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Perhaps due to its origins in a production scheduling software called Optimised Production Technology (OPT), plus the
idea of focusing on system constraints, many believe that the Theory of Constraints (TOC) has a vocation for optimal
solutions. Those who assess TOC according to this perspective indicate that it guarantees an optimal solution only in
certain circumstances. In opposition to this view and founded on a numeric example of a production mix problem, this
paper shows, by means of TOC assumptions, why the TOC should not be compared to methods intended to seek optimal
or the best solutions, but rather sufficiently good solutions, possible in non-deterministic environments. Moreover, we
extend the range of relevant literature on product mix decision by introducing a heuristic based on the uniquely identi-
fied work that aims at achieving feasible solutions according to the TOC point of view. The heuristic proposed is tested
on 100 production mix problems and the results are compared with the responses obtained with the use of Integer Linear
Programming. The results show that the heuristic gives good results on average, but performance falls sharply in some
situations.

Keywords: Theory of Constraints; optimization; production mix; excess capacity; Integer Linear Programming

1. Introduction

Several researchers and papers have discussed and compared the Theory of Constraints (TOC) to exact and heuristic
approaches regarding their applicability and effectiveness. The studies that demonstrate the weaknesses of TOC in
choosing the best production mix make use of examples grounded in deterministic data, without taking into account the
variability inherent in the real world. As will be conceptually and appropriately discussed, when considering that the real
world is not deterministic, solutions that maximise end results would not always be feasible and therefore the
discussions derived from them would have little practical value. This perspective, shared by TOC, according to which
variations or the presence of noise makes it impossible to reach optimal results (in general, not only in production mix
problems) is the focus of this article and has not been effectively examined by previous works. The only work found
that explicitly addressed this issue was that of Barnard (2006), presented at the TOCICO (Theory of Constraints Interna-
tional Certification Organisation) conference in 2006. More specifically, from a classic production mix problem perspec-
tive, the present article will discuss that the importance of keeping some level of excess capacity, or protective capacity,
is critical to the feasibility of the proposed solutions. Furthermore, this work proposes and assesses an algorithm based
on Barnard (2006) and applies it in 100 different production mix problems. For comparison purposes, ILP models are
used to provide optimal solutions, which may or may not ensure excess capacities.

In this sense, this paper is not intended to present a wide theoretical review on TOC or optimisation methods, or
even to investigate ways to optimise solutions for a better production mix. In fact, this article is intended to achieve
three objectives.

(1) Show, conceptually, why the TOC cannot be characterised as an extension of methods aimed at optimising results.
(2) Propose an algorithm based on Barnard (2006).
(3) Based on ILP models, assess the results achieved by the algorithm proposed.
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With these objectives, this paper initially shows and discusses, from a conceptual point of view, the main concepts
and assumptions on which the present work is based and on which the main conclusions are built. To illustrate the con-
cepts and the proposal presented, a classic production mix optimisation problem – known as a P&Q problem and first
shown by Goldratt (1990) – is used. Although this problem is defined by deterministic data, the discussion and analysis
are carried out from the perspective of the existence of variability, especially in the capacity of resources. Such statistical
variations, however, will not be made explicit nor be considered in the calculations. Results obtained from the
application of the P&Q problem, including a new problem adapted from it, are then exploited in order to show TOC
assumptions and its different point of view when compared with approaches focused on maximising throughput in the
absence of variability. Finally, a heuristic based on Barnard (2006) is developed and its results analysed and compared
with those obtained from the application of ILP models.

2. The Theory of Constraints and the production mix problem

The TOC is a management philosophy based on a systemic approach, aiming to provide its practitioners with not only
answers to the question ‘what’ (the fundamental principles to improve organisations continuously and sustainably), but
also ‘how’ – the processes of analysis, policies, practices and measures required to implement, in a practical and effec-
tive way, a systems approach to achieve continuous improvement in their organisations (Barnard 2010).

Based on the different roles of constraint and non-constraint resources, the TOC provides five core steps that must
be followed in order to ensure effective on-going improvement.

(1) Identify the system constraint(s).
(2) Decide how to exploit the system’s constraint(s).
(3) Subordinate everything else to that decision.
(4) Elevate the system constraint(s).
(5) If, in a previous step, a constraint was broken, return to the first step, but prevent inertia from becoming the sys-

tem’s constraint.

Goldratt and Cox (2004) affirm that if capitalist enterprises must be evaluated in terms of net profits (NP) and return
on investment (ROI ), each local action should be judged according to its impact on the NP and the ROI . For that, the
TOC suggests three performance measures.

• Throughput (T ): The rate at which the system generates money by means of sales, i.e. all the money entering
the enterprise minus the amount paid to suppliers (Total Variable Costs – TVC).

• Investment (I): All the money captured by the system.

• Operating Expense (OE): All the money the system spends on transforming investment into throughput.

According to Goldratt (1990), the relationship between the three TOC measurements (T , I and OE), Net Profit (NP)
and Return on Investment (ROI ) becomes immediate. NP is Throughput minus Operational Expenses, while ROI is
Throughput minus Operational Expenses, divided by Investment.

