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Abstract Strong solvent signals lead to a disappearance

of weak protein signals close to the solvent resonance

frequency and to base plane variations all over the spec-

trum. AUREMOL-SSA provides an automated approach

for solvent artifact removal from multidimensional NMR

protein spectra. Its core algorithm is based on singular

spectrum analysis (SSA) in the time domain and is com-

bined with an automated base plane correction in the fre-

quency domain. The performance of the method has been

tested on synthetic and experimental spectra including two-

dimensional NOESY and TOCSY spectra and a three-

dimensional 1H,13C-HCCH-TOCSY spectrum. It can also

be applied to frequency domain spectra since an optional

inverse Fourier transformation is included in the algorithm.

Keywords AUREMOL-SSA � Multidimensional NMR �
Singular spectrum analysis � Solvent suppression �
Base plane correction

Abbreviations

ALS Automated linear spline

COSY Correlation spectroscopy

FID Free induction decay

FIR Finite impulse response filter

HPr Histidine containing phosphocarrier protein

ICA Independent component analysis

KLT Karhunen–Loeve transformation

PCA Principal component analysis

SSA Singular spectrum analysis

SVD Singular value decomposition

Trx Thioredoxin

Introduction

NMR investigations of biomolecules are generally per-

formed in aqueous solutions. Thus when studying the

proton resonances, the dominant signal stems from the

solvent and is often many orders of magnitude larger than

the resonances of the molecules under consideration. The

dominant solvent artifact is severely affecting the process

of data evaluation, especially when automation is required.

Suppressing this artifact signal, either by experimental

means through proper pulse sequences or by post-pro-

cessing methods using signal processing techniques, is thus

a key issue in proton NMR [for a review see (Gronwald

and Kalbitzer 2004)]. Early approaches make use of the

fact that the water resonance is usually positioned at the

center of the spectrum (i.e. at x = 0). As a consequence,

its time domain signal can be described as a non-modulated

exponential. This led Kuroda et al. (1989) to propose the

computation of second derivatives of the FIDs and the

application of a Fourier transformation to the latter, which

suppresses signals at x = 0, such as the water artifact. An

improvement to this filtering technique was later proposed

by (Marion et al. 1989) applying a low-pass finite impulse
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response filter (FIR). The contribution of the water signal

can then be obtained by filtering out the oscillatory parts of

the FIDs and then subtracting those parts from the original

time domain data (Mitschang et al. 1990). This method is

similar to the diagonal peak suppression method for phase-

sensitive COSY spectra (Friedrichs et al. 1991). However,

such linear phase filters always introduce severe signal

distortions due to the damped nature of the time domain

signals. For a critical review of such filtering approaches

see (Coron et al. 2001). The authors compare several

methods and conclude that the maximum phase FIR filter

(Sundin et al. 1999) is the most accurate and efficient of

these filtering techniques. The main disadvantage of FIR

filtering techniques, however, is their limited use with

unsuppressed water signals which cover a huge dynamic

range and need attenuations up to -100 dB which conflicts

with the practically available length of the filters beneath

others.

Also wavelet transformation can be used for solvent

suppression discarding the components corresponding to

low frequencies before data reconstruction (Barache et al.

1997; Antoine et al. 2000; Guenther et al. 2002).

In the frequency domain, the dispersive tails of the water

resonance can be largely attenuated by fitting these tails to

a hyperbolic function which is then subtracted from the

spectra (Adler and Wagner 1991). The dispersive tails of

the water resonance can also be suppressed by phasing the

water signal in absorption mode, zeroing the relatively

small absorption signal in the frequency domain data,

discarding the imaginary part and regenerating the signal

from the processed real part via a Hilbert transformation

(Tsang et al. 1990).

