991), but addition-
ally also intraspecifically in adult specimens of different sizes
(present study and Marcus (1953) on P. salamandrops).
Prominent, slender and finger-like cerata can be clearly distin-
guished from non-prominent inconspicuous ones and appropri-
ately serve as major distinguishing feature in keys to
Pseudovermidae (see Salvini-Plawen and Sterrer 1968; Urgorri
et al. 1991). Slight modifications in their appearance, however,
are problematic for taxonomy due to their contractibility and
potential artifacts during fixation. This should be taken into
account especially when comparing data from living animals to

Fig. 7 Genital system. a Schematic overview (not to scale), b–d 3D-
reconstructions. b Complete genital system (dorsolateral right view). c
genital system without gonads (ventral view). d Copulatory organ (right
view). alg albumen gland; am ampulla; c cuticular lining of penis; gf

female gonad; gm male gonad; gp gonopore; mmg membrane-mucus
gland; od oviduct; p penis; pad post-ampullary duct; pr prostate; ps penial
sheath; psg glandular part of penial sheath; psgl penial sheath gland; rs
receptaculum seminis; va vagina; vd vas deferens
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descriptions based entirely on fixedmaterial. External differences
among Pseudovermidae, if consistent and real, can be useful in
some instances, but are insufficient for reliable species discrim-
ination in others.

The radula formula of Pseudovermis is 1.1.1; the rhachidian
tooth is characterized by one large central cusp bordered by 3–6
lateral denticles, which often increase in size towards the out-
ermost (see Additional material 1); only P. hancocki Challis,
1969 lacks the prominent central cusp (Challis 1969). The
lateral teeth are sharply pointed and can additionally bear 1–2
lateral and pointed denticles (Salvini-Plawen and Sterrer 1968;
Challis 1969; Salvini-Plawen 1991; Urgorri et al. 1991). Based
on the existing records, interspecific variation is limited to
number and relative size of denticles on rhachidian and lateral
teeth (Urgorri et al. 1991; table 1 for summary). Several studies
report, however, an intraspecific or even intraindividual varia-
tion in these characters, i.e., in the number of denticles on the
rhachidian tooth (Marcus and Marcus 1955; Salvini-Plawen
and Sterrer 1968; Challis 1969; Salvini-Plawen and Rao
1973; Salvini-Plawen 1991) and on the lateral teeth
(Hamatani and Nunomura 1973; Urgorri et al. 1991). The
variability of mandible morphology (the denticulation of the
anterior edge and its enforcement and elongation) is not suffi-
ciently explored as yet to judge the taxonomic value. Challis
(1969) criticized rightly the use of divergences in the shape of
sectioned mandibles as taxonomic character due to its depen-
dence on the cutting plane (see also Fig. 2d herein). To further
evaluate the value of the characters from radulae and mandibles
for species delineation in Pseudovermidae 1) reinvestigation
via SEM is needed especially for species with light-microscopy
based descriptions only and 2) it is inevitable to critically
evaluate in a comparative approach whether the
intraindividual/intraspecific variation of these characters ex-
ceeds the interspecific ones.

Because of the potential limitations of traditional taxonom-
ic characters, described Pseudovermis species need to be
reexamined. Especially the taxonomic validity of clusters of
potentially co-occurring European species only diagnosed by
minor differences of the characters listed above need to be
critically reinvestigated using additional characters. This con-
cerns mainly the cluster of European species bearing eyes but
lacking prominent cerata, i.e., P. paradoxus Pereyaslavtzeva,
1891, P. schulzi Marcus & Marcus, 1955, P. kowalevskyi
Salvini-Plawen & Sterrer, 1968, P. boadeni Salvini-Plawen
& Sterrer, 1968, P. setensis Fize, 1961 and P. thompsoni
Salvini-Plawen, 1991. Microanatomical features could pro-
vide additional characters for species delineation. Based on
available comparative data, details of the genital system (e.g.,
presence of penis, cuticular lining of the penis) seem promis-
ing but need to be carefully evaluated due to the probably high
ontogenetic variability. Putative high intraspecific variation is
further complicated by morphological similarity among taxa.
Cryptic species were revealed in meiofaunal Acochlidia and

assumed to present the rule rather than the exception across
meiofaunal taxa with low dispersal abilities (Neusser et al.
2011; Jörger et al. 2012; Jörger and Schrödl 2013).
Accounting for the likeliness for cryptic species also in
Pseudovermis, an integrative approach (i.e., combining infor-
mation from all available sources e.g., morphology, micro-
anatomy, molecular data or biogeography) will be needed to
reliably address the worldwide diversity of Pseudovermis in
future research.

