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This work proposes and studies the concept of Functional Data Analysis transform, applying

it to the performance improving of volumetric Bouligand�Minkowski fractal descriptors.

The proposed transform consists essentially in changing the descriptors originally defined in

the space of the calculus of fractal dimension into the space of coefficients used in the functional

data representation of these descriptors. The transformed descriptors are used here in texture

classification problems. The enhancement provided by the FDA transform is measured

by comparing the transformed to the original descriptors in terms of the correctness rate in

the classification of well known datasets.

Keywords: Bouligand�Minkowski fractal descriptors; fractal theory; functional data analysis.

1. Introduction

In recent years, the literature has presented a lot of applications of fractal theory to

the solution of problems from distinct areas. As examples we may cite applications

in Botany,1�3 Medicine4�6 and Geology.7�9 Particularly, in Physics, we may find

applications of fractal theory in Optics,10�12 Materials Science13�15 and Electro-

magnetism,16�18 among many other areas. Such large amount of works exploring

tools from fractal theory is fully justified by an interesting observation already

pointed out in Ref. 19. This observation states that systems observed in the nature

generally may be modeled by fractal measures rather than by classical formalisms.

Among the applications of fractal theory, most of them aim at using the fractal

modeling in order to extract features from objects of interest according to the
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problem domain, like textures, contours, surfaces, etc. Such features are then

provided as input data, for example, to methods for segmentation, classification and

description of objects. A classical example of such fractal feature is the fractal

dimension.

As in most of the cases the simple use of fractal dimension is still not sufficient to

well represent the complexity of an object or scenario from the real world, the

literature developed techniques for the extraction of a set of features based on the

fractal dimension. Examples of such approaches are multifractal theory,20�22 mul-

tiscale fractal dimension (MFD)23,24 and fractal descriptors.25�28

Here, we are focused on fractal descriptors approach. Several authors, like in

Refs. 25�28, obtained interesting results in different applications of fractal

descriptors technique to texture and shape analysis, mainly in the description of

natural objects. Particularly, here we are focused on an approach developed in

Ref. 26 which uses the volumetric Bouligand�Minkowski fractal dimension to

generate a set of descriptors. Such descriptors obtained a high performance in an

application to a task of plant leaves classification based on texture.

Nevertheless, an important drawback of fractal descriptors technique, particu-

larly that based on Bouligand�Minkowski, is that the curve formed by the set of

descriptors present a high correlation, that is, each descriptor is strongly dependent

on each other. This correlation does their performance decrease drastically in

problems of classification and segmentation with a high number of samples and

classes. In such situations, volumetric Bouligand�Minkowski descriptors have

severe limitations.

Aiming at enhancing Bouligand�Minkowski descriptors, preserving the re-

liability of the results, this work proposes the development and use of functional

data analysis (FDA) transform concept. FDA is a powerful statistical tool developed

in Ref. 29. It represents an alternative to the traditional multivariate approach and

deals with complex data as being a simple analytical function: the functional data.

FDA approach presents certain advantages in this kind of application, like the easy

handling of data in nonlinear domains (as the case in Bouligand�Minkowski

descriptors) and the intuitive notion of functional operations, like derivatives and

smoothing, employed in the definition of fractal descriptors.

Upon our knowledge, Florindo et al.28 is the first work to apply the FDA

approach to fractal descriptors. In that work, functional data representation is used

for reducing the dimensionality of the descriptors set in shape recognition problems.

Here, we propose a different paradigm for FDA use, by defining the concept of FDA

transform. The FDA transform is defined as the operation which changes the

original dataset (in this case, descriptors) space into the space of coefficients

of functional data. The transform still presents two variants: the first uses the

coefficient directly, the second performs a second algebraic transform, described

in Ref. 30.

The relevance of the FDA transform is verified in experiments of classification of

two well known datasets, that is, Brodatz31 and OuTex.32 The results are compared
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in terms of classification correctness rate. It was considered two variants of the FDA

transform and it was compared through three classifiers very well known in the

literature: linear discriminant analysis (LDA), K-nearest neighbors (KNN) and

Bayesian.33�35

This work is divided into seven sections, including this Introduction. The fol-

lowing explains the concepts of fractal theory, fractal dimension and fractal

descriptors. The third introduces the FDA theory and definitions. The fourth shows

the proposed method. The fifth describes the experiments. The sixth section shows

the results and the last section concludes the work.