Matrix decomposition techniques like principal com-

ponent analysis (PCA), singular value decomposition

(SVD) and independent component analysis (ICA), follow

similar ideas and form an important class of solvent sup-

pression postprocessing methods. Application of the

Karhunen–Loeve transformation (KLT) to multidimen-

sional data removes undesired water artifacts based on their

large intensity (Mitschang et al. 1991). Grahn et al. (1988)

described the use of PCA for pattern recognition in two-

dimensional NMR spectra by approximating the multivar-

iate data matrix of the spectrum. The PCA method was

afterwards applied by Hardy and Rinaldi (1990) for artifact

reduction in COSY spectra using intensity matrixes. A

related unsupervised approach is to apply singular value

decomposition for large artifact removal and noise reduc-

tion on 2D NMR spectra as discussed by Brown and

Campbell (1990) and by Pijnapple et al. (1992).

Related to PCA or SVD techniques are matrix pencil

techniques which determine the eigenvectors and eigen-

values of a pair of time delayed correlation matrices (Lin

et al. 1997). Recently these methods have been

reconsidered using time-embedding techniques and simul-

taneous or joint diagonalization of a set of Toeplitz tra-

jectory matrices (Parra and Sajda 2003). They belong to the

class of unsupervised projective subspace techniques which

decompose the signal into underlying component signals,

some of which are related with the water resonance and are

deliberately neglected during reconstruction. Note that

during the PCA step of these methods, signal de-noising

can be achieved by neglecting the eigenvectors related with

the smallest eigenvalues (Gruber et al. 2006). These blind

source separation techniques have been applied to 2D

NOESY proton NMR spectra of proteins to remove the

water resonance and any related artifacts (Stadlthanner

et al. 2006). The tedious task of assigning components to

the water signal has been fully automated (Boehm et al.

2006; Stadlthanner 2007).

In summary, many experimental and numerical tech-

niques achieving water suppression have been developed so

far (Hore 1989), but most of them cannot recover the solute

resonances hidden underneath the water artifact. Further-

more automation requires that no additional parameters

have to be set by the user. In this paper, a method based on

singular spectrum analysis (SSA) (Ghil et al. 2002) for the

removal of the solvent artifact and the recovery of hidden

solute resonances is described. This technique is an exten-

sion of the PCA applied to a time-lagged data set. Whereas

the application of the Karhunen-Loeve transformation

reduces to the creation of an autocorrelation matrix by time

averaging over a sample of free induction decays, the SSA

embeds each FID separately in an M-dimensional vector

space considering a matrix of M lagged copies of the single

time series. A related method was previously reported by

Zhu et al. (1997) in which a singular value decomposition

was applied to the trajectory matrix derived from the data.

The interrelationships among SVD, PCA and KLT have

been discussed by Gerbrands (1981) pointing out that they

can differ significantly.

Materials and methods

Test data sets

The two-dimensional experimental NOESY and TOCSY

spectra were recorded from a sample containing 2.7 mM

uniformly 15N-enriched HPr protein from Staphylococcus

aureus in 500 lL 95% H2O/5% D2O, pH 7.0. The three-

dimensional experimental 1H,13C HCCH-TOCSY spectrum

has been recorded from a sample containing Thioredoxin

protein (Trx) from Plasmodium falciparum in D2O 99.5%,

pH 7.0. Trx is a medium size protein with 104 residues and

formed by four a-helices and five stranded b-sheets (Munte
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et al. 2009). The NMR spectra were recorded on Bruker

Avance-800 and Avance-600 spectrometers operating at

800 MHz and 600 MHz, respectively, employing a mixing

time of 100 ms in both two-dimensional spectra and a

mixing time of 12 ms in the three-dimensional case. The

water signal was reduced by selective pre-saturation in the

NOESY and in the TOCSY spectra, whereas no pre-satu-

ration was needed for the three-dimensional spectrum since

measured in D2O. The two-dimensional TOSCY and NO-

ESY spectra have been recorded using relaxation delays of 1

and 2 s each and with 1,024 9 2,048 and 512 9 512

complex time domain points, respectively. The three-

dimensional HCCH-TOCSY spectrum has been recorded

with a relaxation delay of 1 s and 2,048 9 96 9 128 time

domain points. The spectral widths in the two dimensions

were 13.9486 ppm in the two-dimensional TOCSY spec-

trum, whereas they were 13.961 ppm in the two-dimen-

sional NOESY case. The three-dimensional spectrum has a

spectral width of 6.9945 ppm in the direct direction,

70.0 ppm for the first indirect and 6.9945 ppm for the sec-

ond indirect direction, being acquired with the 3-1-2 order

and having the first indirect direction related with the 13C.

