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a  b  s  t  r  a  c  t

Polyaniline  (PANI)  has  become  an  important  conducting  polymer  for sensing  due to  its  morphological
and  electrical  properties.  However,  the  processing  of  polyaniline  in  the  form  of  nanostructured  thin  films
is often  limited  by  the  low  solubility  of  the  polymer  in  water.  We  synthesized  nanostructured  polyani-
line  (N-PANI)  aimed  at improving  its solubility  to form  layer-by-layer  (LbL)  thin  films  in conjunction
with  poly(vinyl  sulfonic  acid)  (PVS)  as  counter  ion.  N-PANI  was  characterized  via  spectroscopic  mea-
surements  and  SEM  images.  After  assembled  as  LbL  thin  films  onto  gold  (Au) substrates,  the PVS/N-PANI
were  employed  as separative  extended  gate  pH sensing  membrane  in FET-based  devices  presenting  pH
sensitivity  around  58  mV/pH  with  small  voltage  drift.  The  results  suggest  that  N-PANI  can  be  easily  pro-
cessed  to  form  suitable  thin  films  for  pH sensing  and  can  be  combined  with  biomolecules  to  be  applied
in  FET-based  biosensors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Polyaniline (PANI) is a well-known semiconductor polymer that
has attracted attention in the scientific and engineering fields espe-
cially for application in chemical sensors [1],  light emitting diode
[2] and biosensors [3] due to its chemical environmental stability,
facile synthesis, low cost, and possibility of control over electri-
cal properties upon reversible doping of the polymer backbone [4].
One of the most exciting applications of the polyaniline lies in the
application as active material for sensing devices [5–7].

Polymeric thin films can be self-assembled using layer-by-layer
(LbL) technique, which has been considered a powerful tool for
developing nanostructured multilayered composites with control
and organization of structure at molecular level [8].  The LbL tech-
nique is based on the alternating adsorption of molecular layers
with opposite charges upon immersion of a solid substrate into the
cationic and anionic polyelectrolyte solutions, followed by clean-
ing and drying steps. LbL thin films exhibit potential applications in
biosensor devices, since many enzymes can be charged in aqueous
solutions and immobilized via electrostatic interactions on specific
platforms [9,10].  The main advantages of the LbL technique are
the simple methodology and low cost, ideal for industrial appli-
cations. However, due to the poor solubility of the semiconductor
polymers, their use in LbL thin films is limited. Recent studies have
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suggested that the nanofibrilar morphology can enhance the solu-
bility of semiconductor polymers [11,12]. Therefore, the synthesis,
characterization and application of water soluble/dispersion PANI
nanostructures (N-PANI) are attractive for processing PANI via LbL
technique.

Our group has focused researches in new gate materials for
applications as pH sensors based on field effect transistor (FET)
devices [13]. These devices are a modified version of conventional
ion sensitive field effect transistors (ISFETs) [14] by connecting a pH
sensitive membrane into the input (or gate) of a high-impedance
FET device forming a separative extended gate field effect transis-
tors (SEGFETs) [13]. According to the literature, some insulating
materials that were applied as sensing material in conventional
ISFETs have failed in SEGFETs [15]. Aiming to solve this problem,
conducting materials, specifically oxides, have been successfully
used presenting Nernstian sensitivity [15,16].  In addition, synthetic
metal thin films such as N-PANI, which show very good control of
physicochemical properties, seem to be ideal for such application.

In this study we used a simple chemical route to obtain a water
solution/dispersion of PANI nanostructures produced by interfacial
polymerization. The N-PANI was  further used in modified elec-
trodes produced via LbL methodology for pH sensors applications.
The N-PANI showed a higher solubility as compared to polymers
synthesized by conventional synthetic routes and their properties
were investigated by Scan Electron Microscopy (SEM), FTIR and
UV–Vis spectroscopy. The LbL PVS/N-PANI films assembled onto Au
were applied as sensing membranes in SEGFET pH sensor showing
sensitivity close to the expected Nernstian theorical value.
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Fig. 1. SEGFET measurement system showing the pin connections (top view) of the single J-FET operational amplifier LF356.

2. Experimental

2.1. N-PANI synthesis and characterization

Aniline monomers were purchased from Sigma Aldrich and dis-
tilled twice under vacuum and stored at low temperature (5 ◦C)
protected from light. All other chemicals (Sigma Aldrich) were
of analytical grade and used as received. Protonated polyaniline
nanostructures were synthesized by interfacial polymerization.
The method involved the reaction of the aniline monomer (1 mL)
dissolved in an organic phase (chloroform, 50 mL), to which an
aqueous phase containing solution of ammonium peroxydisul-
fate (2.85 g) dissolved in HCl (50 mL,  1 M)  was added gently. The
HCl solution forms the upper aqueous phase (using ammonium
peroxydisulfate as oxidant agent) and the aniline/chloroform solu-
tion forms the lower organic phase. After 3 h, the entire aqueous
phase was filled homogeneously with dark green PANI. The N-
PANI formed was filtered and washed with HCl (1 M) and acetone
to remove the unreacted chemicals and aniline oligomers. Finally,
the obtained N-PANI cakes were dried in a vacuum oven at 40 ◦C
for 24 h. N-PANI were characterized by field emission scanning
microscopy (SEM, Zeiss® DSM 940A), infra-red (FTIR, Nicolet 470
Nexus) and UV–Vis (Hitachi U3000) spectroscopies. Thickness mea-
surements of the films were performed with a Veeco Dektak 150
surface profilometer.

