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Barrier and Mechanical Properties of Clay-Reinforced
Polymeric Nanocomposites

Márcia R. de Moura1,3, Fauze A. Aouada2,3, Valtencir Zucolotto1, and
Luiz H. C. Mattoso3
1Nanomedicine and Nanotoxicology Laboratory, IFSC, University of São Paulo,
São Carlos, SP, Brazil
2Chemistry Institute, São Paulo State University, Araraquara campus, Araraquara, SP, Brazil
3National Nanotechnology Laboratory for Agriculture – LNNA – Embrapa Agricultural
Instrumentation – CNPDIA, São Carlos, SP, Brazil

In this work, clay-based nanocomposites films were prepared by
addition of clay-Naþ natural montmorillonite in pectin and hydro-
xypropyl methylcellulose (HPMC) matrices. Mechanical (tensile
strength, elastic modulus, and elongation) and barrier (Water Vapor
Permeability (WVP), and Oxygen permeability (O2P)) properties
were investigated. From results, it was observed that the WVP
and O2P decreased when nanoclay was included into the HPMC
and pectin matrix films. Additionally, the incorporation of nanoclay
in the films significantly improved the mechanical properties because
the reinforcing effect of clay from its high aspect ratio and its enor-
mous surface area. These results are very important in packaging
area.

Keywords Barrier properties; Hydroxypropyl methylcellulose;
Mechanical properties; Nanocomposite; Pectin

INTRODUCTION

Since the 1970s, environmental concerns have prompted
several studies of different polar biopolymers as potential
alternatives for synthetic polymers in the flexible packaging
industries[1]. Numerous studies have been conducted
investigating the properties of various protein, polysac-
charide, and lipid-based biopolymer materials. Natural
biopolymers have the advantage of being biodegradable,
renewable, and often edible[2–3]. However, biopolymer films
have exhibited relatively poor mechanical and water vapor
barrier properties when compared to traditional polymeric
films, therefore limiting their commercial use[4].

In the last years polymer=clay composites have
received much attention, because of their extraordinary
possibility to improve the barrier[5–8], and mechanical
properties[9–12] of films. These composites are a class of
hybrid materials composed of organic polymer matrices

and micro=nanoscale organophilic clay fillers[13] and due
to their high aspect ratios and high surface area, if clay par-
ticles are properly dispersed in the polymer matrix at a
loading level of 1–5% (w=v) unique combinations of physi-
cal and chemical properties will be obtained, that turn
these composites attractive for making films and coatings
for a variety of industrial applications[14].

Kumar et al.[15] study the improvement of tensile and
flexural properties in epoxy=clay nanocomposites rein-
forced with weave glass fiber reel. The authors observed
that mechanical properties were significantly increased
due to an increase in clay content up to 5wt%, and decrea-
sed with a further increase in clay content.

Polymer nanocomposites are also known as polymers
that have been reinforced with small quantities of nano-
sized particles (nanofillers). An important class of nanofil-
lers involves nanoclays belonging to the smectite group,
such as montmorillonite. Montmorillonite belongs to the
family of 2:1 layered silicates. Its structure involves layers
about one nanometer thick, each of which consists of two
tetrahedral silica sheets fused to an edge-shared octahedral
sheet of aluminium=magnesium oxide=hydroxide[16].
Among the clay minerals and clay-like materials used as
filler for improving properties, the montmorillonite is the
most common material because of its low cost and high
availability, but also because montmorillonite presents a
relatively high cationic exchange capacity and is easily
expandable, which allows the intercalation of a wide range
of organic species[17].