All spectra were measured at 303 K. The NMR data

were acquired with the program TOPSPIN (Bruker,

Karlsruhe).

A synthetic two-dimensional NOESY spectrum was

calculated with the AUREMOL module RELAX-JT2 (Ried

et al. 2004) from the three-dimensional structure of HPr

(H15A) from Staphylococcus aureus and from the corre-

sponding experimental chemical shifts. The simulation is

based on a full relaxation matrix approach and includes

also T2-calculations and J-couplings. Gaussian noise was

added corresponding to a signal to noise ratio of approxi-

mately 2r for a proton-proton pair in a distance of 0.5 nm

as described by Baskaran et al. (2009). The resulting time

domain data were filtered by exponential multiplication

with a line broadening in the two dimensions of 3 Hz and

finally the data have been Fourier transformed. The water

artifact was produced by measuring a 2D-NOESY spec-

trum of 90% H2O/10% D2O with solvent pre-saturation,

having the same acquisition parameters used for spectra

simulation. After Fourier transformation this spectrum was

added to the synthetic spectrum scaled in such a way that

the maximum of the water was about 5,000 times stronger

than a typical amide signal.

Availability of the program

All the developed routines have been integrated in the

program AUREMOL (Gronwald and Kalbitzer 2004) and

can be downloaded from www.auremol.de.

Theory

Projective subspace techniques

Time series analysis techniques often rely on embedding

one-dimensional sensor signals, the FIDs, in the space of

their time-delayed coordinates. Embedding can be regarded

as a mapping that transforms a one-dimensional time series

xi ¼ ðxi½0�; xi½1�; . . .; . . .; xi½N � 1�ÞT into a sequence of M

time-lagged vectors. A multidimensional NMR spectrum

then consists of Q FIDs xi; ði ¼ 1; . . .;QÞ. Each FID xi of

length N is embedded in its delayed coordinates with an

(N – M ? 1) window size, to form a trajectory matrix X

with its characteristic Toeplitz structure.

[ 1]  [ ] ....   . ..    [ 1]

[ 2] [ 1]   . ...    ...            [ 2]

[ 3] [ 2]  [ 1] ... [ 3]

.... .... .... ..

x M x M x N

x M x M x N

x M x M x M x N

X

−−
− − −
− − − −

= ..  

.... .... ....  ....

[1]          [2]    [3] .... [ 1]

[0] [1] [2] .... [ ]

x x x x N M

x x x x N M

⎤⎡
⎥⎢

⎢
⎢

⎥⎢
⎥⎢
⎥⎢
⎥⎢

− + ⎥⎢
⎥⎢ − ⎦⎣

⎥
⎥ (1)  

The embedding dimension can be estimated using model

order selection techniques (Liavas and Regalia 2001). Note

also that the Toeplitz matrix X of (M 9 (N - M ? 1))

dimensions has identical entries along its (top left to bot-

tom right) diagonals. Any multidimensional signal vector

xk that constitutes the columns of X, is projected onto the

directions (eigenvectors) related with the largest eigen-

values of the covariance matrix. Dimension reduction can

be achieved by deliberately projecting the data vectors xk

only onto the L \ N directions corresponding to the L

eigenvectors related with the L largest eigenvalues. In this

case it corresponds to a denoising procedure as the eigen-

vectors related to the smallest eigenvalues encompass just

noise.

The reconstruction after zeroing the eigenvector related

to the largest eigenvalue that corresponds to the dominant

solvent signal, leads to a new set of vectors x
0

k forming the

estimated trajectory matrix X
0
. Note that in general ele-

ments along each descending diagonal of X
0

will not be

identical like in case of the original trajectory matrix X.