2. Fractal Analysis

The literature shows a lot of applications of fractal geometry involving the

characterization of natural objects and scenarios. Examples of such applications

may be found in Refs. 10, 13, 16, 2, 8, 11, 15 and 18. Most of these works use the

fractal dimension as a metric to describe the object. This strategy is justified by

the fact that fractal dimension measures the complexity of a structure. Physically,

the complexity corresponds to the irregularity or to the spatial occupation. These

properties are tightly related to constitution aspects which allow the identification

of such objects.

An important drawback of using only fractal dimension is that it is a unique

global value and is not capable to extract information about intricate details of a

structure. With the aim of exploring fully the potential of fractal theory, the lit-

erature shows the development of techniques which provide not only a unique value

but a set of values capable of describing in a richer way an object, based on the

fractal theory. Among these techniques, we have the Multifractal,20�22 the

MFD23,24 and the Fractal Descriptors.25�28

Multifractal theory replaces the fractal dimension analysis by the concept of

fractal spectrum, capable of modeling objects which cannot be represented by a

single fractal measure. Multifractal demonstrates to be an interesting tool to cap-

ture the different power-law scaling present in a system.20�22

The literature still shows an alternative technique for the modeling of objects

with fractal theory. This approach is the MFD.23,24 In MFD approach, instead of

simply calculating the fractal dimension from interest objects, a set of features is

extracted from the derivative of the whole power-law curve used to provide the

fractal dimension.

An extension of MFD are the fractal descriptors.25�28 In this case, we extract

features (descriptors) from an object through the calculus of the fractal dimension

taking the object under different observation scales. These descriptors are used to

compose a feature vector that could be mean as a \signature" to characterize the

object. Particularly, fractal descriptors demonstrate to be an efficient tool for the

discrimination of natural textures like that analyzed in the present work. Figure 1

illustrates the discrimination power of fractal descriptors DðkÞ by showing two
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distinct textures whose fractal dimensions are identical but the curve of fractal

descriptors is visually distinct.

The following sections describe in more detail the aspects involved in fractal

descriptors technique, starting from the fractal dimension definition.

Texture1 Texture 2

(a)
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-1,2

-1,0
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-0,2

0,0

D
(k

)

k

Texture 1
Texture 2

(b)

Fig. 1. Two textures with the same fractal dimension present fractal descriptors totally different:

(a) Original textures (both with fractal dimension 2.618), and (b) Fractal descriptors from the same

textures.
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2.1. Fractal dimension

Fractal dimension is a real positive number constituting the main measure

extracted from a fractal object. There is no absolute definition for the concept of

fractal dimension. The most used and classical one is the Hausdorff�Besicovitch

dimension.

Hausdorff�Besicovitch dimension dimH ðFÞ is a concept derived from the

measure theory and is defined over a set F � <n as

dim
H

ðFÞ ¼ fsgj inffs : HsðFÞ ¼ 0g ¼ supfHsðFÞ ¼ 1g; ð1Þ

where HsðFÞ is the s-dimensional Hausdorff�Besicovitch measure, defined by

HsðFÞ ¼ lim
�!0

H s
� ðFÞ; ð2Þ

where

H s
� ðFÞ ¼ inf

X1
i¼1

jUi j s : Ui is an �-cover of F

( )
: ð3Þ

In above equations, jj expresses for the diameter in <n, that is, jU j ¼
sup jx � yj : x; y 2 U .