Cellulose derivatives are used in a wide variety of appli-
cations fields such as food, pharmaceutical, textile, and
adhesive industries. Cellulose derivate such as hydroxy-
propyl methylcellulose (HPMC) is the most extensively
employed because of its ease of use, low-coast, availability,
water solubility, and non-toxicity[18]. They constitute one
of the most dedicated polymers used in the production of
packaging film[19].
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Pectin is a natural, non-toxic and anionic polysaccharide
extracted from cell walls of most plants. Pectin is the
methylated ester of polygalacturonic acid. The pectin, by
itself or by its gelling properties, was employed in pharma-
ceutical industry, health promotion and treatment. It has
been used potentially as a carrier for drug delivery to the
gastrointestinal tract, such as matrix tablets, gel beads,
film-coated dose form[20].

The aim of the present study was to investigate the effect
of addition of clay-Naþ natural montmorillonite on the
mechanical, water vapor and oxygen permeability proper-
ties of pectin and HPMC films prepared by casting method.
Different concentrations of clay were investigated in
HPMC films to optimize the performance of the nanocom-
posites. A possible mechanism on the potential use of clay
incorporated in edible polymers and their possible use in
packaging has been proposed.

EXPERIMENTAL

Materials

High methoxyl pectin (degree of esterification 59–65%)
is purchased from Systems BioIndustries, Fair Lawn, NJ.
Hydroxypropyl methylcellulose (Methocel E15) was
obtained from Dow Chemical Co. (Midland, MI, USA).
Natural montmorillonite with an ion-exchange capacity
of 92 mequiv=100 g (Cloisite Naþ) was supplied from
Southern Clay Products, Inc. All chemicals were used as
received.

METHODS

Preparation of Natural Montmorillonite Suspension

The cloisite-Naþ was dissolved in distilled water (0.2%
w=v) under magnetic stirring for 1 h. The suspension was
centrifuged for 30min at 5000 rpm and the supernatant
was removing to film solution preparation. This step is
important for purification of the solution.

Characterization of Cloisite-Naþ

FT-IR Analysis

FT-IR spectrum of natural montmorillonite was taken
with a Paragon 1000 Perkin Elmer Spectrum (Perkin Elmer
Life and Analytical Sciences, Inc. Waltham, MA USA) in
the range from 4000 to 400 cm�1. The FT-IR spectrum
was used to characterize the clay properties. Powdered
sample was prepared using KBr to form pellets.

X-Ray Analysis

The X-ray diffraction powder (XRD) pattern was
collected using a Rigaku D=Max 2500PC X-ray diffract-
ometer with a rotary anode using Cu Ka (k¼ 1.5406 Å)
radiation operating at 150mA and 40 kV.

Nanocomposites Preparation by Casting

The pectin and HPMC films were obtained according to
the procedure reported by Moura et al.[2] The polysacchar-
ide solution (control film) was obtained dissolving 3.0 g of
polysaccharide in 100mL of distilled water under magnetic
stirring for 12 h. A 3.0 (% w:v) polysaccharide solution was
used in all film formulations. The films based on nanocom-
posites were obtained by addition of 3.0 g of polysacchar-
ide in 100mL of clay solution (both freshly synthesized),
under magnetic stirring for 12 h. After the solutions were
prepared, the flasks were allowed to rest for 6 h to degas
in order to prevent microbubble formation within the films.
The solutions were then poured on a glass plate (30� 30 cm)
covered with Mylar (Polyester film, DuPont, Hopewell,
Va., U.S.A.) for film preparation by casting. The mixture
were cast at a wet thickness of 0.5mm onto plates using
casting bars and the plates were placed on a leveled surface
at room temperature and allowed to dry for 24 h. After
drying, the films were removed from the Mylar and con-
ditioned (for three days) in plastic bags at room conditions:
25� 1�C and 30� 2% RH.

Film Thickness

Film thickness was measured using a model 7326, digital
micrometer (Mitutoyo Manufacturing, Tokio, Japan) at 5
random position of the film. The mean values were used
to calculate water vapor and oxygen permeability and
mechanical properties.