In combination with these measures and derived from the logic present in TOC’s five steps, Goldratt (1990)
recommends a fourth measure that may be used in production mix decisions: throughput of an individual product
divided by the unit of constraint consumed (Ti=UC). Implementation of this measure was illustrated by the author
in a problem that became known as P&Q, from which many works discussed its effectiveness for these kinds of
decisions. The production mix problem literature that considers TOC as part of the solution or as an element of
comparison is relatively extensive and is summarised in Table 1. Some of these studies are discussed in the
following.

Chaharsooghi and Jafari (2007) divide the studies carried out to solve production mix problems or to improve previ-
ously introduced approaches to this problem into three categories. The first group contains the exact approaches, such as
the linear programme (LP). The LP approach is generally used for small-scale problem instances, because of the long
computational time for larger problems. The second group involves the proposition of the heuristics methods in order to
improve the solutions presented by TOC, especially in situations of multiple constraints. The third group involves
meta-heuristic approaches geared to deal with large-scale problems.

The unfavourable results allowed by the Ti=UC rule in multiple bottleneck environments have been discussed by
several authors. Lee and Plenert (1993) and Plenert (1993), by means of the Integer Linear Programming (ILP)

5840 F.B. de Souza et al.
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technique, evaluated the TOC heuristic in instances where its solution left idle time in the bottleneck. The optimal prod-
uct mix fully utilised the bottleneck. They concluded that the ILP solution was more efficient than the TOC heuristic.
Maday (1994) and Posnack (1994) disagreed with Lee and Plenert (1993) and Plenert (1993), stating that the TOC
heuristic solution would be optimal even without an integer solution.

Fredendall and Lea (1997) proposed a constructive heuristic based on TOC to solve production mix problems with
multiple bottlenecks that would provide a better solution than the use of the initial proposals presented by Goldratt
(1990). Based on this line of research indicated by Fredendall and Lea (1997), Hsu and Chung (1998) proposed an algo-
rithm based on a rule of dominance of the bottlenecks on each other, without making a comparison with the heuristic of

Table 1. Synthesis of articles on production mix problems.

Authors Research summary

Luebbe and Finch (1992) Compare TOC and Linear Programming (LP) using examples, and clarify the
relationships between TOC’s five-step focusing process and LP

Patterson (1992) Suggests the effectiveness of the TOC method for the product mix decision when
compared with labour-based management accounting

Plenert (1993) By means of an example, compares the LP method and the TOC philosophy,
pointing out the differences between them

Lee and Plenert (1993) Demonstrate the process used by TOC to determine the product mix that maximises
the throughput as a very simple series of steps and that the LP can be used to
calculate the optimal solution

Maday (1994), Posnack (1994) Claim that TOC heuristic’s solution would be optimal even without an integer
solution

Finch and Luebbe (1995) Identify weaknesses in the TOC methodology when there are multiple constraints
Zegordi et al. (1995), Mishra et al. (2005),

Chaharsooghi and Jafari (2007)
Apply Simulated Annealing to product mix problems

Lee and Plenert (1996) Compare three product mix approaches: traditional accounting, TOC and LP. They
conclude that TOC and LP present the same performance and are superior to
traditional accounting

Fredendall and Lea (1997) Revise the TOC product mix heuristic to identify conditions where the original
TOC heuristic fails

Hsu and Chung (1998) Indicate the use of an explicit algorithm when a plant has multiple resource
constraints, but do not compare its effectiveness with the TOC-h of Fredendall and
Lea (1997)

Mabin and Gibson (1998) Reveal how the TOC and LP spreadsheet approaches can complement each other
and may be integrated in a simple way

Finch and Luebbe (2000) Criticise the comparison of TOC with LP performed by Balakrishnan and Cheng
(2000); they affirm that they have different natures

Balakrishnan and Cheng (2000) Contrary to the conclusions of Luebbe and Finch (1992), they show that using LP
is preferable to the $ return/constraint unit method

Onwubolu and Mutingi (2001a,b) Apply a genetic algorithm for the product mix decision
Onwubolu (2001) Employs a Tabu-search-based algorithm to product mix problems
Boyd and Cox (2002) Demonstrate that TOC outperforms three accounting systems when making some

decisions, including product mix problems
Mabin and Davies (2003) Study the product mix problem according to a variety of TOC approaches that

complement traditional treatments such as LP
Aryanezhad and Komijan (2004) Present and compare TOC-h and LP, and recommend an algorithm to determine the

product mix
Bhattacharya and Vasant (2007),

Bhattacharya et al. (2008)
Describe an alternative to the LP solution for a TOC product mix using a fuzzy
linear programming approach in order to maximise the degree of satisfaction of the
decision maker

Linhares (2009) Reinforces the fragility of the TOC heuristic, pointing out some facts that go against
the TOC literature, including showing some particular cases where the application
of TOC to define the production mix fails even for small problems and with a
single bottleneck