In many situations, the calculus of Hausdorff�Besicovitch dimension is very

complex and even impracticable. In such cases, we can calculate it by generalizing

the concept of classical Euclidean dimension.19 In this way, we obtain the following

expression

dim
H

ðFÞ ¼ lim
�!0

logðNð�ÞÞ
logð1=�Þ ; ð4Þ

where Nð�Þ is the minimum number of objects with linear size � needed to cover F .36

Most of different definitions of fractal dimension are based on a generalization of

Eq. (4), expressed through

D ¼ lim
�!0

logðM�ðSÞÞ
logð�Þ ; ð5Þ

where M is a set measure depending on the specific fractal dimension method and �

is the scale parameter. As example of fractal dimensions defined from the previous

expression we can cite the box-counting, the packing dimension, the Renyi

dimension, etc.36

Particularly, here we are focused on the Bouligand�Minkowski fractal dimen-

sion.36 As theHausdorff�Besicovitch dimension, theBouligand�Minkowski dimension

also is based on a topological measure, in this case, the Bouligand�Minkowski

measure measM calculated through

measM ðF ; S ; �Þ ¼ lim
r!0

V ð@F � rSÞ
rn��

; ð6Þ
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where F is the object (set) of interest, S is a structuring element with radius r and V

is the volume of the dilation between S and the boundary @C of C . The

Bouligand�Minkowski dimension itself is given by

dim
M

ðF ; SÞ ¼ inf � : measM ðF ; S ; �Þ ¼ 0f g: ð7Þ

For an application to discrete objects represented in a digital image, the calculus

is significantly simplified through the use of neighborhood techniques. In this way,

the above expression becomes

dim
M

ðFÞ ¼ lim
�!0

N � logC ðF � S�Þ
logð�Þ

� �
; ð8Þ

in which S is a disk with diameter � (also called dilation radius), C is the number of

points pertaining to the dilation region F � S� and N is the topological dimension of

the space in which F is immersed.

2.2. Multiscale fractal dimension

Although fractal dimension is an important measure, it is insufficient for a good

representation of complex systems which present different fractal dimension

depending on the observation scale taken into account. In order to provide a richer

fractal-based information from an object, the literature shows the MFD.23,24

MFD consists in the application of a multiscale transform to the fractal dimen-

sion. The multiscale transform of a signal uðtÞ is the function Uðb; aÞ, where b is

directly associated with t and a is the scale variable. Essentially, the multiscale is

performed through three approaches: scale-space, time-frequency and time-scale. In

the following, we describe the approach used in MFD, e.g. scale-space. More details

are found in Ref. 24.

Scale-space is a particular case of multiscale transform. It is based on the

derivative of the signal followed by a convolution with a smoothing gaussian filter37:

fðb; aÞ : a; b 2 <; a > 0; b 2 fU 1ðt; aÞgzcg;
where :zc expresses the zero-crossings � and U 1ðt; aÞ represents the convolution of

the original signal uðtÞ with the first derivative of the Gaussian g 1
a, that is:

U 1ðt; aÞ ¼ uðtÞ � g 1
aðtÞ:

In Ref. 23, the MFD is obtained from the Bouligand�Minkowski fractal dimension

in the following manner:

MFDa ¼ 2� dðlogðAðrÞÞÞ
dðlogðrÞÞ � ga; ð9Þ

where AðrÞ is the dilation area for each dilation radius r. In MFD technique, some

characteristics of MFD curve, like maximum, minimum and area below the curve

graph, are extracted to compose a feature vector for the analyzed object.
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2.3. Fractal descriptors

Fractal descriptors25�28 are an extension of MFD concept where a feature vector is

extracted from the fractal dimension calculated over a whole interval of scales.

Generally speaking, fractal descriptors are obtained from the function u:

u : logð�Þ ! logðM ð�ÞÞ;
where M is a measure depending on the fractal dimension estimation method and �

is the scale parameter.

The function u must be used directly, as in Ref. 26, or may be summited to a

particular transform. For instance, in Ref. 25, the descriptors D are extracted from

the Fourier derivative of u:

D ¼ du

dt
¼ T�1ðDðf ÞUðf ÞÞ;

where t is equivalent to logð�Þ, U is the Fourier transform of u and D is Fourier

derivative:

Dðf Þ ¼ j2�u;

where j is the imaginary number. In order to attenuate noises inherent to the

derivative operation, one may still apply a convolution with a Gaussian filter

embedded in the Fourier derivative, as employed in Ref. 28. Thus, the above

expression becomes:

D ¼ du

dt
¼ T�1ðDðf ÞUðf ÞG 1

aÞ;

where G 1
a is the derivative of the Gaussian ga in the Fourier domain. Figure 2 shows

the aspect of descriptors curve of an object.