Tensile Tests

Films used for tensile tests were conditioned around at
30% RH and 24�C for 48 h before the measurements. These
films (thickness of 0.03mm) were then cut to have a rec-
tangular dimension according to ASTM D882-97 (100mm
long and 15mm wide)[21]: midsection 15-mm wide; 100-mm
long, flaring to 25-mm by 35-mm square sections on each
end. An Instron Universal Testing Machine (Model 1122,
Instron Corp., Canton, Mass., U.S.A.) was used to deter-
mine the maximum TS (tensile strength), maximum elonga-
tion at break (%) and elastic modulus. The films were
stretched using a speed of 50mm=min. Testing conditions
were 30� 2% RH and 24� 2�C. Tensile properties were
calculated from the plot of stress (tensile force=initial
cross-sectional area) versus strain (extension as a fraction
of the original length)[22]. The mechanical properties were
analyzed as a function of clay content and matrix-type.

Water Vapor Permeability (WVP)

WVP was determined by modification of the ASTM
E96-92[23] gravimetric method to determine the relative
humidity (RH) at the film according to the method used
by McHugh et al.[24] Five films were cast from each treat-
ment, in 8.0 cm internal diameter Teflon1 plates. After
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drying, one sample without defects was cut from each film.
Distilled water (6mL) was dispensed into flat-bottom
Plexiglas1 cups with wide rims. The film was sealed to
the cup base with a ring using 4 screws symmetrically
located around the cup circumference. The cups were
placed in temperature-controlled cabinets at 25�C, contain-
ing fans and held at 0% RH using anhydrous calcium
sulphate (W. A. Hammond Drierite Co., Xenia, OH,
USA). Weights were measured periodically after steady
state was achieved and used to calculate WVP according
to the following equation.

Water vapor permeability (WVP) was calculated using
the following relation:

WVP ¼ WVTR

ðp2 � p3Þ
y ð1Þ

where WVTR was obtained from the slope of the weight
loss rate through the film surface and p2 was the water
vapor partial pressure of water vapor on the film underside;
p3 is water vapor partial pressure at the upper side of the
film and y was the average film thickness. Water vapor
permeability of each film was measured as the mean and
standard deviations of 5 replications. Units for WVP were
cm3 mm m�2 d�1 kPa�1.

Oxygen Permeability (O2P) of Films

An Ox-Tran 2=20ML modular system (Modern
Controls Inc., Minneapolis, MN) was utilized to measure
oxygen transmission rates through the films according to
standard method D3985 (ASTM, 1995)[25]. Oxygen trans-
mission rates were determined at 23�C and 55� 1% RH.
Each film was placed on a stainless steel mask with an open
testing area of 5 cm2. Masked films were placed into the test
cell and exposed to 98% N2þ 2% H2 flow on one side and
pure oxygen flow on the other. The system was pro-
grammed to have a 10 h waiting period to allow the films
to achieve equilibrium. Oxygen permeability was calculated
by dividing O2 transmission rate by the difference in O2

partial pressure between both sides of the film (1 atm)
and multiplying by the average film thickness measured
at 5 random places. Four replicates of each film were eval-
uated. Units for O2P were cm3 mm m�2 d�1 kPa�1.

Statistical Analysis

Analysis of variance (ANOVA) was applied using
Minitab 14.2 (Minitab Inc., State College, PA, USA) to
determine significance of differences between means.

RESULTS AND DISCUSSION

The clay known as montmorillonite consists of platelets
with an internal octahedral layer sandwiched between two
silicate tetrahedral layers as illustrated in Figure 1[26].

Figure 2 shows the XRD pattern of the Cloisite Naþ, while
an intense diffraction peak at low 2 theta angles (7.80�)
corresponding to a clay interlayer spacing value (d001)
of 1.13 nm (11.3 Å) can be visualized. FT-IR spectrum of
Cloisite Naþ is presented in Figure 3. The bands at
3630 cm�1 and at 3440 cm�1 were associated with the
stretching modes of Si–OH and –OH groups of interlayer
water; a band at 1642 cm�1 was attributed to the –OH
bending mode of water; bands at 1042 cm�1 corresponding
to the Si–O bending and stretching modes; bands at
526 cm�1 and 464 cm�1 corresponding to the stretching
modes of Al–O and Mg–O, respectively[27].

