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a b s t r a c t

An explanation for the acquisition of word–object mappings is the associative learning in a cross-
situational scenario. Herewe present analytical results of the performance of a simple associative learning
algorithm for acquiring a one-to-one mapping between N objects and N words based solely on the co-
occurrence between objects and words. In particular, a learning trial in our learning scenario consists of
the presentation of C + 1 < N objects together with a target word, which refers to one of the objects
in the context. We find that the learning times are distributed exponentially and the learning rates are
given by ln


N(N−1)

C+(N−1)2


in the case theN target words are sampled randomly and by 1

N ln
 N−1

C


in the case

they follow a deterministic presentation sequence. This learning performance is much superior to those
exhibited by humans and more realistic learning algorithms in cross-situational experiments. We show
that introduction of discrimination limitations using Weber’s law and forgetting reduce the performance
of the associative algorithm to the human level.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Earlyword-learning or lexicon acquisition by children, inwhich
the child learns a fixed and coherent lexicon from language-
proficient adults, is still a polemic problem in developmental
psychology (Bloom, 2000). The classical associationist viewpoint,
which can be traced back to empiricist philosophers such
as Hume and Locke, contends that the mechanism of word
learning is sensitivity to covariation – if two events occur at
the same time, they become associated – being part of humans’
domain-general learning capability. An alternative viewpoint,
dubbed social-pragmatic theory, claims that the child makes the
connections between words and their referents by understanding
the referential intentions of others. This idea, which seems to
be originally due to Augustine, implies that children use their
intuitive psychology or theory of mind (Adolphs, 2003) to read
the adults’ minds. Although a variety of experiments with infants
demonstrate that they exhibit a remarkable statistical learning
capacity (Bates & Elman, 1996), the findings that the word–object
mappings are generated both fast and errorless by children are
difficult to account for by any form of statistical learning. We refer
the reader to the book by Bloom (Bloom, 2000) for a review of this
most controversial and fascinating theme.

Regardless of the mechanisms children use to learn a lexicon,
the issue of how good humans are at acquiring a new lexicon using
statistical learning in controlled experiments has been tackled
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recently (Kachergis, Yu, & Shiffrin, 2009, 2012; Smith, Smith, &
Blythe, 2011; Yu & Smith, 2006, 2007, 2012). In addition, it has
been conjectured that statistical learning may be the principal
mechanism in the development of pidgin (Fontanari & Cangelosi,
2011). In this context (pidgin), however, it is necessary to assume
that the agents are endowed with some capacity to grasp the
intentions of the others as well as to understand nonlinguistic
cues, otherwise one cannot circumvent the referential uncertainty
inherent in a word–object mapping (Quine, 1960).

The statistical learning scenario we consider here is termed
cross-situational or observational learning, and it is based on the
intuitive idea that one way that a learner can determine the
meaning of a word is to find something in common across all
observed uses of that word (Gleitman, 1990; Pinker, 1984; Siskind,
1996). Hence learning takes place through the statistical sampling
of the contexts in which a word appears. There are two competing
theories about the word learning mechanism within the cross-
situational scenario, namely, hypothesis testing and associative
learning (see Yu and Smith (2012) for a review). The former
mechanism assumes that the learner builds coherent hypotheses
about the meaning of a word which is then confirmed or
unconfirmed by evidence (Frank, Goodman, & Tenenbaum, 2008;
Markman, 1990; Waxman & Gelman, 2009; Xu & Tenenbaum,
2007), whereas the latter is based essentially on the counting
of co-occurrences of word–object statistics (Sloutsky, Kloos, &
Fisher, 2007; Yu, 2008). Albeit associative learning can be made
muchmore sophisticated than the mere counting of contingencies
(Yu & Smith, 2012), in this contribution we focus on the simplistic
interpretation of that learning mechanism, which allows the
derivation of explicitmathematical expressions to characterize the
learner’s performance.

0022-2496/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
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Although cross-situational associative learning has been a very
popular lexicon acquisition scenario since it can be easily im-
plemented and studied through numerical simulations (see, e.g.,
Fontanari & Cangelosi, 2011; Fontanari, Tikhanoff, Cangelosi, Ilin, &
Perlovsky, 2009; Smith, 2003a,b), there were only a few attempts
to study analytically this learning strategy (Blythe, Smith, & Smith,
2010; Smith, Smith, Blythe, & Vogt, 2006). These works consid-
ered a minimal model of cross-situational learning, in which the
one-to-one mapping between N objects and N words must be in-
ferred through the repeated presentation of C + 1 < N objects
(the context) together with a target word, which refers to one of
the objects in the context. The co-occurrences between objects
and words are stored in a confidence matrix, whose integer en-
tries count howmany times an object has co-occurredwith a given
wordduring the learning process. Themeaning of a particularword
is then obtained by picking the object corresponding to the great-
est confidence value associated to that word, i.e., the object that
has co-occurred more frequently with that word. In this paper,
we expand on the work of Smith et al. (Smith et al., 2006) and
offer analytical expressions for the learning rates of this minimal
associative algorithm for different word sampling schemes, see
Eqs. (9), (14) and (17).