In Ref. 27, the descriptors are obtained from the Fourier derivative, followed by a

principal component analysis (PCA) transform, aiming to reduce correlation among

descriptors. In this way, a more reliable and consistent set of descriptors are pro-

vided to characterize plant leaf shapes analyzed in that work.

Here, we propose the application of FDA, described in the following, as a

transform to u, in order to generate more robust and precise fractal descriptors.

2.4. Volumetric Bouligand�Minkowski fractal descriptors

In this work we focus on a specific fractal descriptors approach developed in Ref. 26

called volumetric Bouligand�Minkowski fractal descriptors (VBFD). The main idea

is the calculus of Bouligand�Minkowski fractal dimension of a 3D surface taken under

a range of observation scales. These descriptors are employed to describe texture

images, that is, analysis of images based on spatial and color arrangement of pixels.

In the first step, we map the intensity image Img 2 ½1 : M � � ½1 : N � ! < onto a

three-dimensional surface

Sur f ¼ fi; j; f ði; jÞ j ði; jÞ 2 ½1 : M � � ½1 : N �g; ð10Þ
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such that

f ði; jÞ ¼ f1; 2; . . . ;max grayg j f ¼ Imgði; jÞ; ð11Þ

where max gray is the maximum pixel intensity. This transform is illustrated

in Fig. 3.

In the following, each point of the surface is dilated by a sphere with variable

radius r, like illustrated in Fig. 4. Finally, we analyze the dilation volume V ðrÞ, that
is the number of points inside the structure composed by the dilation with each

(a)

0 200 400 600 800

0

200

400

600

800

1000

u

t

(b)

0 200 400 600 800

0,6

0,8

1,0

1,2

1,4

1,6

du

dt

(c)

Fig. 2. Fractal descriptors curve: (a) Object analyzed, (b) Curve uðtÞ, and (c) Descriptors curve after

Fourier derivative, followed by Gaussian convolution.
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radius r. V ðrÞ also corresponds to the number of points with a distance at most r

from the object. Thus, the exact Euclidean distance transform (EDT)38 becomes an

efficient tool for this calculus.

In 3D space, EDT is defined as the distance of each point in the space to a subset

of it. In our case, this subset is the surface and the EDT for each point outside Sur f

is given by

EDTðpÞ ¼ minfdðp; qÞ j q 2 Sur f cg; ð12Þ
in which d is the Euclidean distance.

Exact EDT is characterized by the fact that distances present discrete values E

E ¼ 0; 1;
ffiffiffi
2

p
; . . . ; l; . . . ; ð13Þ

where

l 2 D ¼ fd j d ¼ ði2 þ j2Þ1=2; i; j 2 Ng: ð14Þ
The dilation volume is provided by

V ðrÞ ¼
Xr
i¼1

QðiÞ; ð15Þ

where

QðrÞ ¼ ðx; y; zÞ j gkðPÞ � grðPÞ \
[r�1

i¼0

giðPÞ
" #

; ð16Þ

such that

grðPÞ ¼
ðx; y; zÞ j ½ðx � PxÞ2 þ ðy � PyÞ2

þ ðz � PzÞ2�1=2 ¼ EðrÞ; x; y; z 2 N

( )
; ð17Þ

(a) (b)

Fig. 3. Texture mapped onto a surface: (a) Original texture, and (b) Three-dimensional surface.
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where

P ¼ ðx; y; zÞ j f ðx; y; zÞ 2 Sur f : ð18Þ
The Bouligand�Minkowski fractal dimension FD of the surface is simply given

through

FD ¼ 3� � ð19Þ
where � is the slope of a straight line fit to the curve logðV ðrÞ � logðrÞÞ. The

technique in Ref. 26 went beyond the simple fractal dimension calculus and uses all

values logðV ðrÞÞ as descriptors for texture: the VBFD descriptors. Notice that

logðV ðrÞÞ is directly related to the Bouligand�Minkowski dimension for maximum

(a) (b)

(c) (d)

Fig. 4. (Color online) Dilated surfaces with different radii: (a) Points from original surface, (b) Radius 2,

(c) Radius 5, and (d) Radius 10.
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radius r. Moreover, each radius corresponds to an observation scale, from further

(greater radius) to closer (smaller radius).