A common reason for adding fillers to polymers is to
increase the modulus or stiffness via reinforcement mecha-
nisms described by theories for composites. Properly
dispersed and aligned nanoclay platelets have proven to
be very effective for increasing stiffness. The suitable use
of nanocomposites is also strongly dependent on its favor-
able mechanical and barrier properties. Figure 4 shows the
effect of clay content on tensile strength (TS) of HPMC

FIG. 1. Structure of sodium montmorillonite. Courtesy of Southern

Clay Products, Inc. (Color figure available online.)

FIG. 2. XRD pattern of Cloisite Naþ.
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films. In HPMC films without clay, the tensile strength is
28.9� 0.9MPa. When clay 2.5 (% w:v) were included in
the HPMC films, the TS of the film was 55.2� 1.1MPa.

For films containing clay 4.0 (% w:v), TS increased to
71.0� 1.3MPa. This behavior is mainly due to reinforcing
effect of clay from its high aspect ratio and its enormous
surface area, which leads to high strength improvement.
The other polysaccharide utilized was the pectin. In the
pectin nanocomposite, the effect of addition of clay was
the same observed in the HPMC films. In pectin films

without clay, the tensile strength is 31.9� 0.8MPa. When
clay 2.5 (% w:v) were included in the pectin films, the TS
of the film was 62.2� 1.0MPa. Two-way ANOVA con-
firmed that the addition of nanoclay into HPMC films
and its increase of concentration increased TS of the films.
The clay fills in gaps in the films acting as reinforcing
agents. In the literature, the same reinforcing effect has
been observed in different matrices. For example,
Sothornvit et al.[28] observed this effect in WPI=organo-
clay composite films.

The percentage elongation changed when clay specimen
was added in films as shown in Table 1. The increase of the
elongation improved the tenacity of the films. The elastic
modulus increases with addition of the clay and present sig-
nificant variation with different clay content. In addition,
the elasticity of the films was preserved with addition of
clay. In these ways, the addition of clay to HPMC and
pectin films results in significant improvements in film
mechanical properties. Probably, for the HPMC and pectin
nanocomposites, the extent of the improvement of the
modulus does not depend only upon the average aspect
ratio of the dispersed clay particles. It seems from the
results that the interaction between HPMC or pectin and
clay is a relevant parameter for the stiffness improvement.
Indeed the excellent modulus in the case of HPMC with
4.0% (w:v) of clay and pectin with 2.5% (w:v) of clay can
be attributed to the strong interactions between polysac-
charides matrix and silicate layers due to formation of
hydrogen bonds.

Permeation is the mass transfer phenomenon that occurs
when a molecule passes through a material or membrane
from an area of high concentration to an area of low con-
centration. However, gas and solute permeation usually
have their flux defined differently. Henry’s law is applied
to relate the surface concentration of a gas component with
the partial pressure in the atmosphere in which the pack-
aging material is in contact. Most permeable substances
that affect the quality of food products are gases such as
oxygen, carbon dioxide, noble gases, nitrogen and water

TABLE 1
Effect of concentration of clay on elastic modulus and

% elongation of HPMC and pectin films

Type of film Elastic modulus (MPa) Elongation (%)

HPMC film 900� 34a 8.1� 0.7a

Pectin film 1884� 23a 2.9� 0.1a

2.5 clay HPMC 2461� 51b 5.6� 1.4b

4.0 clay HPMC 3643� 21c 5.9� 1.2b

2.5 clay Pectin 3844� 74b 3.4� 0.1b

�Different letters within a column indicated significant differ-
ence at p< 0.05.

FIG. 4. Effect of clay content on tensile strength of HPMC films.

Columns show the means and error bars indicate the standard deviations.