To assess the relevance of our findings to the efforts on
understanding how humans perform on cross-situational learning
tasks,we useMonte Carlo simulations to compare the performance
of the minimal associative algorithm with the performance of
humans for short learning times (Kachergis et al., 2009) and
with the performance of a more elaborated learning algorithm
for long times (Kachergis et al., 2012). Our finding that the
accuracy of the minimal associative algorithm is much higher than
that observed in the experiments is imputed to the unlimited
storage and discrimination capability of the algorithm. In fact,
introduction of errors in the discrimination of confidence values
according to Weber’s law reduces the performance to a level
below that of humans. Somewhat surprisingly, introduction of
forgetting acts synergistically with our prescription for Weber’s
law resulting in an increase of performance that eventually
matches the experimental results.

The rest of this paper is organized as follows. In Section 2
we describe the learning scenario and in Section 3 we introduce
and study analytically the simplest associative learning scheme
for counting co-occurrences of words and objects, in which the
words are learned independently. We consider first the problem
of learning a single word and then investigate the effect of
using different word sampling schemes for learning the complete
N-word lexicon. In Section 4 we compare the performance of the
minimal associative algorithm with the performance exhibited by
adult subjects. To understand the high efficiency of the algorithm
we introduce constraints on its storage and discrimination
capabilities and show how the constraint parameters can be tuned
to describe the experimental results. Finally, in Section 5 we
discuss our findings and present some concluding remarks.

2. Cross-situational learning scenario

We assume that there are N objects, N words and a one-to-one
mapping between words and objects. To describe the one-to-one
word–object mapping, we use the index i = 1, . . . ,N to represent
the N distinct objects and the index h = 1, . . . ,N to represent the
N distinct words. Without loss of generality, we define the correct
mapping as that forwhich the object represented by i = 1 is named
by the word represented by h = 1, object represented by i = 2 by
word represented by h = 2, and so on. Henceforth we will refer
to the integers i and h as objects and words, respectively, but we
should keep in mind that they are actually labels to those complex
entities.

At each learning event, a target word, say word h = 1, is
selected and then C +1 distinct objects are selected from the list of
N objects. This set of C + 1 objects forms a context for the selected
word. The correct object (i = 1, in this case) must be present in the
context. The learner’s task is to guesswhich of the C+1 objects the
word refers to. This is then an ambiguous word learning scenario
in which there are multiple object candidates for any word.

The parameter C is a measure of the ambiguity (and so of the
difficulty) of the learning task. In particular, in the case C = N − 1
the word–object mapping is unlearnable. At first sight one could
expect that learning would be trivial for C = 0 since there is no
ambiguity, but the learning complexity depends also on the man-
ner inwhich the objects are selected to compose the contexts. Typ-
ically, the objects are chosen randomly and without replacement
from the list of N objects (see, e.g., Blythe et al., 2010; Fontanari
et al., 2009; Smith et al., 2006), which for C = 0 results in a learn-
ing error (i.e., the fraction of wrong word–object associations) that
decreases exponentially with learning rate − ln (1 − 1/N) as the
number of learning trials t increases. This is so because there is a
non-vanishing probability that some words are not selected in the
t trials (Blythe et al., 2010).

In order to avoid testing subjects on the meaning of words
they never heard, most experimental studies on word-learning
mechanisms use a deterministic word selection procedure which
guarantees that all words are uttered before the testing stage,
although some words may be spoken more frequently than
others (Kachergis et al., 2009, 2012; Yu&Smith, 2006, 2007). Hence
we consider here, in addition to the random selection procedure,
a deterministic selection procedure which guarantees that all N
words are selected in t = N trials. For this procedure the case
C = 0 is trivial and the learning error becomes zero at t = N .
However, since encounteringwordswhosemeaning is unknown is
not a rare event in the real world (hence the utility of dictionaries),
a non-uniform Zipfian random selection of words is likely to be a
more realistic sampling scheme for learning natural word-referent
associations (see, e.g., Blythe et al., 2010).