This can be cured, however, by replacing the entries in

each diagonal by their average, obtaining again a Toeplitz

matrix Xr. This procedure assures that the Frobenius norm

of the difference Xr � X
0� �

attains its minimum value

among all possible solutions to get a matrix with all

diagonals equal (Golyandina et al. 2001; Teixeira et al.

2008). The one-dimensional signal xi½n� is thus obtained by

reverting the embedding, forming the signal with the mean

of the values along each diagonal of X
0
.
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The Singular Spectrum Analysis (SSA) is essentially a

principal component analysis applied to the covariance

matrix C formed with the centered trajectory matrix of

each FID. The following steps (1–7) need to be repeated for

every FID.

1. The data matrix X need to be centered to render it zero

mean.

2. An (M 9 M)-dimensional correlation matrix C is

computed via

C ¼ XXT

ðN �M þ 1Þ ð2Þ

3. The eigenvalues decomposition of the covariance

matrix is computed, yielding the eigen-representation

of the correlation matrix with the U matrix containing

the M eigenvectors in its columns and D is the

diagonal matrix of the eigenvalues

C ¼ 1

ðN �M þ 1ÞXXT ¼ UDUT ð3Þ

After this step denoising can be achieved by projecting the

multidimensional signal into the subspace spanned by the

eigenvectors corresponding to the L \ M largest eigen-

values. The M components of each FID are extracted by

projecting the trajectory matrix along the directions given by

the eigenvectors. The components are contain in the

subspace matrix S calculated by

S ¼ UT X ð4Þ

4. During the reconstruction process the eigenvector

related to the largest eigenvalue is nullified, yielding

the new trajectory matrix in the following manner

X
0 ¼ UnullU

T
nullX ð5Þ

5. The mean value is added to the new data matrix X0.
6. The reconstructed data matrix X

0
does not possess a

Toeplitz structure anymore. However, it is easily

reconstituted by diagonal averaging and replacing every

element along a diagonal by its averaged element.

7. The reconstructed one-dimensional signal x
0
, i.e. the

reconstructed FID is finally obtained reverting the

embedding process.

The reconstructed total data matrix Xtot ¼ ½x0ð1Þ; x0ð2Þ;
. . .; x0ðqÞ� is obtained using the extracted one-dimensional

signals x
0ðiÞ with i = 1, …, q, according to the number of

recorded FIDs.

Note that the reconstruction process can proceed in two

different ways which should be equivalent in principle. The

reconstructed FID is obtained by nullifying the projection

onto the eigenvector corresponding to the largest eigen-

value, i.e. zeroing this eigenvector in the eigenvector

matrix Unull. An equivalent approach would be by recon-

structing the solvent signal using only the largest eigen-

vector. Then the FID related to the protein resonances can

be obtained subtracting it from the original data, i.e.

y½n� ¼ x½n� � x
0 ½n�.

Automated base plane correction in the frequency

domain

After removing the strong solvent signal, the base plane

usually needs to be corrected in the frequency domain.

Several methods for baseline correction have been devel-

oped. The most efficient and robust one is probably the

cubic spline interpolation (Zolnai et al. 1989). The latter,

however, induces new artifacts in areas where only few

baseline points can be defined. In the present work, the

linear spline interpolation (Saffrich et al. 1993) of the base

points has been used as a valid alternative, being even more

efficient and simpler. Traditionally, the base points where

the base plane should be zero and where no relevant peaks

are expected are defined interactively by the user. In auto-

mation this is not acceptable; hence the points have to be

identified by the program. A method similar to the one

proposed by Guentert and Wuethrich (1992) is used to

automatically recognize the baseline regions in the spec-

trum. It is based on the observation that a contiguous piece

of a row or a column of the data matrix can be well fitted by

a straight line only if it lies in a pure baseline region. The

most important parameter here is the size W of the window

examined around a data point k that must be clearly

larger than the expected line width of a protein resonance

peak. Therefore the window size W must automatically

change depending on the investigated spectrum. In general

the default value of 75 Hz described by Guentert and

Wuethrich (1992) is suitable for homonuclear proton NMR

spectra. In order to allow the use of an appropriate adaptable

window size W dependent on the type of experiment, the

algorithm has been modified. The spectrum is firstly eval-

uated peak by peak fitting a Lorentzian function to the

datasets optimized by the nonlinear least-squares algorithm

of Levenberg–Marquardt (Levenberg 1994; Marquardt

1963). Only peaks are considered having intensities larger

than 3-times the noise level rN. The maximum values LW

of the line widths lw of all peaks are then computed sepa-

rately for each dimension in the following manner:

LW1 ¼ max max lwrð Þð Þ with

r ¼ 1; 2; . . .; number of rows

LW2 ¼ max max lwcð Þð Þ with

c ¼ 1; 2; . . .; number of columns

In a two-dimensional case, two line widths histograms

are generated representing the line width distributions
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within the frequency range (0, LW1) and (0, LW2),

respectively. The two histograms contain the maximum

line widths values of each row and column, respectively.

The most frequently occurring maximum line width is used

as reference to fix the window size W on the considered

dimension. The actual window size is thus chosen as twice

the line width at the maximum of the line width histogram.

The window slides row-wise and column-wise. Within

each sliding window centered at data point k, the measured

data points are approximated by a straight line and the

mean square deviation v2
k of the data points from the best

fitting straight line is determined. Finally a threshold is

defined as th ¼ sv2
min and those regions in the spectrum

where v2\th are identified as pure baseline regions.

Typically, s was set to 10.

The total set of pure baseline points is again approxi-

mated by a straight line using the linear spline interpo-

lation method. Afterwards those approximated rows and

columns are subtracted from the original dataset. How-

ever, long stretches of interpolated baseline regions yield

to straight lines of zeros in the baseline corrected spec-

trum. In order to avoid this problem, the interpolation is

not applied to all the consecutive recognized baseline

points. In a stretch of five consecutive baseline points,

only one is chosen to be interpolated (i.e. the middle one).

Moreover, the intensity value of each chosen baseline

point is not directly linearly interpolated, but it is

substituted by the mean value between its own intensity

and the intensities of the two adjacent points. As last step

of baseline correction, the same procedure described

above is applied column-wise excluding the points

already corrected along the rows from the search of

baseline points.

Implementation

The strategy described in Fig. 1 has been developed and

integrated into the AUREMOL software package for

automated water artifact removal from multidimensional

NMR spectra and automated baseline correction. Starting

from a multidimensional time domain signal, the singular

spectrum analysis is applied to each experimental FID (to

the rows of the data matrix) separately, performing steps

1–7 as explained in the theory section. This procedure

generates an ensemble of artifact-free signals. Using a

modern Bruker spectrometer the experimental data are

typically oversampled and digitally frequency filtered

(DQD-mode) (Moskau 2002). In this case, the data have

to be preprocessed before applying SSA, since they do

not correspond to a classical FID (damped cosine func-

tion). Here, the first few data points of each FID represent

the group delay due to the digital frequency filtering and

do not contain specific spectral information. Before

applying the SSA, they have to be removed from the FID

and the remaining data have to be left-shifted correpon-

dingly. Moreover, during the embedding step the data are

transformed to zero mean and normalized to unit norm (z-

transformation). Each FID, or equivalently each row of a

two-dimensional data matrix, is embedded into a feature

space of dimension K = 20, whereas a fixed shift of one

data point is used (see eq. 1). The embedding dimension

has been chosen empirically. In Fig. 2, the resulting 20

estimated components, obtained from a two-dimensional

NOESY spectrum, demonstrate a clear separation between

the water artifact signal and the rest of the signal in the

time domain. Typically, as described in Fig. 3 (showing

the corresponding components in the frequency domain),

one of the estimated components represents the water

artifact almost perfectly, and about ten components are

needed to reconstruct the protein signals. All the

remaining components only contain pure noise. Therefore,

the restriction to a smaller number of dimensions during

Fig. 1 Schematic overview of the automated water artifact removal

procedure by means of SSA from digitally filtered data and subsequent

automated baseline correction by linear spline interpolation
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the embedding step would be possible, but since com-

putations are fast and efficient, the proposed embedding

dimension K = 20 has been set as default.