Microanatomy of Pseudovermis salamandrops

Our redescription of P. salamandrops corrects the original
description in several aspects, mainly of the reproductive
system, and adds some new data especially to the nervous
system.

The nervous system of P. salamandrops reconstructed here-
in (see Fig. 3a) confirms with the outline given in the original
description (Marcus 1953) and the general bauplan of the
central nervous system of other Pseudovermis (Marcus and
Marcus, 1955; Challis, 1969; Salvini-Plawen, 1991; Huber,
1993). The cerebral ganglion fuses early in development with
the pleural ganglion, based on ontogenetic data from
aeolidoidean nudibranchs (Tardy 1970, 1974; Carroll and
Kempf 1994). The fusion of the two ganglia is still indicated
in adult specimens of P. salamandrops by the presence of two
connectives to the pedal ganglion (i.e., cerebro-pedal and
pleuro-pedal, see Fig. 3c). Later in ontogenetic development
of aeolidoids these two connectives frequently fuse to one
(Tardy 1970), a condition also reported from the nervous sys-
tem of P. mortoni (Challis, 1969). In P. thompsoni the two
connectives are partially fused (Salvini-Plawen 1991). Later
in aeolidoidean ontogeny the ganglia of the visceral nerve cord
also fuse with the cerebro-pleural ganglia (Tardy 1970; Kristof
and Klussmann-Kolb 2010). Based on the pentaganglionata
hypothesis (Haszprunar 1985) and ontogenetic studies on
aeolidoidean Nudibranchia, the ganglia ofPseudovermiswhich
were traditionally and in related taxa identified as cerebro-
pleural ganglia, were termed as cerebro-visceral ganglia by
Huber (1993). Offering a term which unifies terminology, we
refer to the cerebro-pleural/cerebro-visceral ganglia of
P. salamandrops as cerebro-pleuro-visceral ganglia.
Unfortunately, we were unable to detect the remainder of the
visceral cord, probably due to its reduced diameter and lack of
ganglia (e.g., Schmekel 1985). Gastroesophageal ganglia are
reported herein for the first time in Pseudovermidae, but rein-
vestigation of the other species is needed because the ganglia
might have been overlooked due to their small size. We detect-
ed two major bifurcating nerves emerging anteriorly from the
cerebral ganglion, one dorsally and one in a more lateroventral
position (see Fig. 3a). According to previous studies on the
nervous system of Pseudovermis (Salvini-Plawen, 1991;
Huber, 1993), the dorsal nerve herein likely corresponds to
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the rhinophoral nerve (nervus rhinophoralis) and the ventral
one to the labiotentacular nerve (nervus labiotentacularis). This
terminology by Huber (1993) was synonymised as N3 and N2
respectively in an attempt to homologize cerebral nerves across
‘Opisthobranchia’ via axonal projection patterns (Klussmann-
Kolb et al. 2013). But homologization especially in aberrant
taxa with reduced head appendages still remains problematic.
In contrast to the original description, the cerebral nerves of
P. salamandrops bear accessory ganglia, as described for some
other Pseudovermis (e.g., P. paradoxus as ‘foliaceous groups’
(Kowalevsky 1901) or P. thompsoni (Salvini-Plawen, 1991))
but absent from others (e.g., P. artabrensis (Urgorri et al.,
1991)). Accessory ganglia (defined as accumulations of ner-
vous tissue surrounded by a thin connective tissue, but lacking
the characteristic division between cortex and medulla) are
commonly found in mesopsammic interstitial slugs (see e.g.,
Neusser et al. 2006; Jörger et al. 2008; Brenzinger et al. 2013a)
and were argued to present an adaptation to the mesopsammic
environment by enhancing the abilities to cope with and pro-
cess the stimuli of this three-dimensional habitat (Brenzinger
et al. 2013a).

Excretory and circulatory systems of P. salamandrops are
reduced and simplified. The only trace of a circulatory system
is a small and inconspicuous pericardium, which is character-
istic for Pseudovermis (Salvini-Plawen, 1991). We were un-
able to detect a ‘pericardial gland’, a very unusual feature
described in the original description as a mug-shaped
cuticularized part around the distal part of the pericardium
(40–50 μm in diameter). An unidentified structure potentially
attached to the kidney found in the examined specimen herein
requires reexamination when additional material is available
to clarify its potential relation to the excretory system. But due
to its position and uncuticularized appearance, it certainly
does not relate to the ‘pericardial gland’ described by
Marcus (1953). Due to the minute size of the pericardium,
electron microscopy is needed to supplement the microanato-
my provided and to clarify the site of ultrafiltration respec-
tively to the presence of podocytes in these animals.