3. Minimal associative learning algorithm

Here we consider one of the earliest mathematical learning
models – the linear learning model (Bush & Mosteller, 1955). The
basic assumption of this model is that learning can be modeled as
a change in the confidence with which the learner associates the
targetword to a certain object in the context.More to the point, this
confidence is represented by a matrix whose non-negative integer
entries phi yield a value for the confidence with which word h is
associated to object i. We assume that at the outset (t = 0) all
confidences are set to zero, i.e., phi = 0 with i, h = 1, . . . ,N and
whenever object i∗ appear in a context in companion with target
word h∗ the confidence pi∗h∗ increases by one unit. Hence at each
learning trial, C+1 confidences are updated. Note that this learning
algorithm considers reinforcement only.

To determine which object corresponds to word h the learner
simply chooses the object index i for which phi is maximum. In the
case of ties, the learner selects one object at random among those
that maximize the confidence phi. Recalling our definition of the
correct word–object mapping in the previous section, the learning
algorithm achieves a perfect performance when phh > phi for all h
and i ≠ h. The learning error E at a given trial t is then given by
the fraction of wrong word–object associations. Note that we have
phi ≤ phh with i ≠ h since object i = hmust appear in the contexts
of all learning events in which the target word is h (see Section 2).
In this case, the learning error of any single word, say h, which we
denote by ϵsw , is the reciprocal of the number of objects for which
phi = phh with i ≠ h.
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Interestingly, it can easily be shown that this very simple and
general learning algorithm is identical to the algorithm presented
in Smith et al. (2006) which is based on detecting the intersections
of context realizations in order to single out the set of confounder
objects at a given trial t . This equivalence has already been noted
in the literature (Vogt & Smith, 2004) (see also Smith et al., 2011).
The minimal associative learning algorithm can be immediately
adapted to incorporate more realistic features, such as finite
memory and imprecision in the comparison of magnitudes,
whereas the confounder reducing algorithm is restricted to an ideal
learning scenario.

A salient feature of the minimal associative learning algorithm
which allows the analytical study of its performance is the fact that
words are learned independently. This is easily seen by noting that
the confidences phi, i = 1, . . . ,N are updated onlywhen the target
word h is selected. This means that, aside from a trivial rescaling of
the learning time, our scenario is equivalent to the experimental
settings (see Section 4) in which C + 1 target words are presented
together with a context exhibiting C + 1 objects, with each object
associated to one of the target words (Kachergis et al., 2009, 2012;
Yu & Smith, 2006, 2007). Taking advantage of this feature, we will
first solve a simplified version of the cross-situational learning in
which a given target word h (and its associated object i = h)
appears in all learning trials whereas the C other objects (the
confounders) that make up the rest of the context vary in each
learning trial. Once the problem of learning a single word is solved
(see Section 3.1), we can easily work out the generalization to
learning thewhole lexicon (see. Sections 3.2 and 3.3).Wewill use τ
tomeasure the time of the learning trials in the case of single-word
learning and t in the whole lexicon learning case.

3.1. Learning a single word

Before any learning event has taken place, the target word may
be associated to any one of the N objects, so the initial state of
the learning error is always equal to (N − 1) /N . When the first
learning event takes place, the target word may be incorrectly
assigned to the C other confounder objects shown in the context,
so the probability of error at the first trial is always equal to
C/ (C + 1). In the second trial, there are two possibilities: the
probability of error is unchanged because the same context is
chosen or the probability of error decreases to the value n/ (n + 1)
with n < C because n confounder objects of the first context
appeared again in the second trial. The same reasoning allows
us to describe the probability of error in any trial given that this
probability is known in the previous trial as described next.

As pointed out, the possible error values are n/ (n + 1)with n =

0, 1, . . . , C . Labeling these values by the index n, the probability of
error at trial τ can be written as

W (τ ) = (wC (τ ) , wC−1 (τ ) , . . . , w1 (τ ) , w0 (τ )) . (1)

The time evolution ofW (τ ) is given by the Markov chain

W (τ + 1) = W (τ ) T , (2)

where T is a (C + 1)×(C + 1) transitionmatrix whose entries Tmn
yield the probability that the error at a certain trial is n/ (n + 1)
given that the error was m/ (m + 1) in the previous trial. Clearly,
Tmn = 0 for m < n since the error cannot increase during the
learning stage in the absence of noise.

It is a simplematter to derive Tmn form ≥ n (Smith et al., 2006).
In fact, it is given by the probability that in C choices one selects
exactly n of them confounder objects from the list ofN−1 objects.
(We recall that the object associated to the target word is picked
with certainty and so the list comprisesN−1objects, rather thanN ,

and the number of selections is C rather than C + 1.) This is given
by the hyper-geometric distribution (Feller, 1968)

Tmn =

m
n

 
N−1−m
C−n




N−1
C

 (3)

form ≥ n and Tmn = 0 form < n. Since the transitionmatrix is tri-
angular, its eigenvalues λn with n = 0, 1, . . . , C are the elements
of the main diagonal that correspond to transitions that leave the
learning error unchanged, i.e.,

λn = Tnn =


N−1−n
C−n




N−1
C

 . (4)

Note that λ0 = 1 > λn≠1 > 0 as expected for eigenvalues of
a transition matrix. In addition, since λn/λn+1 = (N − 1 − n) /
(C − n) > 1 the eigenvalues are ordered such that λ0 > λ1 >
· · · > λN−1.