The resulting trajectory matrix from each FID is fed into

the PCA algorithm to determine the eigenvectors and

eigenvalues of the embedded data. Next, the eigenvector

belonging to the largest eigenvalue extracted is set to zero.

Before reconstructing the original signal, data along the

diagonals of the estimated trajectory matrix need to be

replaced by their average to preserve the Toeplitz structure

of the trajectory matrix. An inversion of the zero mean and

data normalization steps is applied at the output of the

SSA, rendering the water removal procedure more effec-

tive and avoiding scaling problems on the data. The pre-

viously stored group delay points (when existing) are then

re-appended to the corrected FIDs. This particular treat-

ment of the digitally filtered data for water removal avoids

the generation of undesired artifacts.

The procedure is iteratively repeated for all the trajec-

tory matrixes of all FIDs, independent of the dimensions of

the data set. Once the water artifact is removed from the

whole multi-dimensional time domain data set, the signal is

automatically Fourier transformed to the frequency domain

and a phase correction is applied coherently with the group

delay time shift introduced by the digital filter. The base-

line points are then selected from the multi-dimensional

artifact corrected spectrum as described above and then

linearly interpolated row by row and column by column.

The interpolation is then subtracted from the artifact-free

spectrum row-wise and column-wise.

Fig. 2 Representation of some components of the subspace matrix S

(eq. 4) calculated from the first FID of the two-dimensional NOESY

experimental spectrum of HPr. Time domain data, 1 9 512 complex

data points; embedding dimensions of the trajectory matrix 20 9 492,

number of extracted components 20. Superimposition in the time

domain of the first component (red) related to the solvent signal, the

second component (green) representing a portion of the protein

signal, the last component (black) containing only noise and the first

original FID before the decomposition (blue)

Fig. 3 Representation in the frequency domain of some of the

extracted components from the trajectory matrix of the first FID of the

two-dimensional NOESY experimental spectrum of HPr protein.

Time domain data, 1 9 512 complex data points, embedding

dimensions of the trajectory matrix 20 9 492, number of extracted

components 20, size of the real data after Fourier transformation

20 9 492. A representation of the original data after Fourier

transformation of the first FID (A), the first estimated component

(B), the second component (C), the fifth component (D), the tenth

component (E) and the last component (F) in the frequency domain
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Results and discussion

The performances of the different methods have been

validated by comparing the results with experimental as

well as synthetic data. These latter have the advantage that

the pure artifact-free spectrum is available and can be used

as the ‘‘gold’’ standard for the obtained results. These

synthetic spectra were calculated for a medium sized pro-

tein, namely the histidine-containing phosphocarrier pro-

tein (HPr) from Staphylococcus aureus. It is 88 residues in

size and its structure consists of three a-helices and a four

stranded anti-parallel b-sheet (Maurer et al. 2004). First a

noiseless 2D NOESY spectrum was calculated from the 3D

structure of the protein with RELAX-JT2 implemented in

AUREMOL with inclusion of J-couplings and T2-relaxa-

tion terms and the addition of Gaussian noise (see

‘‘Materials and methods’’). Since only base line artifacts

are removed by the methods described here, this spectrum

is used as reference spectrum. Finally, a strong water-

artifact signal was added to obtain a test spectrum. For the

used experimental spectra, reference spectra do not exist,

thus the performance of the routines cannot be quantified

absolutely but only a visual inspection of the data can be

applied for quality assessment.

Performance of the automated linear spline

The performance of spline-like base plane corrections

depends critically on the selection of the baseline points

assumed to be part of optimal base plane and to do not

contain valid signals. With an interactive selection of these

points the results are rather satisfying (Zolnai et al. 1989;

Saffrich et al. 1993); however, for automation this manual

selection is not acceptable. Therefore we adapted and

generalized a method for base point selection proposed by

Guentert and Wuethrich (1992) for the use of a linear

spline base plane correction. Here, the inherent criteria for

a base plane point are (1) that it is part of a region that can

be approximated by a straight line but (2) is not part of a

peak itself. The second criterion is confirmed by selecting a

window that is clearly larger than line width of true peaks.