Wang, Sun, and Yang (2009) Propose an immune algorithm as a means to solve product mix problems
Ray, Sarkar, and Sanyal (2010) Demonstrate the combined use of TOC and the analytic hierarchy process (AHP) in

the product mix definition
Sobreiro and Nagano (2012) Evaluate some constructive heuristics and propose a new and better (according to

their findings) constructive heuristic based on the Theory of Constraints and the
Knapsack Problem

International Journal of Production Research 5841
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Fredendall and Lea (1997). With the goal of proposing a constructive heuristic that is more efficient than that of Freden-
dall and Lea (1997), Aryanezhad and Komijan (2004) presented a constructive heuristic that defines a production mix
for each bottleneck and, based on this, identify the best production mix.

Finch and Luebbe (2000) affirm that the failure of the TOC technique is a valid concern and has been recognised
for some time. They recall that, in a previous study, they identified difficulties with the TOC methodology when there
are multiple constraints. Criticising the comparison of the TOC with LP carried out by Balakrishnan and Cheng (2000),
Finch and Luebbe (2000) affirm that they are clearly different and accomplish different things. The key advantages of
TOC, as a process, remain. It provides a well-developed framework for improving throughput that has broad implica-
tions for product mix determination, scheduling, inventory buffer placement, inspection placement, etc. Along the same
lines, Mabin and Davies (2003) studied the product mix dilemma according to a variety of TOC approaches that com-
plement the traditional treatments such as LP. The paper evaluated some TOC approaches, besides the product mix algo-
rithm, such as the Five Steps, Evaporating Cloud and reality trees. The authors concluded that, due to the complexities
inherent in the real world, the search for a ‘best-fit’ frame should be recognised and abandoned.

Souren, Ahn, and Schmitz (2005) exposed the premises, in the form of a checklist, on which the TOC-based product
mix decision depends to generate an optimal solution. The premises are: (i) there should be only one binding constraint;
(ii) the solutions should not be integers; (iii) all direct costs should be integrated in the throughput; (iv) joint material
costs should not be integrated in the throughput; and (v) the goal function should be linear. Linhares (2009) reinforces
the fragility of the TOC heuristic, pointing out some facts that go against the TOC literature, including some particular
cases where the application of TOC to define the production mix fails even in small problems and with a single bottle-
neck.

By analysing how different types of management accounting systems and product mix methods interact in different
conditions of planning horizons and product structures, Lea and Fredendall (2002) concluded that different configura-
tions of the variables lead to different recommendations, with no same and best product mix method for every situation.
The authors mention that the TOC heuristic, in combination with any accounting system, reduces bottleneck shiftiness,
perhaps because it tries to fully utilise the bottleneck and allows idle time on non-bottlenecks to ensure – due to the
variability in operations – that the bottleneck is fully utilised. This idle time on non-bottlenecks, or protective capacity,
decreases shiftiness. The importance of protective capacity for the feasibility of the product mix solution is a central
point of the present article.

3. The P&Q problem

The P&Q problem (Table 2) was presented by Goldratt (1990). It aims to permit discussion – by means of a simple and
easy example – of the differences between the assumptions made by the TOC and other management approaches, espe-
cially those that use some form of cost allocation. In the present article, the goal is to make use of this example and of
scenarios derived from it to discuss the feasibility of optimal solutions in light of the TOC. The ILP technique will be
used here to provide optimal solutions to the problems suggested.

In this problem, a specific enterprise manufactures and sells two types of products, P and Q, and for that four
resources are required: A, B, C and D. Sales prices, costs of raw materials – assumed here as the only TVC – and the
demand for each product, as well as the unit processing time, in minutes, required for each resource are shown in
Table 2.

These resources are paid to operate for 2400 minutes/week, and all the enterprise’s costs and expenses, except for
those associated with raw materials, correspond to $6000/week. The question is how many P and Q must be produced
and sold so that the enterprise’s profit is maximised. One can readily see that, in contrast to the other resources, resource
B does not present enough capacity to meet the weekly P and Q demand. For this, 3000 minutes would be necessary,
or 125% of available capacity. It is necessary to decide on a production mix that would maximise the profit of this
enterprise.

Table 2. The P&Q problem.

Product

Processing time in resource

Market demand Sales price ($) RM cost ($) TiA B C D

P 15 15 15 20 100 90 45 45
Q 10 30 5 5 50 100 40 60

5842 F.B. de Souza et al.
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From this particular perspective, both TOC and LP (or ILP) use different approaches in order to find a better mix.
According to TOC, the product that contributes the most to the enterprise’s profit is P, because it produces the best
(Ti=UC) relation. Each product P has a Ti of $45 (90� 45) and consumes 15 minutes of resource B, that is, generates
$3.00 (45 / 15) per minute used of the bottleneck resource. Product Q, on the other hand, allows only $2.00 (60 / 30) per
minute of the bottleneck. As resource B is best exploited when the production of P is prioritised, the TOC solution sug-
gests that the maximum amount of P should be produced, that is, 100 units, and by using the remaining time from resource
B, 30 units of Q must be produced. The maximum profit achieved with this mix is $300½(100� 45)þ (30� 60)� 6000�.