Recalling that the probability vector is known at τ = 1, namely,
W1 = (1, 0, . . . , 0) we can write

W (τ ) = W (τ = 1) T τ−1. (5)
Although it is a simple matter to write T τ−1 in terms of the right
and left eigenvectors of T , this procedure does not produce an
explicit analytical expression forWn (τ ) in terms of the parameters
C and N , since we are not able to find analytical expressions for
the eigenvectors. However, Smith et al. (2006) have succeeded
in deriving a closed analytical expression for Wn (τ ) using the
inclusion–exclusion principle of combinatorics (Cameron, 1994),

Wn (τ ) =


C
n

 C
i=n

(−1)i−n

C − n
i − n


λτ−1
i , (6)

where λi, given by Eq. (4), is the probability that a particular set
of i members of the C confounders in the first learning episode
τ = 1 appear in any subsequent episode. Although the spectral
decomposition of T plays no role in the derivation of Eq. (6)
we choose to maintain the notation λi for the above mentioned
probability.

Recalling that a situation described by n corresponds to the
learning error n/ (n + 1) we can immediately write the expected
learning error for a single word as

ϵsw (τ ) =

C
n=0

n
n + 1

Wn (τ ) , (7)

which is valid for τ > 0 only. For τ = 0 one has ϵsw (0) =

1 − 1/N . The dependence of ϵsw on the number of learning trials
τ for different values of N and C is illustrated in Fig. 1 using a
semi-logarithmic scale. Except for very small τ , the learning error
exhibits a neat exponential decay which is revealed by considering
only the leading non-vanishing contribution to Wn for large τ ,
namely,

ϵsw (τ ) ∼
C
2

λτ−1
1 =

N − 1
2

exp

−τ ln


N − 1

C


. (8)

Hence the learning rate for single-word learning is
αsw = ln [(N − 1) /C] (9)
which is zero in the case C = N − 1, i.e., all objects appear in
the context and so learning is impossible. In the case C = 0, the
learning rate diverges so that ϵsw = 0 at the first learning trial
τ = 1 already. Most interestingly, the learning rate increases with
increasing N (see Fig. 1) indicating that the larger the number of
objects, the faster the learning of a single word. This apparently
counterintuitive result has a simple explanation: a large list of
objects to select from actually decreases the chances of choosing
the same confounding object during the learning events.
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Fig. 1. (Color online) The expected single-word learning error ϵsw as a function of the number of learning trials τ . The solid curves are the results of Eq. (7) and the filled
circles the results of Monte Carlo simulations. The left panel shows the results for C = 2 and (left to right) N = 100, 50, 30 and 20, and the right panel the results for N = 20
and (left to right) C = 5, 10, 13, 15 and 16.

3.2. Learning the whole lexicon with random sampling

We turn now to the original learning problem in which the
learner has to acquire the one-to-one mapping between the N
words and the N objects. In this section we focus on the case the
target word at each learning trial is chosen randomly from the list
of N words. Since all words have the same probability of being
chosen, the probability of choosing a particular word is 1/N .

At trial t we assume that word 1 appeared k1 times, word 2
appeared k2 times, and so on with k1 + k2 + · · · + kN = t . The
integers ki = 0, . . . , t are random variables distributed by the
multinomial

P (k1, . . . , kN) = N−t t!
k1! · · · kN !

δt,k1+···+kN . (10)

Clearly, if word i appeared ki times in the course of t trials
then the expected error associated to it is ϵsw (ki) with the (word
independent) single-word error given by Eq. (7) for ki > 0. With
this observation in mind, we can immediately write the expected
learning error in the case the N words are sampled randomly,

Er (t) =


k1,...,kN

P (k1, . . . , kN)
1
N

N
i=1

ϵsw (ki)

=

t
k=0


t
k

 
1
N

k 
1 −

1
N

t−k

ϵsw (k) . (11)

The sum over k can be easily carried out provided we take into
account the fact that ϵsw (k)has different prescriptions for the cases
k = 0 and k > 0. We find

Er (t) =

C
n=0

n
n + 1


C
n

 C
i=n


C − n
i − n


(−1)i−n

λi

×


λi + N − 1

N

t

−


N − 1
N

t
+


N − 1
N

t+1

(12)

with λi given by Eq. (4). This is a formidable expression which can
be evaluated numerically for C not too large and in Fig. 2we exhibit
the dependence of Er on thenumber of learning trials for a selection
of values of N and C .