In that work, they employed VBFD in the discrimination of plant leaves images,

achieving excellent results. Figure 5 shows the capability of MFD curve in dis-

criminating two textures from different materials.

Here, we propose the use of FDA29 in order to enhance the performance of

VBFD.

3. Functional Data Analysis

FDA29,39 is a statistical tool alternative to multivariate analysis. While in multi-

variate statistic, we are interested in relations among observations of variables, in

FDA, each observation of a set of variables is handled as a unique analytical

function. Thus we extract measures from those functions, like derivatives, curva-

ture, etc. In FDA terminology, each observation is called \data" and the function is

called \functional data."

FDA has found applications in Economy, Biology, Meteorology, etc. like syn-

thesized in Ref. 39. The functional representation has some noticeable advantages in

practical applications. For example, we simplify the global analysis of an obser-

vation with missing values, irregular sampling domain or noise. Besides, the ana-

lytical representation allows the application of operations like derivatives of

different orders, curvatures, integrals, etc. These operations turn possible, for ex-

ample, a more accurate analysis of the variability level of the data among other

important characteristics.

The main result of FDA theory attests that any observation of statistical vari-

ables with analytically smooth behavior may be perfectly represented by some

analytical function. In practice, this function is not exactly known but we may

obtain efficient approximations. The most common strategy for the obtainment of

such approximations is the interpolation of the data through specific basis functions,

like Fourier, wavelets, polynomials. Here we choose the use of B-splines functions,

due to their flexibility in data representation. This process is also known as basis

function development.

For the computational statistical analysis we must represent the analytical

function numerically in some manner. Then, the coefficients of basis functions in the

interpolation are used as the effective functional representation and statistical

metrics, like mean and variance, are calculated from these coefficients. Here we also

use a more complex representation in which the coefficients are previously summited

to an algebraic transform. Figure 6 illustrates FDA representation.

3.1. Mathematical foundations

For computational purposes, the data which must be analyzed consists in the

observation of discrete pairs of variables u ¼ ðx i
j ; y

i
j Þ1�j�mi ;1�i�n, in which x i

j 2 V ,
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Fig. 5. Discrimination power of fractal descriptors: (a) Textures from two different materials, and

(b) Fractal descriptors from each texture in a single graph.
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y i
j 2 < are the pair values in the variable i andmi is the number of observed pairs for

each variable. For example, an observation may be the measure of temperature

along a day and each pair may correspond to the hour in which the temperature is

measured and the respective temperature value.

The fact is that in this hypothetical example, the temperature cannot be per-

fectly modeled by any continuous function, capable of predicting exactly the tem-

perature for any day and hour. In order to apply the FDA concept to such data, we

need to use a very important result from FDA theory which affirms that a data

capable of being analyzed through FDA may be represented by an analytical

function if we take into consideration a tolerable approximation noise. The result

demonstrates that we can find an analytical function ui such that

y i
j ¼ uiðx i

j Þ þ � ij ; ð20Þ
where � ij measures the noise inherent to the acquisition process.

Although the function u is not known explicitly, some classical function

interpolation techniques have been applied to the observation pairs yielding

an approximation of u. Generally, this approximation method is based on the

development of u into functions basis. This technique consists in the projection

of approximating function ui0 in a subspace with q linearly independent basis

functions ð�iÞ1�i�q. In this way, the approximating function is represented by

Original data

Coefficients

α1,α2,α3,...αn

Basis functions

. . .