If the window would contain the peak maximum, criterion

1 would not be fulfilled. In its original paper Guentert and

Wuethrich selected a fixed number of data points for the

definition of the sliding window, a selection that is

appropriate if only one type of spectra (e. g. homonuclear

2D-spectra) is used. Since a peak width recognition pro-

cedure that is applicable to all kinds of NMR spectra was

required, we had to devise a method that determines the

optimal size of the windows in all dimensions in a given

spectrum. For that the distribution of line widths of the

peaks in the spectrum under consideration was determined

and the window size was set as a multiple of the most

frequent line width. When baseline points are direct

neighbors, the linear spline creates regions with a noise-

less baseline, that visually looks nice but is not acceptable

by some processing methods. Therefore, a special selection

method had to be devised (see ‘‘Theory’’).

An example for the application of ALS is shown in

Fig. 4 where the synthetic NOESY spectrum is shown

simulated without a water signal and any base plane

deviations. The same NOESY spectrum containing the

Fig. 4 ALS baseline correction.

The NOESY spectrum of the

histidine-containing

phosphocarrier protein (HPr)

from Staphylococcus aureus
was back calculated using the

AUREMOL module RELAX-J-

T2. Mixing time 100 ms, time

domain data, 512 9 1,024

complex data points, size of the

real data after Fourier

transformation 51 9 1,024, zero

filling before transformation.

A Synthetic two-dimensional

NOESY spectrum of HPr, B the

simulated NOESY spectrum

with a water artifact added,

and C the spectrum obtained

after baseline correction

of spectrum B
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solvent signal and severe base plane deviations is com-

pared with the base plane corrected spectrum in Fig. 4. It

shows that the method is working outside the region around

the water signal but of course the method cannot remove

the water artifact itself. This should be the domain of the

SSA-module. However, the application of the ALS after

the application of SSA leads to a significant improvement

of the results.

Application of singular spectral analysis

to multi-dimensional NMR spectra

The SSA-algorithm was first tested on the same synthetic

spectrum (Fig. 4) already used for the application of the

ALS algorithm. Figure 5 shows the result; the water arti-

fact was almost completely removed and the obtained

spectrum looked almost as the unperturbed spectrum

shown in Fig. 4. It is evident that water and baseline

artifacts are strongly suppressed, whereas hidden protein

resonances are recovered. A problem occurring with many

processing methods is a change of peak intensities that

cannot be accepted for a quantitative analysis of the data.

The residual calculated as difference between the pro-

cessed spectrum and the original artifact-free spectrum is

almost zero (within the limits of pure noise) for the protein

cross peaks as shown in Fig. 5.

Figure 6 shows as an example the application of SSA

and ALS to an experimental two-dimensional TOCSY

spectrum of the HPr protein. It is clearly seen that the

solvent artifact and the base plane variations are largely

suppressed and hidden protein resonances lying underneath

the water are recovered. The boxed part of the spectrum

close to the water resonance is shown in larger

Fig. 5 Demonstration of artifact removal by SSA on a synthetic

spectrum. The same synthetic two-dimensional NOESY spectrum of

the histidine-containing phosphocarrier protein (HPr) from Staphylo-
coccus aureus was used as in Fig. 4B. A Synthetic spectrum after

solvent removal by SSA and ALS baseplane correction in two

dimensions. B The residual obtained by substracting the original,

artifact-free spectrum (Fig. 4A) from spectrum (A)

Fig. 6 Demonstration of artifact removal by SSA on an oversampled

experimental two-dimensional spectrum. A TOCSY spectrum of the

histidine-containing phosphocarrier protein (HPr) from Staphylococ-
cus aureus in 500 ll of 95% H2O/5% D2O was measured on a Bruker