To obtain the asymptotic time dependence of Er we need to
keep in the double sum only the leading order term. Since the
summand in Eq. (12) vanishes for n = 0, the largest eigenvalue
that appears in that expression is λ1, corresponding to the term
i = n = 1, and so this is the term that dominates the sum in the
limit t → ∞. Hence Er exhibits the exponential decay

Er ∼
C
2λ1


λ1 + N − 1

N

t

=
N − 1

2
exp [−tαr (C,N)] (13)

where

αr (C,N) = ln


N (N − 1)
C + (N − 1)2


(14)

is the learning rate of our algorithm in the case the N words are
sampled randomly. As alreadymentioned, the unambiguous learn-
ing scenario C = 0 results in the finite learning rate− ln (1 − 1/N)
simply because some words may never be chosen in the course of
the t learning trials. Interestingly, the learning rate αr exhibits a
non-monotone dependence on N for fixed C: for N > 2C + 1, it
decreases with increasing N (this is the parameter selection used
to draw the left panel of Fig. 2), and it increases with increasing
N otherwise. Recalling that for fixed C the minimum value of N is
N = C + 1 at which αr = 0, increasing N from this minimal value
must result in an increase of αr . The fact that αr decreases for large
N – an effect of sampling – implies that there is an optimal value
N∗

= 2C + 1 that maximizes the learning speed for fixed C . Of
course, for fixed N the learning speed is maximized by C = 0.

3.3. Learning the whole lexicon with deterministic sampling
To better understand the effects of the random sampling of the

N words we consider here a deterministic sampling scheme in
which every word is guaranteed to be chosen in the course of N
learning trials. Let us beginwith the firstN learning trials and recall
that at time t = 0 all words have error ϵsw (0) = (N − 1) /N . Then
during the learning process for t = 1, . . . ,N there will be t words
with error ϵsw (1) = C/ (C + 1) andN−t with error ϵsw (0) so that
the total learning error for the deterministic sampling is

Ed (t) =
1
N

[tϵsw (1) + (N − t) ϵsw (0)] , t ≤ N. (15)

This expression can be easily extended for general t by introducing
the single-word learning time τ = ⌊t/N⌋,

Ed (t) =
1
N

[(t − Nτ) ϵsw (τ + 1) + (Nτ + N − t) ϵsw (τ )] (16)

where ⌊x⌋ is the largest integer not greater than x. The time
dependence of the learning error for the deterministic sampling of
the N words is shown in Fig. 3. For t ≫ N , τ becomes a continuous
variable for any practical purpose, and then we can see that Ed
decreases exponentiallywith increasing t . Clearly, the learning rate
is determined by the single-word learning error [see Eq. (8)] and so
replacing τ by t/N in that equation we obtain the learning rate for
the deterministic sampling case

αd (C,N) =
1
N

ln

N − 1

C


. (17)

As in the single-word learning case, the learning rate diverges for
C = 0 in accordance with our intuition that in the absence of
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Fig. 2. (Color online) The expected learning error Er in the case the N words are sampled randomly as a function of the number of learning trials t . The solid curves are the
results of Eq. (12) and the filled circles the results of Monte Carlo simulations. The left panel shows the results for C = 2 and (left to right) N = 10, 20, . . . , 80 and the right
panel the results for N = 20 and (left to right) C = 1, 2, . . . , 10.

Fig. 3. (Color online) The expected learning error Ed for the case the N words are sampled deterministically as a function of the number of learning trials t . The solid curves
are the results of Eq. (16) and the filled circles the results of Monte Carlo simulations. The left panel shows the results for C = 2 and (left to right) N = 10, 20, . . . , 100 and
the right panel the results for N = 20 and (left to right) C = 1, 2, . . . , 10.

ambiguity, the learning task should be completed inN steps. In fact,
the learning error decreases linearly with t as given by Eq. (15).
Similarly to our findings for the random sampling, αd exhibits a
non-monotonic dependence on N: beginning from αd = 0 at
N = C + 1, it increases until reaching a maximum at N∗

≈ eC
and then decreases towards zero again as the size of the lexicon
further increases.

It is interesting to compare the learning rates for the two
sampling schemes, Eqs. (14) and (17). In the leading non-vanishing
order for large N and C ≪ N , we find αr ≈ C/N2 whereas αd ≈

(lnN) /N . In the more realistic situation in which the context size
grows linearly with the lexicon size, i.e., C = γN with γ ∈ [0, 1],
for large N we find αr ≈ (1 − γ ) /N and αd ≈ − (ln γ ) /N . Hence
for small C or γ ≈ 0, the deterministic sampling of words results
in much faster learning than the random sampling. For large C or
γ ≈ 1, however, the two sampling schemes produce equivalent
results.