The same result is achieved when ILP is used, however for this to happen, the contribution that each product has to
the enterprise’s profit in the objective function must correspond to the Ti. The ILP does not suggest a specific criterion
to determine the contributions that each decision variable must present in the objective function. The following ILP
model can be elaborated for this type of problem:

Maximise Z ¼ 45Xp þ 60Xq

15Xp þ 10Xq � 2400 (ResourceA)
15Xp þ 10Xq � 2400 (ResourceB)
15Xp þ 10Xq � 2400 (ResourceC)
10Xp þ 10Xq � 2400 (ResourceD)
Xp � 100
Xp � 0

Xq � 50
Xq � 0

;

where
Xp is the amount produced and sold of product P, and Xq is the amount produced and sold of product Q.
The solution of this model leads to Xp ¼ 100; Xq ¼ 30 and Z = $ 6300 (Profit = $300). Even though both approaches

yield the same results – and both of them optimal – the paths are different. Such differences become clearer when a
modification is inserted into the original problem. Suppose the processing time for resource D is increased, in the final
operation for product P, from 20 to 25min. This situation is denoted here as a Reviewed P&Q Problem. In addition to
resource B, this alteration results in a new bottleneck resource, resource D. While resource B still carries a 125% load,
resource D assumes a 115% load. In fact, under these new conditions, the bottleneck resource can change from B to D,
or vice versa, depending on what is being produced at the time.

Even under these conditions, when the previously suggested TOC approach is followed, resource B would be
regarded as the main bottleneck, since it is more overloaded than D. Therefore, the TOC solution would maintain the
same Ti=UC values for each product and would continue to suggest product P as the most profitable for the enterprise.
However, only 96 units of P can now be produced, due to the lack of capacity in D, and it is not possible to manufac-
ture a single unit of Q. In this case, there would be a loss of $1680, and resource B would be operating at a 60% load
and D at a 100% load.

The reader can verify that, if resource D is selected as the bottleneck to be exploited, product Q would become the
most profitable, and the loss would decrease to $300, with the load in resource B at 100% and at 73% in D. A different
solution is obtained when ILP is applied to the reviewed problem. In this case, the enterprise would obtain a profit of
$120, and the optimal production mix would be 88 units of P and 36 units of Q. In this solution, resource B would
present a load at 100% and D at 99%.

When analysing these results, the superiority of ILP over TOC seems evident, given that ILP allows for establishing
better results and also better use of constrained resources. However, from the TOC point of view, other aspects would
need to be taken into consideration in situations and decisions of this kind, suggesting that the solution provided by ILP
is not necessarily the best. The following section will discuss these aspects.

4. The feasibility of the solutions according to TOC

The previous example shows that the Ti=UC approach – suggested by TOC in the identification of a better production
mix – does not achieve satisfactory results when there is more than one bottleneck resource. Is TOC a limited approach
or applicable only to specific situations? Why not always choose the solutions provided by ILP or any other optimal
solutions aimed at finding optimal solutions? This section intends to answer these questions based on a critical analysis
of the assumptions on which the TOC is founded.

International Journal of Production Research 5843
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4.1 The interactive constraint concept and a new TOC perspective

The interactive constraint concept is fundamental for understanding TOC analyses situations such as that shown in
Section 3. When observing the depicted ILP model, one notes a large number of constraints considered for the problem
solution. Such constraints, however, are not necessarily considered interactive, according to the TOC language.

According to Goldratt (2008), the complexity of a system – as in the P&Q problem under analysis – is determined
by the number of interactive constraints, which present a reciprocal impact. For the author, the interactive constraints
significantly increase system complexity, thus greatly reducing its performance. Therefore, the best way to improve the
system is to determine its inherent simplicity, avoiding any kind of interactive constraints (Barnard 2010).

The inability of systems to tolerate interactive constrained resources comes directly from the coexistence of two phe-
nomena: (i) statistical fluctuations – internal variations such as absenteeism, unplanned shutdowns of equipment, longer
than expected setup times, unforeseen quality problems, layoffs, power failures, or external variations such as changes in
market demand, and supplier reliability in terms of time, quantity and quality – and (ii) dependent events, which means
that the work to be performed by a resource depends on the performance of one or more resources (Schragenheim and
Dettmer 2001, Goldratt and Cox 2004, Kendall 2004, Goldratt and Goldratt 2006).

Although such phenomena are absent in the original P&Q problem, as well as in its modified version, they are pres-
ent in any organisational or production system. Thus, this problem, like many others used to evaluate the efficiencies of
TOC solutions for the production mix, fails by not incorporating these phenomena, making them unrepresentative of real
environments. If this phenomenon was incorporated in the modified P&Q problem, in which the loads were above
100% in resources B and D; and considering the fact that the more overloaded resource changes according to the
production mix, it would configure the existence of interactive constraints, sharply increasing the complexity of the
situation and making impracticable the profit of $120 found by the ILP solution.