The redescr ipt ion of the digest ive system of
P. salamandrops is in concordance with the original descrip-
tion. From a systematic point of view, the holohepatic, un-
branched digestive gland is of special interest as it is highly
unusual among Aeolidoidea, which usually bear a cladohepatic
digestive gland (Wägele and Willan 2000). The putative
plesiomorphic state of the pseudovermid digestive gland might
indicate a basal position of Pseudovermidae to remaining
Aeolidoidea. The simple arrangement of the digestive gland,
however, might also result from progenetic effects or could
present a regressive feature affected by miniaturization. The
branching of the digestive gland was discussed as an adaptation
to increase the surface area for digestion (Wägele and Willan
2000), which might be dispensable in minute sea slugs. We did
not observe a connecting duct between the digestive gland and

the cnidosacs, nor a terminal pore for expulsion of the nemato-
cysts (see Fig. 6c, d). Both features are usually present in
aeolidoidean cnidosacs (see e.g., Martin et al. 2010) and the
pseudovermid state observed herein rather represent the
cnidosac-structure of dendronotacean Hancockia sp., raising
doubts on the systematic placement of Pseudovermidae within
Aeolidoidea.

The presented redescription of the genital system of
P. salamandrops shows several discrepancies to the original
description. The latter (see Marcus 1953) lacked a
receptaculum seminis and a penial sheath gland, and Marcus
described an unusual connection between vas deferens and
excretory system as well as an additional connection between
the albumen and themembrane-mucus gland. None of the latter
two features was detectable in our specimen. A connection
between the male gonoduct and the kidney is indeed extraor-
dinary and its functional significance questionable, thus, it
probably rather presented an artifact than an ontogenetic stage
or paedomorphic feature showing the two systems connected.
Challis (1969) regarded the sac-like appendage of the oviduct
proximal of the nidamental glands as fertilization chamber.
Despite of the absence of allosperm inside, it is identified herein
as receptaculum seminis, because of its ciliary epithelium and
relative (proximal) position in the system. Moreover, Marcus
(1953) described separate, though directly neighboring, male
and female genital openings, while in our specimen both ducts
clearly unite right before leading into the common hermaphro-
ditic genital opening (see Fig. 7a). Either the close vicinity led
to a misinterpretation or the genital openings are variable in
different stages of sexual maturity. Other triaulic genital system
with separated or common genital opening are described for
P. axi Marcus & Marcus, 1955, P. schulzi and P. mortoni
(Marcus and Marcus, 1955; Challis, 1969). The partial triauly
reported forPseudovermis is not fully consistent, however, with
the definition of triauly by Ghiselin (1965), requiring fully
separated gonoducts. Triauly is considered the apomorphic
stage in Nudibranchia and most cladobranch sea slugs show a
diaulic condition (Wägele and Willan 2000). Among
Pseudovermidae such a potentially plesiomorphic diaulic gen-
ital system is only known for P. thompsoni (Salvini-Plawen,
1991). But with the few comparative data available at present,
an evolutionary interpretation on the differences in the genital
systems ofPseudovermis is difficult andmore data covering the
difference in sexual development are needed. Reinvestigation
of the ‘cuticular penis’ (Marcus 1953) of P. salamandrops
showed a cuticular lining of one side of the penis, which
slightly projects beyond the tip of the penis (see Fig. 7a). This
cuticular lining does not resemble a hollow stylet; it is solid and
the sperm is discharged via an opening at the tip of themuscular
penis. The cuticular lining and spine might serve for anchoring
and better fixation of the penis during copulation or alternative-
ly may serve as stabilization of the penis during hypodermic
injection. In aphallic species of Pseudovermis 2–3 tubular blind
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sacs filled with secretory products emerge from the distal part
of the male gonoduct (Marcus and Marcus 1955; Salvini-
Plawen 1991), these are absent in species with penis which
probably transfer sperm via copulation (Challis 1969; present
study). These blind sacs might serve as accessory storage
containers for spermatophores. Despite the still unclear phy-
logenetic affinities of Pseudovermis, (reciprocal) copulation
probably presents the plesiomorphic state in Pseudovermis as
it is the most common mode of sperm transfer in
Nudibranchia (Rivest 1984) and, therefore, likely the
outgroup state. Sperm transfer via spermatophores or hypo-
dermic injection in Pseudovermis might present an adaptation
to the interstitial environment, which is hypothesized to favor
fast and imprecise modes of sperm transfer (Jörger et al.
2009).