4. Effects of imperfect memory and discriminability

The simplicity of the minimal associative learning algorithm
analyzed in the previous section is deceiving. In fact, the algorithm
contains two assumptions that make it extremely powerful. The
first assumption is unlimited memory, since the algorithm stores
the confidence values from the very first to the last learning
episode, regardless of the number of learning episodes. The second
is perfect discriminability, since it always identifies the largest
confidence regardless of the closeness to, say, the second-largest
one.

The scheme we use to relax the perfect discriminability
assumption is inspired by Weber’s law, which asserts that the
discriminability of two perceivedmagnitudes is determined by the
ratio of the objectivemagnitudes. Accordingly, we assume that the
probability that the algorithm selects object i as the referent of any

given word h is simply phi/


j phj, so that referents with similar
confidence values have similar probabilities of being selected. This
differs from the original minimal algorithm for which the referent
selection probability is either one or zero, except in the case of ties
when the probability is divided equally among the referents with
identical confidence values.

Forgetting or decaying of the confidence values is implemented
by subtracting a fixed factor β ∈ [0, 1] from the confidences
phi, i = 1, . . . ,N whenever word h is absent from a learning
episode. The problem with this procedure is that the confidence
values may become negative and when this happens we reset
them to zero. Another difficulty that may rise is when phi = 0
for all i = 1, . . . ,N and in this case we reset phi = 1/N for all
i = 1, . . . ,N . These resetting procedures are responsible for the
discontinuities observed in the performance of the algorithm as
we will see next. As in the minimal algorithm, we add 1 to the
confidences associated to the targetword and the objects exhibited
in the context.

Relaxation of the perfect memory assumption makes the
forgetting parameter β dependent on the sampling scheme of
words, which precludes an analytical approach to this problem.
As we have to resort to simulations to study the performance
of the modified algorithm anyway, in this section we consider
a very specific sampling scheme used in experiments with adult
subjects to test the effect of varying the frequency of presentation
of the target words on their learning performances (Kachergis
et al., 2009). More importantly, use of this sampling scheme allows
us to compare quantitatively the performance of the minimal as
well as of the modified associative learning algorithms with the
performances of the adult subjects.

The experiment we consider here aims at evaluating the
performance of the associative algorithms in learning a mapping
between N = 18 words and N = 18 objects after 27 training
episodes (Kachergis et al., 2009). Each episode comprises the
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Fig. 4. (Color online) Expected accuracy for the two frequency condition as a
function of the forgetting parameter β at learning trial t = 27. The curves show
the accuracy of the set of words sampled 9 and 3 times as indicated in the figure.
The horizontal lines and the shaded zones are the experimental results (Kachergis
et al., 2009). For β ≈ 0.16 we get an excellent agreement between the model and
experiments.

presentation of 4 objects together with their correspondingwords.
Following Kachergis et al. (2009), we investigate two conditions. In
the two frequency condition, the 18 words are divided into two
subsets of 9 words each. In the first subset the 9 words appear
9 times and in the second only 3 times (see Fig. 4). In the three
frequency condition, the 18 words are divided into three subsets
of 6 words each. In the first subset, the 6 words appear 3 times, in
the second, 6 times and in the third, 9 times (see Fig. 5). In these
two conditions, the same word was not allowed to appear in two
consecutive learning episodes.

Once the cross-situational learning scenario is defined,we carry
out 104 runs of the modified associative learning algorithm for a
fixed value of the forgetting parameter. The results are shown in
terms of the average accuracy 1 − ⟨ϵ⟩ as a function of β in Figs. 4
and 5. The horizontal straight lines and the shaded zones around
them represent the means and standard deviations of the results
of experiments carried out with 33 adult subjects (Kachergis et al.,
2009).

Before discussing the interesting dependence of the accuracy on
the forgetting parameter exhibited in Figs. 4 and 5, a word is in or-
der about the performance of the original minimal algorithm that
is not shown in those figures. In the two frequency condition, the
mean accuracy is 0.99 forwords in the 9-repetition subset and 0.90
for those in the 3-repetition subset. In the three frequency condi-
tion, themean accuracy is 0.99 for words in the 9- and 6-repetition
subsets, and 0.91 for those in the 3-repetition subset. These ac-
curacy values are well above those exhibited in Figs. 4 and 5.
Moreover, adding the forgetting factor to the minimal associative
algorithm does not affect its performance, since subtracting the
same quantity fromall confidence values phi for a fixedword h does
not alter the rank order of these confidences.

Although we intuitively expect that words that appear more
frequently would be learned better, this outcome actually depends
on the value of the forgetting parameter as shown in Figs. 4 and
5. This counterintuitive finding was first observed in the three
frequency condition experiment on adult subjects (Kachergis et al.,
2009). In fact, the results of those experiments (i.e., the expected
accuracies) can be described very well by choosing β = 0.16 in
the two frequency condition and β = 0.08 in the three frequency
condition.