The existence of interactive constraints is related to the concept of protective capacity, which is defined by
Blackstone (2010) as the capacity, over the productive capacity, needed to restore the buffers to their ideal state after a
disruption. The protective capacity is vital because if there is insufficient protective capacity, then the buffer – the con-
straint’s protection – cannot be refilled quickly enough and thus system capacity is vulnerable to possible starvation by
upstream stations or blocking by downstream stations.

The protective capacity should be understood as the excess capacity all non-constraint resources have with regard to
the constraint of the system in which they are part (Goldratt and Goldratt 2006). If the performance of a system is
determined by the performance of its constraint, the protective capacity in all non-constraint resources becomes
fundamental. According to Goldratt and Goldratt (2006), a constraint can only be truly exploited – a constrained
resource does not stop due to the lack of parts (in the event the system constraint is a bottleneck resource) or that the
demand is fully met (in the event the system constraint is in the market) – when all other resources present significant
protective capacity.

According to TOC, interactive constrained resources, as illustrated in the reviewed P&Q problem example, must be
avoided, at any price (Schragenheim and Dettmer 2001). This can be explained by the second step of the TOC process.
‘Deciding how to exploit the constraint’ does not necessarily mean using the simple arithmetic solution taught by Goldr-
att (1990) in the P&Q example. The author used the problem to illustrate the five steps, which must be applied to real
situations. According to this point of view, when ILP or another method, heuristic or not, does not prevent interaction
between constraints, its solution is infeasible.

Goldratt (1990) asserts that, in interactive constraint situations, a company should strategically ‘decide’ where best to
have the constraint. Therefore, the company should buy additional capacity for the other constraint resources – elevate
them – or the demand should be reduced, thus preventing interactive constraints presenting their effect. This view sug-
gests that, for the entire system to remain stable, effective and in control, there must always be a single constraint. TOC
offers some techniques that support decisions regarding capacity or demand management, such as buffer management,
capacity buffer management or bottleneck workload control, aimed at avoiding interactive constraints. More details can
be found in Schragenheim, Dettmer, and Patterson (2009).

Schragenheim and Dettmer (2001) indeed recognise that the Ti=UC rule has no value in interactive constraint situa-
tions. They report the conditions for when that rule could be applied.

(1) The bottleneck must be a true constraint all the time.
(2) There is no more than one bottleneck in the system, meaning that there are no interactive constraints.
(3) The decision to be made cannot cause a change in the constraint for another resource.
(4) When facing major sales contracts, the decision maker must always consider the global impact of this decision

on the T , I and OE indicators, as a general rule.

5844 F.B. de Souza et al.
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While TOC considers the absence of interactive constraints in the system desirable, there may be situations where it
is not possible, since increasing the capacity of one of the bottlenecks is time-consuming and, sometimes, money-con-
suming. Therefore, what and how much should be produced up to the moment the effect of the decision to eliminate
the interactive constraints appears? The following topic will address this issue.

4.2 The rule of Barnard (2006) and a new proposal

Using once more the reviewed P&Q problem, the solution proposed by the ILP approach suggests that resource B must
operate at 100%, while resource D must operate at 99%, or 1% (100%� 99%) of protective capacity. According to Bar-
nard (2006), this solution would be unachievable, because the excessively low protective capacity of D compared with
B would make the result infeasible. The author applied simulation experiments in order to substantiate his solutions.

If the Ti=UC rule is not valid for interactive constraint situations, and the solution proposed by the ILP is not recom-
mended because it does not preserve the protective capacity, what can be done in such situations?

The TOC recognises (Barnard 2006, Goldratt, and Goldratt 2006, Schragenheim and Dettmer 2001, Goldratt, Schra-
genheim, and Ptak 2000) that, due to the elevated levels of uncertainty and variation inherent in organisations, the noise
level in systems becomes so high that there is no reason to search for optimal solutions, but rather to search for solu-
tions that are good enough. Therefore, there would be a range of possibilities that would comprise a safe zone around
those solutions that are good enough. If solutions that are different from the optimal solutions could produce unsatisfac-
tory results when seen from the ILP perspective, there would be a safe zone of good enough solutions under the TOC
perspective. Figure 1 illustrates this idea.

In this sense, decisions must be made concerning stocks, capacity, time buffers, production policies, price establish-
ment and even production mix – among others – by considering this zone as an area of solutions that are good enough.
Barnard (2006) suggests a rule in order to determine the production mix for interactive constraint situations that would
position the solution inside the safe zone. At the same time, it would be feasible in maintaining protective capacity. The
suggested rule would be defined as: produce an amount of each product equivalent to the percentage obtained from the
ratio between the available capacity and the required capacity of the most overloaded resource. For the author, such a
solution attempts to ensure good utilisation of the interactive constraint resources by placing the solution in the security
zone to (from this point on, and observing the impacts of such decisions on the T , I and OE measurements) make
improvement decisions in order to actually eliminate the interactive constraints of the system.