Fig. 6. (Color online) Functional data representation. From above, the curve of an original measure, the

basis functions and the coefficients are used to represent computationally the functional data.
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ui0 ¼ Pq
j¼1 �jðui0 Þ�j . The values of �jðui0 Þ are called the projection coefficients and

are calculated as those which minimizes

Xmi

j¼1

y i
j �

Xq
k¼1

�kðui0 Þ�kðx i
j Þ

( )
2

; i ¼ 1; . . . ; n: ð21Þ

Particularly, in this work, the functions basis chosen were the B-splines, which

already demonstrated good results in the data here analyzed as shown in Ref. 28. In

the following, we describe briefly the B-splines concept.

3.2. B-splines

B-spline is a particular kind of spline function. A spline is a real function composed

by piecewise polynomial functions.

More formally speaking, a spline may be defined as

s : ½a; b� ! <: ð22Þ
The interval ½a; b� is divided into n \knots" k as

a ¼ k1 < k2 < � � � < kn ¼ b: ð23Þ
In each subinterval ½ki�1; ki�, the spline s is given by the polynomial Pi. The order of

the spline corresponds to the highest order of polynomials. Each polynomial Pi is

called a basis of the spline function.

A B-spline is a particular category of splines characterized by minimum support

(number of points where the function has value different of zero). Each B-spline

basis Bi;j is defined through

Bi;0ðtÞ ¼
1; if ti � t < tiþ1 and ti < tiþ1;

0; otherwise:

�
ð24Þ

Bi;jðtÞ ¼
t � ti

tiþj � ti
Bi;j�1ðtÞ þ

tiþjþ1 � t

tiþjþ1 � tiþ1

Biþ1;j�1ðtÞ: ð25Þ

Finally, the B-spline curve is given by

BðtÞ ¼
Xn
i¼0

LiBi;pðtÞ; ð26Þ

where p is the degree of the basis and Li corresponds to the knots.

4. Proposed Method

Beyond its importance as a statistical analysis tool, FDA has demonstrated to be an

efficient technique to extract relevant information from a large dataset. For ex-

ample, in Ref. 40, a large amount of data respect to the water quality is collected in

a specific local. Thus, the FDA approximating function is obtained from each curve
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of observed values and coefficients �jðui0 Þ are used to extract important charac-

teristics from data.

In Ref. 28, FDA is used to reduce the dimensionality and extract utile infor-

mation from fractal descriptors used in a task of shape analysis. In that case, instead

of using directly �jðui0 Þ coefficients, it is employed a transform of that coefficients

which takes into account the contribution of the function basis space used.

This transform is performed by the canonical transform matrix �

�ðk; lÞ ¼ h�k ; �li; ð27Þ
where � are the basis functions. Besides, to simplify the notation, we use

�ðuÞ ¼ ð�1ðuÞ; . . . ; �qðuÞÞ, corresponding to the set of coefficients from the q basis

functions. Thus, the transformed coefficients �ðuÞ are given through

�ðuÞ ¼ S�ðuÞ; ð28Þ
where S is the result from the matrix � decomposed by the Choleski method,30 that

is, S is a unique lower triangular decomposition matrix of �, such that � ¼ SS�,
where S� is the conjugate transpose of S.

Figure 7 shows the discriminative power of FDA. We observe a data represented

in two curves with similar visual aspect and the discrimination of FDA coefficients

without and with transform.

The present work extends the application in Ref. 28 to the analysis of volume-

tric Bouligand�Minkowski descriptors, applied to texture classification. The

motivation for this application comes from the fact that volumetric Bouli-

gand�Minkowski descriptors corresponds to a typical case of data whose FDA

representation is interesting, according to Refs. 29 and 39. In fact, the descriptors

present a global smooth aspect, being therefore analytical. Besides, they are

extracted from a nonlinear space (log�log curve) and then are provided by a domain

irregularly spaced. Another motivation is the fact that fractal descriptors may

involve a derivative operation which becomes more intuitive by the handling of

descriptors as a function and not only as a simple set of nonrelated values.

Unlike the situation in Ref. 28, the objective of using FDA here is not the simple

dimensionality reduction, even because volumetric descriptors are easily treated by

traditional classification methods. A problem with volumetric descriptors is that,

although they allow for the achievement of good results, they present a high level of

correlation, that is, the original descriptors have a high dependence among them-

selves. This fact implies in difficulties for discrimination tasks evolving a large

number of samples and classes. Our purpose is to evidentiate patterns in the global

structure of descriptors which turn possible the enhancement of the discrimination

power of original volumetric descriptors.