Avance-800 spectrometer. Mixing time, 100 ms, relaxation delay 1 s,

time-domain data matrix 1,024 9 2,048 complex data points, zero

filling before Fourier transformation, size of the real data matrix after

Fourier transformation 1,024 9 2,048, linear interpolation for baseline

correction after transformation. A Original spectrum and B spectrum

after application of SSA and ALS
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magnification in Fig. 7. It shows that a threonine Ha - Hb

cross peak at (5.430, 5.150 ppm) superposed by the water

resonance is clearly observable after the application of

SSA. Finally, Fig. 8 shows the results of the artifact

removal procedure to an oversampled three-dimensional

HCCH-TOCSY spectrum. SSA was applied in the direct

(t3)-dimension to all rows (FIDs) of the 3D-time domain

data. After performing the solvent removal, the data was

Fourier transformed and ALS was applied in all (x2, x3)-

planes. In general, the baseline correction could be per-

formed not plane-by-plane wise but direction-wise, an

option not implemented in the actual version of AUR-

EMOL, that could give a slightly improved performance of

the algorithm. The water resonance and its tails were

almost completely removed. The recovery of the peak

lying under the water is demonstrated in Fig. 9, showing

the projection on the F1–F3 plane of the three-dimensional

HCCH-TOCSY spectrum before and after the solvent

removal.

The singular spectrum analysis has been tested both on

pure time domain signals and on mixed time–frequency

domain signals. In a two-dimensional spectrum, the mixed

domain is generated by Fourier transforming only along the

columns of the data matrix and consequently using each

row separately as input to the SSA, since the rows can still

be considered as time domain signals. In both cases the

performance of the method is almost equally good but in

particular starting from the time domain is preferable for an

easier data managing. The NMR time domain signals are

usually recorded as complex data. Practical tests show that

the SSA method works better when the data are treated

as complex numbers instead of working on the a priori

Fig. 7 Recovery of signals close to the solvent line. Enlargement of

the artifact area with d2 [ [5.75,4.85] ppm and d1 [ [5.80,4.90] ppm

of the experimental two-dimensional TOCSY spectrum (red box
depicted in Fig. 6). A Original spectrum and B the spectrum after

solvent removal procedure. A threonine Ha-Hb cross peak is marked

Fig. 8 Application of the singular spectrum analysis for water

artifact removal to a three-dimensional spectrum. A subcube of a

three-dimensional 1H,13C HCCH-TOCSY spectrum of the

thioredoxin protein (Trx) from Plasmodium falciparum is shown

prior (A) and after (B) artifact removal by SSA and ALS. Size of the

subcube 2,048 9 96 9 128 real data points
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separated real and imaginary parts. When performing SSA

with oversampled data, the reconstruction algorithm pro-

duces at the beginning of an FID an increasing signal

(called the group delay) before the real free induction

signal starts. If SSA is directly applied to that FID, no

satisfactory result can be obtained. Therefore it is manda-

tory to perform the removal of these data points from each

FID before starting the SSA procedure. The performance of

the embedding step used before the PCA algorithm can be

highlighted if compared with the same procedure applied

on the whole set of FIDs without generating any trajectory

matrix. The number of projections onto the directions

related with the largest eigenvalues of the covariance

matrix is not more related to the embedding dimensions but

it is equal to the number of measured FIDs or rows of a

multi-dimensional spectrum. Dealing with a larger number

of estimated components and with many different time

signals simultaneously, increases the computational time

and generates the problem of the components identification

and assignment, since more than one projection can be

related to the water artifact.

Conclusions

The application of singular spectrum analysis, followed by

an automated linear spline, is mathematically rather simple

and straightforward and gives at least as good results as do

more complicated methods. An advantage for practical

applications is the complete automation. In the AUREMOL

software package it is used in a fully automated way that

includes application of SSA to the time domain data set,

followed by filtering, Fourier transformation, phase cor-

rection related to the group delay management and appli-

cation of ALS without any user intervention. The only step

that still must be performed interactively is the determi-

nation of the parameters used for phase correction since

here still no stable method exists. We believe that, con-

sidering the simplicity and the efficiency of the automated

implementation and the ease with which the spectroscopist

can insert it to the own processing strategy, singular

spectrum analysis for water artifact removal, as presented

in this work, should become an useful tool for the treatment

of multidimensional NMR spectra.
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