By applying this rule to the reviewed P&Q problem, the most overloaded resource is B, which needs 3000minutes
to meet the entire demand. As 2400minutes is the weekly time available, a percentage equivalent to 2400 divided by
3000 – or 80% of each product – must be produced. Here, this percentage will be called Barnard’s factor. The suggested
mix would be, therefore, 80 units of P(0:8� 100) and 40 units of Q(0:8� 50).

With this mix, resource B would carry a workload equivalent to 100%, and resource D with 92%, or 8% of protec-
tive capacity. The reader will be able to verify that, with this mix, the enterprise obtains a maximum profit of zero (null
profit). This result – although lower than the maximum theoretical of $120 – is higher than the negative $1680 reached
by means of the Ti=UC rule. Barnard (2006) emphasises that, although this simple rule seems to provide promising
results, a great deal of research is still necessary. Taking this into account, a heuristic method is developed to identify
the production mix in accordance with Barnard’s rule. The heuristic method is shown in the next section.

4.3 Heuristic method

Throughout the paper, the following notation and decision variables are used.

Figure 1. Differences among the approaches based on the ‘optimal theoretical’ and ‘zone of good enough’.
Source: Adapted from Barnard (2006).
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4.3.1 Notation

Indices
i ¼ 1; 2; . . . ; n products
j ¼ 1; 2; . . . ;m productive resources
q ¼ 1; 2; . . . ;m constraint resources

Decision variables
BNq constraint resource q
CPj production capacity of resource j
CMi contribution margin of product i or sales price of product i less raw material cost of product i
CR vector with constraint resource
dj the difference between a resource’s capacity and its demand
Di the forecast market demand for product i
q number of constraints resources
tij the processing time of product i in productive resource j
xi quantity of product i
Bf Barnard’s factor
DB dominant bottleneck
CPq protective capacity in bottleneck q

4.3.2 Proposed heuristic

The purpose of the heuristic is to develop an initial solution considering the heuristic TOC-h presented by Fredendall
and Lea (1997) and verified if the initial solution has protective capacity in m� 1 resources. If the initial solution does
not have protective capacity in m� 1 resources, the proposed heuristic calculates and applies Barnard’s factor to define
the production mix.

Before proceeding, some points should be made clear: the percentage of protective capacity that non-constraint
resources will have after applying Barnard’s factor depends on the initial load imposed on these resources and on Bar-
nard’s factor itself. In the revised P&Q problem, the load on D was 115% and Barnard’s factor was 0:8. Therefore, the
ultimate load on D was 115 times 0:8 or 92% (8% protective capacity). Since the initial loads and Barnard’s factor are
not under control of the manager, one cannot apply the rule of Barnard in order to obtain a certain predetermined mini-
mum level of protective capacity. Thus, an adjustment is made to the rule so that one can predefine the minimum level
of protective capacity that m� 1 resources must have to meet the production mix. The proposed heuristic is shown in
the next section.

4.3.2.1 Proposed heuristic.
Step 1: Verify if there are system bottlenecks.

(a) Calculate the difference (dj) between a resource’s capacity and its demands:

dj ¼ CPj �
Pn

i¼1
tijDi i ¼ 1; 2; . . . ; n

j ¼ 1; 2; . . . ;m:

(b) Determine CR ¼ fBN1;BN2; . . .BNqg, q � m, where CR is the set of constrained resources with dq � 0 and
d1 � d2 � . . . dq.

(c) If CR ¼ ;, set the product mix considering the current market demand and go to Step 5.
(d) If q ¼ 1, apply TOC-h to define the product mix and go to Step 3. Otherwise, q[1, go to Step 2.

5846 F.B. de Souza et al.
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Step 2: Set initial solution.
Check if TOC-h identifies the dominant bottleneck and defines the product mix. Otherwise, determine the product mix
considering BNq as the dominant bottleneck. According to Fredendall and Lea (1997), the dominant bottleneck is the
first resource that presents a lack of capacity.

Step 3: Check the protective capacity.

(a) Calculate the protective capacity for each resource as

PCj ¼ (CPj �
Pn

i¼1 tij � xi)

CPj
� 100:

(b) Verify if the product mix provides protective capacity in m� 1 resources. The ideal value of the protective
capacity should be chosen by the manager. If there is protective capacity in m� 1 resources, then go to Step 5.
Otherwise, go to Step 4.

Step 4: Apply Barnard’s factor.

(a) Calculate Barnard’s factor as

Bf ¼ CPDBPn
i¼1 tiDB � Di

:

(b) Determine the product mix by multiplying the current market demand (Di) for each product by Barnard’s factor.
(c) Verify if there is protective capacity in m� 1 resources. If m� 1 has protective capacity, then go to Step 5.

Otherwise, do Bf ¼ Bf � 0:01, then go to Step 4(b).