It is interesting that the choice of a moderate value for the
forgetting parameter β may result in a considerable improvement
of the performance of the algorithm. This is a direct consequence of
Weber’s law prescription for the discrimination of the confidence
values and so there is a synergy between discrimination and
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Fig. 5. (Color online) Expected accuracy for the three frequency condition as a
function of the forgetting parameter β at learning trial t = 27. The curves show
the accuracy of the set of words sampled 9, 6 and 3 times as indicated in the figure.
The horizontal lines and the shaded zones are the experimental results (Kachergis
et al., 2009). For β ≈ 0.08 we get an excellent agreement between the model and
experiments.

memory in our algorithm. To see this we note that at a given
learning trial the ratio between the probabilities of selecting
referent i = 1 and referent i = 2 for a word h is r = ph1/ph2. If
word h does not appear in the next trial then this ratio becomes

r ′
=

ph1 − β

ph2 − β
≈ r


1 +

β

ph1ph2
(ph1 − ph2)


(18)

so that r ′ > r if ph1 > ph2, thus implying that the forgetting
parameter helps the discrimination of the largest confidence. Of
course, too large values of β deteriorate the performance of the
algorithm as shown in the figures. We note that the dents and
jumps in the learning curves are not statistical fluctuations but
consequences of the discontinuities introduced by the ad hoc
regularization procedures discussed before.

The above analysis, summarized in part by Figs. 4 and 5,
evinces the better performance of the associative algorithm with
perfect storage and discrimination capabilities when compared
with humans’ performance for a finite number of learning trials
(t = 27, in the case). In addition, it shows that introduction of
imprecision in the discrimination of confidence values following
Weber’s law prescription together with forgetting brings that
performance down to the human level.

For the sake of completeness, it would be interesting to
compare the performance of the minimal associative algorithm
with humans’ performance in the limit of very long learning times,
which was in fact the main focus of Section 3. As there are no such
experiments – we guess it would be nearly impossible to keep the
subjects’ attention focused on such boring tasks for too long – next
we compare the performance of the minimal algorithm with the
performance of a rather sophisticated learning algorithm which,
among other things, models the attention of the learners to regular
and novelwords (Kachergis et al., 2012). The algorithm is described
briefly as follows. At any given trial, the confidence values phi are
adjusted according to the update rule

p′

hi = β̂phi + χ
phi exp [λ (Hh + Hi)]

hi
phi exp [λ (Hh + Hi)]

(19)

where

Hh = −


i

Λhi lnΛhi (20)

with Λhi = phi/


i phi, and similarly for Hi with the indexes of
the sums running over the set of words (Kachergis et al., 2012).
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Fig. 6. (Color online) Expected learning error forN = 10 and C = 2 as a function of
the number of learning trials t in the case words are sampled randomly. The open
circles are results of the minimal associative algorithm whereas the filled symbols
are the results of the algorithm proposed by Kachergis et al. (2012): diamonds
(χ = 3.01, λ = 1.39, β̂ = 0.64), circles (χ = 0.31, λ = 2.34, β̂ = 0.91), and
squares (χ = 0.20, λ = 0.88, β̂ = 0.96).

In this equation the entropies Hh and Hi are used as measures of
the novelty of word h and object i at the current learning episode.
The parameter β̂ governs forgetting, χ is the weight distributed
among the potential associations in the trial, and λ weights the
uncertainty (entropies) and prior knowledge (phi). We refer the
reader to Kachergis et al. (2012) for a detailed explanation of the
algorithm aswell as for a comparisonwith experimental results for
short learning times. Here we present its performance in acquiring
the word–object mapping in the simplified scenario of Section 3
(i.e., one targetword and C+1 objects in the context) for randomly
sampled words.

Fig. 6 summarizes our findings for N = 10, C = 2 and three
selections of the parameter set (χ, λ, β̂) used by Karchergis et al.
to reproduce the experimental results (Kachergis et al., 2012). The
symbols in this figure represent an average over 104 independent
samples. The expected learning error decreases exponentiallywith
increasing t and the rate of learning (the slope of the learning
curves for large t in the semi-log scale) is roughly insensitive
to the choice of the parameters of the algorithm. As expected
from our previous analysis of short learning times, the minimal
associative learning algorithm performs much better than the
more realistic algorithm. These conclusions hold true for a vast
variety of different selections of N and C , as well as for the
deterministic word sampling scheme.