2.2. PVS/N-PANI multilayer assembly

Quartz slides for the PVS/N-PANI deposition were previously
treated according to the RCA method (caution: Piranha solution
is very oxidant), followed by rinsing in ultra-pure water (Milli-Q
water, 18.3 M� cm). BK7 glasses (previously coated with 20 nm of
chromium) were covered with Au by evaporation (150 nm) and
were cleaned in a mixture of HNO3:HCl:H2O (1:3:20) for 30 s. Mul-
tilayer deposition was carried out as follows: the substrates were
immersed in the polycationic N-PANI solution (1.0 mg  mL−1, 5 min)
for the adsorption of the polymer and washed in a solution at the
same pH for a few seconds. After rinsing, the substrates were gently
dried by N2 flow. After that, the substrates were immersed in the
polyanionic PVS solution (1.0 mg  mL−1, 5 min), following the same
steps described to the N-PANI deposition. The pH of the solutions
and water rinse were fixed at 5 addicting HCl (1 M)  and relevant
parameters of the films preparation were previously examined and
optimized. The N-PANI solution was prepared by dissolving the
polymer in N,N-dimethylformamide (DMF) by sonication (5 min)
and vigorous stirring overnight. Subsequently, the DMF  solution
containing N-PANI was  diluted in water under stirring to a final
ratio 2:8 (DMF:water, v/v). UV–Vis spectroscopy was  used to mon-
itor the deposition process.

2.3. pH sensing measurements

SEGFET device was constructed based on the concept introduced
by Van der Spiegelt et al. [17]. A pH sensitive membrane formed
by PVS/N-PANI bilayers was connected in the input pin of readout
circuit based on high input impedance J-FET operational ampli-
fier, used here as unity gain buffer. The films were immersed in
different pH buffer solutions for 3 min  and measurements of the
output voltage versus time using a reference electrode (Ag/AgCl)
were recorded by a Keithley multimeter (195 A) to determine the
PVS/N-PANI pH sensitivity. Fig. 1 displays the SEGFET measurement
system.

Fig. 2. SEM image of PANI nanostructures synthesized by interfacial polymerization
(a) and LbL (PVS/N-PANI)3 film (b).
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3. Results and discussion

3.1. Characterization of the synthesized N-PANI

The synthesized conducting N-PANI can be easily diluted in
water without significant sedimentation for hours (depending
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on the solution concentration), but we can enhance the
stability even more to create highly water stable N-PANI solu-
tion/dispersion, without sedimentation for several days, with a
DMF  (N,N-dimethylformamide)/water solution (as described in
Section 2). Fig. 2 shows the morphology of the synthesized powder
of N-PANI (a) and PVS/N-PANI in the form of LbL film (b) obtained
by SEM microscopy. The average diameter of the nanostructures
was  about 50–90 nm in powder form, while the PVS/N-PANI in the
form of LbL film shows a homogeneous distribution of the nanos-
tructures with some aggregates. This may  be explained by the fact
that smaller structures tend to adsorb easier than larger ones. The
low aggregation of the larger structures may  be due to the drying
process in LbL assembling.

UV–Vis spectra of N-PANI water solution is presented in Fig. 3
and show the absorption bands that confirm the polymer in its con-
ducting form of emeraldine salt (ES). N-PANI exhibited a strong
absorption band at 740 nm due to the polaron band characteris-
tic of doped polyaniline [18]. The band at 340 nm is ascribed to the
�–�* transitions of the benzenoid rings and the band at 430 nm can
be assigned to the partial oxidation state of the PANI (ES) [4,19].
UV–Vis spectra collected for solutions of N-PANI in different pH
values reveal the characteristic isosbestic point (i.p.) at 466 nm
(Fig. 3b), similar to that observed by Braga et al. [20].

Fig. 4. FTIR spectrum of the PANI nanostructures.
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The structural characteristics of N-PANI can be confirmed by
FTIR spectroscopy [21]. All the main characteristic peaks could
be observed in the FTIR spectrum, as shown in Fig. 4. FTIR bands
were assigned as stretching vibration of the C C of quinoid ring
at 1562 cm−1 and the benzenoid ring at 1480 cm−1. The bands
at 1302 cm−1 and 1244 cm−1 were related to the C–N stretching
vibration of the secondary aromatic amine and C–N+• stretch-
ing vibration in the polaron structure, respectively. The band at
805 cm−1 is assigned to C–H out-plane bending of benzenoid rings
[12,19,21,22]. An estimative of the PANI oxidation degree (y) can
be obtained by the ratio of the areas of the FTIR bands at ca
1590 cm−1and ca. 1500 cm−1, resulting in 0.49 for the synthetized
N-PANI [23].