For this goal, we propose the use of direct coefficients �ðuÞ or transformed

coefficients �ðuÞ replacing conventional fractal descriptors in a classification

method. We call this representation form as FDA transform. In fact, we have a

typical transform, in which the data is mapped from the log�log space of volumetric
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Bouligand�Minkowski descriptors onto the space of coefficients of functional data.

Figure 8 illustrates the FDA transform steps.

5. Experiments

The performance of the FDA transform on VBFD is tested in an application to the

classification of textures from two different datasets.

The first is the classical Brodatz texture dataset,31 composed by 111 classes, each

one with 10 samples (images) corresponding to photographs of real world textures.

The second analyzed dataset is the also well known Outex dataset,32 composed by

68 classes with 20 images in each class.

The steps in the experiments may be summarized through the following items:

(1) Extraction of volumetric Bouligand–Minkowski descriptors from each image in

the dataset;
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Fig. 7. (Color online) Discriminative property of FDA: (a) Original data curve, (b) FDA coefficients,

and (c) Transformed coefficients.
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(2) Computation of � coefficients of the approximating analytical function (func-

tional data);

(3) Obtainment of the coefficients � after the transform described in Sec. 4;

(4) Use of coefficients � and � as input to different classification methods;

(5) Comparison, in terms of classification performance, among the proposed

approach and the direct use of volumetric Bouligand–Minkowski descriptors.

Fractal curve
FDA basis
functions

developing

Direct coefficients

Transformed
coefficients

Object log-log curve
Classical

descriptors
Classifier

Classifier

Classifier

Fig. 8. Functional data representation. A diagram illustrating the steps in the FDA transform applied to

fractal descriptors.

Fig. 9. Some examples of images from the Brodatz dataset.
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The performance of the FDA transform is verified in direct approach (using �ðuÞ)
and transformed approach (using �ðuÞ). The basis used was B-spline. For the

classification process we use classical methods from the literature,33 that is, Baye-

sian, KNN and LDA.

6. Results

The results are showed in graphs and tables which represent the different ways for

the use of the FDA transform combined to Bouligand�Minkowski descriptors in the

datasets analyzed. Empirically, we found an optimal interval for the number of

descriptors used, that is, between 60 and 100 for direct FDA coefficients and

between 10 and 50 for transformed FDA fractal descriptors.

First, Fig. 11 shows the correctness rate for the use of FDA fractal descriptors in

the classification of Brodatz dataset. At left, we show the results for normal FDA.

At right, for transformed FDA. From above to below, we use Bayesian, KNN and

LDA classifier. Initially, we cannot notice any direct relation among number of

descriptors, basis order and correctness rate. The exception occurs with the use of

LDA with transformed FDA descriptors. In this case, it is clear that the correctness

rate increases with the number of descriptors. In most of the cases, however, it is

Fig. 10. (Color online) Some examples of images from the Outex dataset.
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Fig. 11. (Color online) Correctness rate for Brodatz dataset. At left, using normal FDA coefficients.

At right, using transformed FDA descriptors. From above to below using Bayesian, KNN and LDA

classifier.
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Fig. 12. (Color online) Correctness rate for Outex dataset. At left, using normal FDA coefficients.

At right, using transformed FDA descriptors. From above to below using Bayesian, KNN and LDA

classifier.
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noticeable that higher-order basis yield greater correctness. This is explained by the

fact that those basis are capable of capturing more details from the conventional

VBFD descriptors. Relative to the number of descriptors, the graph shows that each

specific combination of FDA descriptors and classifier provides a different pattern

for the correctness rate results. This is also waited due to the fact that each classifier

has a particular way of dealing with correlation and irregularity information.

Figure 12 shows the correctness rate in Outex dataset. The graphs are organized

in the same way as in Fig. 11. The observations from Brodatz dataset are also valid

in this case. Particularly, an interesting observation is that the aspect of the graph

of each combination descriptor/classifier is similar in both datasets. The unique

significant difference is the global correctness that is smaller in Outex, due to its

greater difficulty level when compared to Brodatz dataset.