Adaptations to the mesopsammon

Next to Helminthope psammobionta Salvini-Plawen, 1991,
members of the Pseudovermidae are considered to have the
best adapted body plan for life between sand grains among
meiofaunal slugs (Swedmark 1968; Brenzinger et al. 2013a).
This pseudovermid body plan can be interpreted as a paedo-
morphic feature based on histological studies by Tardy (1970),
who described the ontogeny of the nudibranch Aeolidiella
alderi (Cocks, 1852) in remarkable detail. An early juvenile
stage after settlement and metamorphosis of the veliger larvae
closely resembles the external morphology of Pseudovermis
with an elongated worm-shaped body, few cerata and a simple
roundish head prior to the formation of oral tentacles and
rhinophores (Tardy 1970). Several nudibranchs are temporar-
ily mesopsammic, i.e., early juvenile stages inhabit the inter-
stitial before changing to a benthic lifestyle (pers.obs.).
Pseudovermis might have evolved from an dexiarchian an-
cestor via a progenetic step, as suspected for several other
meiofaunal slugs (Jörger et al. 2010; Brenzinger et al. 2013a)
and discussed as general driving force ofmeiofaunal evolution
(Westheide 1987). Progenesis might have also affected the
excretory and circulatory systems potentially explaining the
reduction of the pericardial/nephridial system. The nervous
system of Pseudovermis is further developed than the early
juvenile stage of Aeolidiella alderi, which was described by
Tardy (1970) to resemble the pseudovermid body plan. In
contrast to other meiofaunal slugs (e.g., Rhodopemorpha
(Brenzinger et al. 2013a) or Acochlidia (Neusser and
Schrödl 2007)) the ganglia of the visceral nerve cord are
probably fused with the cerebro-pleural ganglia in
Pseudovermis, which presents a derived stage based on the
pentaganglionate hypothesis (Haszprunar 1985). But Tardy
(1970) states that this developmental step in the central ner-
vous system of aeolidoidean nudibranchs proceeds quickly
and varies in the ontogenetic development between the differ-
ent individuals.

Some additional adaptations to life in the interstitial
spaces of sand grains are visible in Pseudovermis. Only
P. mortoni has intraepidermal calcareous spicules developed
(Challis 1969), which is characteristic for many other
meiofaunal slug lineages (Brenzinger et al. 2013a). Based
on current knowledge, these spicules present an apomorphy
of P. mortoni only and do not characterize the genus
Pseudovermis. The ability to adhere to sand grains is, how-
ever, present in most pseudovermids (see e.g., Hamatani and
Nunomura 1973; Salvini-Plawen 1991), likely the posterior
accumulation of pedal glands are transformed into a poste-
rior adhesive gland.