5. Discussion

As the problem of learning a lexicon within a cross-situational
scenario was studied rather extensively by Smith et al. (2006), it
is appropriate that we highlight our original contributions to the
subject in this concluding section. Although we have borrowed
from that work a key result for the problem of learning a single
word, namely, Eq. (6), even in this case the focal points of our
studies deviate substantially. In fact, throughout the paper our
main goal was the determination of the learning rates in several
learning scenarios, whereas the main interest of Smith et al. was
in quantifying the number of learning trials required to learn a
wordwith a fixed given probability (Smith et al., 2006). In addition,
those authors addressed the problem of the random sampling of
words using various approximations, leading to inexact results
from where the learning rate αr , see Eq. (14), cannot be recovered.
As a result, the interesting non-monotonic dependence of αr
(and αd, as well) on the size N of the lexicon passed unnoticed. The
study of the deterministic sampling of words and the introduction

and analysis of the effects of limited storage and discrimination
capabilities on the original minimal associative algorithm are
original contributions of our paper.

We note that in the cross-situational scenarios studied previ-
ously (Blythe et al., 2010; Smith et al., 2006) the set of objects that
can be associated to a given word is word-dependent, rather than
constant as considered here. In other words, if the target word is h
then the elements of the context in a learning episode are drawn
from a fixed subset of Nh ≤ N objects. These subsets can freely
overlap with each other. Here we have assumed Nh = N for h =

1, . . . ,N . Of course, this generalization does not affect the anal-
ysis of the single-word learning, except that ϵsw becomes word-
dependent since the parameterN is replaced byNh [see Eq. (8)] and
similarly for the learning rate αsw [see Eq. (9)]. More importantly,
since words are learned independently by the minimal associative
algorithm, the single-word learning errors contribute additively to
the total lexicon learning error regardless of the sampling proce-
dure [see Eqs. (11) and (16)]. Hence the asymptotic behavior of the
total error is determined by the word that takes the longest to be
acquired, i.e., the word with the lowest learning rate or equiva-
lently with the smallest subset cardinality Nh. With this in mind
we can easily obtain the learning rates for this more general situ-
ation, namely, αr = ln {N (Nm − 1) / [C + (Nm − 1) (N − 1)]} and
αd = ln [(Nm − 1) /C] /N where Nm = minh {Nh, h = 1, . . . ,N}.
As expected, in the case Nm = N these expressions reduce to
Eqs. (14) and (17).

The cross-situational learning scenario considered here, as well
as those used in experimental studies, does not account for the
presence of external noise, such as the effect of out-of-context
target words. This situation can be modeled by introducing a
probability γ ∈ [0, 1] that the correct object is not part of the
context so the target word can be said to be out of context. Since
we have assumed that learning is based on the perception of
differences in the co-occurrence of objects and target words, in
the case all N objects have the same probability of being selected
to form the contexts regardless of the target word, such a purely
observational learning is clearly unattainable. To determine the
critical value of the noise parameter γc at which this situation
occurs we simply equate the probability of selecting the correct
object with the probability of selecting any given confounding
object to compose the context in a learning episode,

1 − γc =
(1 − γc) C
N − 1

+
γc (C + 1)
N − 1

, (21)

from where we get

γc = 1 −
C + 1
N

. (22)

Since in this case all objects and all words are equivalent, in the
sense they have the same probability of co-occurrence, the aver-
age single-word learning error, as well as the total error regardless
of the sampling scheme, is simply ϵsw = 1 − 1/N . We refer the
reader to Tilles and Fontanari (2012) for a detailed study of the be-
havior of the minimal associative learning algorithm near the crit-
ical noise parameter using statistical mechanics techniques. Here
we emphasize that the existence of γc is not dependent on the al-
gorithm used to learn theword–object mapping. Rather, it is a lim-
itation of cross-situational learning in general.

The simplifying feature of our model that allowed an analytical
approach, as well as extremely efficient Monte Carlo simulations
(in all graphs the error bars were smaller than the symbol sizes),
is the fact that words are learned independently from each other.
In this context, the minimal associative algorithm considered
here corresponds to the optimal learning strategy. Moreover, the
fact that the minimal associative algorithm exhibits effectively
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unlimited storage and discrimination capabilities makes its
learning performance much superior to that of adult subjects in
controlled experiments (Kachergis et al., 2009) and to that of
sophisticated algorithms designed to capture the strategies used
by humans in the observational learning task (Kachergis et al.,
2012). Interestingly, introduction of errors in the discrimination of
the confidence values usingWeber’s law reduced the performance
of the minimal algorithm to the level reported in the experiments.
Perhaps, sophisticated learning strategies such as the mutual
exclusivity constraint (Markman, 1990), which directs children
to map novel words to unnamed referents, have evolved to
compensate the limitations imposed by Weber’s law to evaluate
the frequency of co-occurrence of words and referents.
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