Now we show the best results achieved by each combination of descriptors and

classifiers and the number of used descriptors. In Table 1, we show the correctness

rate for Brodatz dataset. We observe that even using a reduced set of descriptors,

FDA achieved results sensibly more precise than classical VB fractal descriptors.

This advantage is more notable in KNN and Bayesian classifier. In Bayesian, FDA

presented an advantage of 42% while in KNN this advantage was 27%. Another

important observation from the table is that in this specific application the use of

normal FDA coefficients demonstrated to be the better solution. This is very

encouraging since this FDA approach is computationally simple and allows an easy

statistical interpretation of the analyzed data.

Concluding, we present the results of FDA descriptors in Outex dataset. Again,

the performance of FDA descriptors is very good. A highlight must be given to the

Bayesian result. FDA provided a correctness rate 123% greater than classical fractal

descriptors.

From the previous results, we observe that we cannot extract an exact relation

between the number of FDA basis (and, consequently, descriptors), the order of

used basis and the correctness rate results. However, analyzing without excessive

severity, we observe that generally the use of higher-order basis increases the

Table 1. Correctness rate for the use of fractal descriptors enhanced by FDA

normal and transformed coefficients in Brodatz dataset.

Descriptors Classifier Number of descriptors Correctness rate (%)

Original Bayesian 86 40.0	 0.2

Normal FDA Bayesian 80 56.8	 0.1

Transformed FDA Bayesian 10 43.2	 0.1

Original KNN 86 54.8	 0.1

Normal FDA KNN 75 69.8	 0.2

Transformed FDA KNN 20 56.8	 0.1

Original LDA 86 98.6	 0.1

Normal FDA LDA 70 99.0	 0.1

Transformed FDA LDA 50 98.2	 0.0
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classification performance. Nevertheless, it is always important to verify the

combinations for each different application.

Analyzing more globally the results, we observe initially that the FDA transform

provides a significant increase in the performance of volumetric Bouligand�
Minkowski descriptors, mainly when we used KNN and Bayesian classifier. This

fact attests that the FDA transform is capable of extract relevant features from the

set of descriptors, allowing for the classifiers to provide a more precise classification

result. As discussed in Sec. 4, the good performance of the FDA transform was

expected due to the smooth analytical and irregularly spaced nature of Bouli-

gand�Minkowski descriptors. The smaller efficiency in LDA classifier is easily

explained by the fact that one step in the LDA method involves a correlation space

transform (PCA). So, features extracted by the FDA transform do not necessarily

have the same correlation properties as the original descriptors and this fact preju-

dices the performance of the whole classification process.

7. Conclusions

This work proposed and analyzed the use of the FDA transform aiming at enhancing

the performance of VBFD, applied to texture classification. The transform consists

in the use of coefficients from the functional data representation replacing the

original descriptors.

Results demonstrated that the FDA transform increased significantly the accu-

racy of classification process, mainly when using Bayesian and KNN classifiers.

Results confirmed what is expected from the theory, once FDA is a powerful stat-

istical tool for the representation of smooth analytical data, like fractal descriptors.

The FDA transform extracts important features and patterns from the original

descriptors set yielding a better classification performance.

Results suggest strongly that FDA must be considered as an auxiliary tool for

other methods shown in the literature for obtaining fractal descriptors or even other

techniques in texture analysis that generate a set of values which may be handled as

an analytical function.

Table 2. Correctness rate for the use of fractal descriptors enhanced by FDA

normal and transformed coefficients in Outex dataset.

Descriptors Classifier Number of descriptors Correctness rate (%)

Original Bayesian 86 23.0	 0.1

Normal FDA Bayesian 80 51.4	 0.2

Transformed FDA Bayesian 25 24.9	 0.1

Original KNN 86 47.3	 0.2

Normal FDA KNN 65 57.0	 0.1

Transformed FDA KNN 15 48.1	 0.1

Original LDA 86 92.0	 0.0

Normal FDA LDA 80 92.5	 0.1

Transformed FDA LDA 50 91.8	 0.2
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