Biology of Pseudovermis

Most aeolidoidean Nudibranchia feed on Cnidaria and are not
only able to prevent nematocysts from exploding while feed-
ing but also to store the eaten nematocysts and retain them as
functional (see e.g., Grosvenor 1903; Schmekel and
Portmann 1982). In general, part of the uptaken nematocysts
are digested but a part is transported to the digestive gland,
phagocytosed by digestive gland cells (cnidophages) and
stored in cnidosacs. The latter are defined as muscular-lined
storage organs at the tip of body appendages (cerata) (Martin
2003; Martin et al. 2009). The identification of the stored
nematocysts to a cnidarian taxon allows linking the nudi-
branch to its prey (Grosvenor 1903; Kälker and Schmekel
1976). The food sources of Pseudovermis have long been a
matter of speculation, especially with regards to rarity of
mesopsammic cnidarians for a putative cnidarivore (Challis
1969). Based on the co-occurrence and similarities of the
nematocysts Challis (1969) indirectly concluded that
Pseudovermis mortoni probably feeds on the polyp Euphysa
sp. (Corymorphidae, Hydrozoa; as Heterostephanus sp.) and
Boaden (1961) suggested the interstitial medusa
Halammohydra vermiformis Swedmark & Teissier, 1957
(Halammohydridae, Hydrozoa) as potential food source of
P. boadeni . The only direct feeding records in
Pseudovermidae exist of P. thompsoni, which was caught in
the act feeding on Halammohydra schulzei Remane, 1927
and H. octopodides Remane, 1927 (Salvini-Plawen, 1991).
Marcus (1953) suggested that the two types of nematocysts
she identified in P. salamandrops might belong to
Psammohydra nanna Schulz, 1950 (Boreohydridae,
Hydrozoa), but without having found both species to co-
occur. In the present study, we also found no directly co-
occuring cnidarians, but at two neighboring stations an un-
identified species of Halammohydra sp. (station 24) and
Pinushydra chiquitita Bouillon & Grohmann, 1990
(Corymorphidae, Hydrozoa) (station 30) were encountered
(AEM, unpublished data). The interstitial hydroid
Nannocoryne mammylia Bouillon & Grohmann, 1994
(Corynidae, Hydrozoa) was described for the neighboring
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state of Rio de Janeiro (Bouillon and Grohmann 1994) and
hydroids of small size living attached to sand grains were also
found in our sampling region (AEM, own observations).
Unfortunately, nematocysts could not be identified with cer-
tainty to species level in light-microscopic observations of
living P. salamandrops. The cnidomes of the specimens of
both Halammohydra sp. and Pinushydra chiquitita found in
the region comprise stenoteles and desmonemes as identified
in P. salamandrops. Pinushydra chiquitita has also a bean-
shaped microbasic eurytele that might correspond to the
bean-shaped capsules found in one of the specimens of
P. salamandrops. The sizes of these three types of nemato-
cysts (desmonemes, stenoteles, microbasic euryteles) match
approximately with the sizes of the ones in the cerata of
P. salamandrops, but small differences prevent an assignment
with certainty. Stenoteles are also present in the Corynidae
Nannocoryne mammylia (see Bouillon and Grohmann 1994),
as well as in other families of the suborders Aplanulata and
Capitata, including those that have interstitial representatives
or are small and live buried in the sediment, as Acaulidae
(Acaulis, Acauloides), Boreohydridae (Boreohydra,
Psammohydra), Corymorphidae (Euphysa, Pinushydra),
Protohydridae (Protohydra), and Tricyclusidae (Tricyclusa).
Interstitial cnidarians are still poorly known. They can pass
undetected due to their minute size, fragility, and difficulty to
extract from sediment. There could be, thus, a yet unknown
fauna of mesopsammic cnidarians in the studied region that
can be used as food source by P. salamandrops, which
potentially preys on various interstitial cnidarians. The yel-
lowish, light-refractive granules found in some digestive
gland cells of P. salamandrops and previously reported for
P. mortoni (Challis, 1969) might relate to zoochlorellae or
zooxanthellae ingested together with the cnidarians food and
not relate to excretory cells as previously interpreted (Graham
1938; Challis 1969).

The (exclusive) cnidariovory of Pseudovermis is
contradicted by records on P. japonicus Hamatani &
Nunomura, 1973 which lacked cnidosacs or traces of nem-
atocysts in its digestive tract (Hamatani and Nunomura
1973). This phenomenon was additionally reported in some
individuals of P. thompsoni (Salvini-Plawen, 1991) and
juveniles of P. setensis (Fize, 1961) and is known for other
aeolidoidean nudibranchs, which prey on other animals but
not cnidarians (Grosvenor 1903). This goes along with
various direct observations on different Pseudovermis spe-
cies attacking and feeding on other meiofaunal slugs that
are microhedylid Acochlidia (Kowalevsky 1901; Fize 1961;
Challis 1969; own observations). Thus, Pseudovermis
seems to be a facultative cnidarivore (Fize 1961) and,
based on present knowledge might not be specialized on
one mesopsammic cnidarian, but rather omnivorously takes
advantage of different food sources according to
availability.

Conclusions

The microanatomy of Pseudovermis salamandrops presents a
combination of potential paedomorphic features (general body
plan) with simplified organ systems on the one hand (circulatory
and excretory systems) and organ systems, which show a high
anatomical complexity on the other hand (i.e., the triaulic repro-
ductive system). More comparative data on Pseudovermidae
and their potential sister groups are needed to evaluate the
plesiomorphic versus apomorphic state of the observed charac-
ters and to place them in an evolutionary context. Several
anatomical details do not support the traditional placement of
Pseudovermidae within cladobranch Aeolidoidea (e.g., arrange-
ment of cerata, unbranched, holohepatic digestive gland,
cnidosacsmorphology). At least some of these charactersmight,
however, be affected by progenesis and/or miniaturization, po-
tentially misleading systematic conclusions. This underscores
once more the need for an integrative approach in future re-
search to address the evolution of Pseudovermidae.
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