UV–Vis absorption spectroscopy was employed to monitor the
deposition process of the multilayer films. The build-up bilayers
of PVS/N-PANI are displayed in the inset of Fig. 5. The polaronic
band from 600 to 900 nm was used to follow the growth of the
LbL films from doped polyaniline. It can be seen that the amount
of adsorbed N-PANI is the same in each deposition step once the
absorbance increased linearly with the number of bilayers (Fig. 5).
The thickness of 5 bilayers of PVS/N-PANI films taken using a surface
profilometer was 70 nm,  i.e., approximately 14 nm per bilayer. It is
important to notice that the polaronic band of N-PANI shifts to ca.
800 nm in the LbL films when compared to N-PANI in solution. This
is related to protonation of immobilized PANI, and the absence of
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the interaction between the polymer and the solvent. Assembly of
the N-PANI layers in the films may  be driven by both electrostatic
interactions and H-bonding, since N-PANI is slightly protonated at
ca. pH 5 [20].

3.2. PVS/N-PANI as FET-based pH sensor

PVS/N-PANI LbL films were employed as pH sensing mem-
branes in SEGFET devices. Fig. 6a shows the dynamic response
of 3 bilayers of PVS/N-PANI deposited on Au substrates. Sensitiv-
ity values around 58 mV/pH were obtained for these membranes
estimated at a time of 3 min in the pH range between 2 and 12,
near the Nernstian limit value of 59.15 mV/pH (Fig. 6b). Similar
results were obtained in the same range for optical PANI pH-
sensor [24]. This sensitivity is in agreement with the results of Ge
et al. [25] who studied the pH-sensing properties of 2-bilayers LbL
films of PANI self-assembled with poly-(acrylic acid) (PAA) on ITO.
These layers presented potentiometric response of 59 mV/pH over
pH 3–9. Potentiometric sensors composed of electropolymerized
polyaniline and polypyrrole (PPy) exhibit sensitivity of 59 mV/pH
and 48 mV/pH, respectively, with a deviation from linearity in
the former [26]. The high surface-to-volume ratio, characteristic
of nanomaterials, improves the device performance, as presented
here.

The sensitivities for 1, 3 and 5 PVS/N-PANI bilayers are shown
in the inset of Fig. 6b. The sensitivity observed for PVS/N-PANI
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system is in good agreement with the expected value for pH sens-
ing membranes, suggesting that the substrates are totally covered
with N-PANI (see Fig. 2b). In addition, the adsorption of N-PANI
increases the surface roughness, which in turn increases the effec-
tive area of the electrode, explaining the good pH sensitivity of the
films.

The capacity of recovery is an important characteristic in pH sen-
sors. Some organic and inorganic membranes present instability in
extreme acid or alkaline pH values [27]. To evaluate this possibil-
ity a hysteresis study was performed on a 3 bilayers PVS/N-PANI
LbL film, immersing the membrane in the following buffer solu-
tions: pH 7, pH 4, pH 7, pH 10 and pH 7. As shown in Fig. 7a,
PVS/N-PANI sensing membrane presented a hysteresis of around
10 mV  in the cycle with good agreement with inorganic sensing
membranes [16,28].  This result confirms the film stability, i.e., no
material desorption, as the voltage is recovered to the same pH
value.

Another characteristic of FET-based pH sensors is the drift in the
output voltage over time as a result of redox reactions in the sens-
ing membrane interface [29]. ENREF 28 To evaluate this feature,
PVS/N-PANI membranes were immersed in pH 7 buffer solutions
for 60 min, after which a small drift of 2.2 mV can be observed,
as shown in Fig. 7b. Conventional membranes of hydrated metal
oxides take part in redox reactions due to their amphoteric nature.
In our case, polymeric membranes present the same effect, but
smaller, probably because the redox reaction is less favorable and
it is not reversible in contrast with conventional metal oxide mem-
branes.

4. Conclusions

PANI nanostructures were prepared by an interfacial polymer-
ization method that enables the easy manipulation of polymer at
molecular level by LbL technique. Self-assembled films of N-PANI
doped with HCl alternated with PVS were successfully produced,
characterized and applied as pH sensing membrane in SEGFET
devices. PVS/N-PANI exhibited a Nernstian behavior in the pH range
from 2 to 12, (sensitivity of ca. 58 mV  pH−1 with small voltage drift),
suggesting that nanostructured multilayer films could be a use-
ful platform for pH sensing. Further applications comprise enzyme
immobilization in PVS/N-PANI LbL films to be applied as potentio-
metric FET based biosensors.
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