Different letters within a column indicated significant difference at

p< 0.05.

FIG. 3. FT-IR spectrum of Cloisite Naþ.

1326 M. R. DE MOURA ET AL.

D
ow

nl
oa

de
d 

by
 [

M
ar

ci
a 

M
ou

ra
] 

at
 0

4:
54

 1
5 

Se
pt

em
be

r 
20

11
 



vapor. These gases affect the rancidity, the ripening, and
the hydration=dehydration of a food product, and gener-
ally determine the length of a product’s shelf life. There-
fore, the oxygen and water vapor rate transmissions are
commonly used for quantifying the performance of pack-
aging materials in industry[29].

Oxygen permeability (O2P) of the HPMC and pectin
films with and without nanoclay is summarized in
Table 2. The O2P of the control HPMC film was 182.4�
0.4 cm3 mmm�2 d�2 kPa�1. The O2P decreased significantly
when the clay was added in matrix film. Two-way ANOVA
confirmed that addition of clay significantly (P< 0.05)
decreased the oxygen permeability of the HPMC films. In
the pectin films the same effect was observed whereas the
O2P of control film is 172.2� 0.3 cm3 mm m�2 d�2 kPa�1.
Whenever, with addition of nanoclay (2.5% w:v) the
new O2P of the pectin film is 28.2� 0.2 cm3 mm m�2 d�2

kPa�1. Increasing the clay amount decrease O2P through
films because of the reduction free volume in the film
network.

The WVP values, along with actual RH conditions at
the undersides of films during testing, of the HPMC and
pectin films with and without nanoclays are shown in
Table 3. The WVP of nanocomposites films changed sig-
nificantly (P< 0.05) depending on the concentration of
nanoclays used. The decrease in WVP of polymer=clay

nanocomposites films is mainly attributed to the tortuous
path for water vapor diffusion due to the impermeable clay
layers distributed in polymer matrix that lead to an
increase in effective diffusion path length[30,31]. The relative
humidity at the film underside, indicated in Table3, had no
significant difference (79.2� 0.6% RH) for all the samples
whereas the change in RH lead to a considerable changes
in WVP results. The WVP of the control HPMC film was
0.794� 0.04 cm3 mm m�2 d�1 kPa�1.

The WVP decreased significantly when nanoclays were
included in the HPMC matrix films. For example, WVP
decreased to 0.292� 0.01 and 0.207� 0.01 cm3 mm m�2

d�1 kPa�1 for HPMC films with 2.5 and 4.0 (% w:v) nano-
clay, respectively. In pectin matrix films of WVP value is
0.415� 0.01 cm3 mm m�2 d�1 kPa�1. After addition of
nanoclay (2.5% w:v) in pectin matrix film the WVP value
is 0.246� 0.02 cm3 mm m�2 d�1 kPa�1. Two-way ANOVA
showed that the presence of nanoclay in the films decreased
the WVP of the HPMC and pectin films. Important infor-
mation is that an increase on the concentration of nano-
clay, in HPMC films decreased the WVP values. In both
matrixes the permeation of water molecules through these
films is more difficult which results in a decrease in the
WVP values.

CONCLUSIONS

The present study examined the incorporation of fillers
of nanoclay into HPMC and pectin films. The incorpor-
ation of nanoclay in the films significantly improved the
mechanical and barrier properties. The WVP and O2P
decreased when nanoclay was included into the HPMC
and pectin matrix films due to increase of tortuosity
pathway of solutes through the film matrix. Thus, the
addition of clay to polysaccharide films is a promising
way to prepare stronger and more stable films. In addition,
the tensile, water vapor and oxygen vapor barrier proper-
ties of HPMC-based nanocomposites films varied depend-
ing of concentration of nanoclay utilized. The increased
barrier and mechanical property suggests a great potential
of the HPMC=clay and pectin=clay nanocomposites films
in the application in food and beverage packaging.
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