Step 5: Determine throughput.
Calculate the throughput of the product mix as

Throughput ¼
Xn

i¼1

xi � CMi:

The proposed heuristic is straightforward and is best summarised by the flow chart shown in Figure 2.

4.3.2.2 Numerical examples. In order to test the heuristic presented in Section 4.3.2, an extensive computational experi-
ment is carried out. The proposed heuristic is applied to solve a range of 100 problems, 12 of them based on problems
proposed by Goldratt (1990), Luebbe and Finch (1992), Patterson (1992), Lee and Plenert (1993), Fredendall and Lea
(1997) and Aryanezhad and Komijan (2004). The remaining 88 problems are randomly generated problems, including
scenarios that blend manufacturing environments with two to eight products and with four to eight resources. These situ-
ations expose problems in which met demand gives rise to one to four bottlenecks. Several scenarios present interactive
bottlenecks. The proposed heuristic was developed in VBA from Microsoft Excel and tested using an Intel Core i5
2.67GHz computer with 6GHz of RAM memory.

Table 3 and Figure 3 summarise the results obtained by the proposed heuristic applied to problems where the TOC-
h does not maintain X% protective capacity in m� 1 resources and compare them with the optimal result obtained from
applying the ILP and from an adapted ILP method that aims to ensure a minimum level of protective capacity in m� 1
resources. The proposed heuristic is tested for 24 levels of protective capacity, as shown in Table 3 and partly in
Figure 3. It should be noted that, in the various problems, the application of the TOC-h heuristic obtained the expected
protective capacity and therefore did not require the application of Barnard’s rule.

The results show that, up to 10% of protective capacity, the performance achieved by applying the proposed heuris-
tic is above 80% of the theoretical maximum allowed by the application of ILP, or over about 84% of the application of
ILP with protective capacity. With more than 10% of protective capacity, the performance is below 80% of the applica-
tion of ILP – or even below 70% when the protective capacity approaches 30%. However, if compared with the ILP
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Figure 2. Flow chart of the proposed heuristic.
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Table 3. Results obtained by the proposed heuristic.

X%
protective
capacity

Number of problems
in which the
proposed

heuristic was applied

% Average performance

Regarding
ILP

Regarding ILP with protective
capacity

0.50 16 86.66 86.86
1.00 22 86.75 87.10
1.50 23 86.89 87.39
2.00 25 86.78 87.41
2.50 31 86.78 87.49
3.00 34 85.52 86.33
3.50 37 85.04 85.98
4.00 38 84.93 86.03
4.50 42 83.25 84.43
5.00 42 83.10 84.47
5.50 45 83.11 84.66
6.00 45 82.94 84.70
6.50 47 82.75 84.71
7.00 48 82.05 84.18
7.50 48 81.84 84.17
8.00 48 81.57 84.12
8.50 50 81.64 84.39
9.00 52 81.65 84.53
9.50 52 81.35 84.45
10.00 54 80.67 83.99
15.00 65 77.73 83.01
20.00 74 74.48 82.04
25.00 79 71.53 81.40
30.00 85 67.29 79.41

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00% 9.00% 10.00%

%
 A

ve
ra

ge
 A

dj
us

tm
en

ts

X% Protective Capacity

Results obtained by the proposed heuristic

Regarding ILP Regarding ILP with Protective Capacity

Figure 3. Results obtained by the proposed heuristic.
Note: For reasons of scale, the graphic is limited to the 10% level of protective capacity.
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method adapted to take the protective capacity into account, the performance falls only marginally below 80% with
levels of protective capacity close to 30%. More specifically,

• from zero to about 2.5% of protective capacity, the proposed heuristic performance seems to behave in a non-
decreasing manner;

• from about 2.5% of protective capacity, when compared with the optimal solutions obtained with the ILP
method, the performance tends to fall indefinitely with increased levels of protective capacity;

• from about 5 to 10% of protective capacity, the heuristic appears to have a tendency to stabilise the perfor-
mance when compared with the ILP method with protective capacity. From this point, the relative performance
seems to fall, but smoothly.

An important aspect must be registered. As already predicted by Barnard (2006), the classic TOC solution based on
the Ti=UC rule does not meet the need for keeping protective capacity – since the TOC, in principle, deliberately seeks
to ensure protective capacity of its non-constraints resources. Although the ratio Ti=UC allows throughputs superior to
the proposed heuristic, the production mix achieved with the Ti=UC ratio does not preserve, for example, 10% of
protective capacity in 54 of the problems tested.

The average performance of the proposed heuristic, however, disguises the significantly poor results for some of the
tested problems. As an illustration, at a level of at least 10% of protective capacity, the performance of the heuristic is less
than 70% in six problems, and less than 40% in one problem. With the intention of finding an explanation for
such behaviour, a correlation coefficient of 0:846 is observed between the performance of the heuristic and Barnard’s fac-
tor, i.e. the lower the Barnard factor, the worse the performance. If, for example, the problems that presented a Barnard’s
factor of less than 0:65 were excluded from the calculation of the average performance, the average performance of the
heuristic increases to 88:01%. One possible reason for this could be the fact that lower values for Barnard’s factor reflect
a sharp linear cut in the total product mix. In these situations, resources with a relatively low load should have their
production significantly reduced. Although tests have shown no further explanation for the loss of performance in some
situations, it is worth noting that the proposal made by Barnard (2006) does not distinguish different throughputs between
products. Thus, by applying Barnard’s factor, products with high or low throughputs are treated in the same way.

5. Conclusions

Since the studies of Lee and Plenert (1993) and Plenert (1993), there has been a vast production-mix literature demon-
strating the fragility of applying the Ti=UC rule in specific situations, especially when multiple constraint resources
exist. New solutions – heuristics, genetic algorithms, tabu search and even fuzzified linear programming – have been
proposed to overcome this weakness of TOC (Fredendall and Lea 1997, Hsu and Chung 1998, Balakrishnan and Cheng
2000, Finch and Luebbe 2000, Onwubolu and Mutingi 2001a,b, Onwubolu 2001, Aryanezhad and Komijan 2004,
Wang, Sun, and Yang 2009, Sobreiro and Nagano 2012). However, as Linhares (2009) points out, “there is still a clear
need for further research of cases with imperfect and non-deterministic information”.

This paper used a numeric example called the P&Q problem in order to assess the feasibility of optimal production
mix solutions in non-deterministic – and therefore real – environments. Accordingly, a feasible production plan should
take into account the presence of protective capacity in the system, an aspect usually ignored by the exact and heuristic
techniques, targeted to maximise the theoretical system throughput. Therefore, the first important conclusion of this
paper is that any method that preserves the protective capacity in their solutions is intentionally suboptimal, or should
allow results that are just good enough and thus any kind of comparison with optimisation methods does not make
sense.

The TOC’s focus on the constraint, the assumption that every system must always present a few constraints, and the
emphasis on recognising variability in production systems, are indicative of the need for using protective capacity. In
this sense, as described by Schragenheim and Dettmer (2001), the TOC approach is based on simple and effective rules,
distancing itself from optimising solutions. From the perspective of TOC, besides protective capacity, real environments
should also have buffers to protect system constraints, reflecting not only the perception that the constraint must be
protected from system variability, but also that, due to this variability, any attempt to find optimal values during the
planning phase, including the production mix, is inappropriate. In TOC applications, the search for optimal or accurate
values of these planning elements is seen as a fruitless attempt to optimise within the noise (Goldratt and Goldratt 2006,
Schragenheim, Dettmer, and Patterson 2009).

Mabin (2001) affirms that, as a ‘heuristic’, the Ti=UC rule can lead to good solutions, but can also lead to erroneous
solutions in some situations. To the author, the TOC recognises the fragility of the product mix problem and TOC
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solution and deals with it by means of complementary methods, such as the drum-buffer-rope scheduling approach,
which allows adapting the initial solution to “a robust operational plan to cope with sequential and variable operations”.

From the TOC point of view, the lack of protective capacity, resulting from the presence of interactive constraints, is
something that should be avoided because it increases system complexity. To this end, a strategy to eliminate this
situation should be defined as soon as possible. However, since this strategy does not present an effect, a simple and
effective solution must be created with the purpose of achieving good (but not optimal) results and which, at the same
time, maintains certain levels of protective capacity for its feasibility. In summary, it can be concluded that from the
TOC point of view:

(1) the existence of multiple bottleneck resources should be seen as undesirable and a control system must be used –
such as buffer and capacity management – to avoid it;

(2) in the case of failure, a strategy to eliminate this situation should be defined as soon as possible; and
(3) while this situation persists, a feasible production mix should be found. To this end, this paper proposes a heuris-

tic based on Barnard (2006). Even though less simple and comprehensible than the Ti=UC rule, such a proposed
heuristic requires relatively little effort for modelling to be used and does not rely on prior knowledge in opera-
tional research.

The proposed heuristic should be used with caution. The calculations showed some situations in which the perfor-
mance of the heuristic significantly worsens. Although the reasons for this deterioration of performance are not entirely
clear, there seems to be evidence pointing to the existence of a positive correlation between the Barnard’s factor and the
throughput generated. Levels of protective capacity above 10% also seem to lead to the most significant decreases in
performance.

It is hoped that this paper has successfully demonstrated its intentions, thereby contributing to enrich discussions on
the actual objectives of the TOC. Current and future research efforts on TOC should concentrate on evaluating the pro-
posal presented – including new research aimed at better understanding the reasons underlying the results achieved by
the heuristic – or proposing other heuristics to find viable solutions that maintain some level of protective capacity of
the chosen company’s strategic constraint. The behaviour of the proposed heuristic should be checked, also applying it
in more complex environments, involving more resources and products. Finally, it is recommended to simulate and test
the feasibility of the proposed solution in several scenarios where the data effectively incorporate dependencies and
some degree of variability or adapt the proposed heuristic to different production systems.
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