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Background and Objective: The resistance of Candida
species to antifungals represents a major challenge for
therapeutic and prophylactic strategies. This study evalu-
ated photodynamic therapy (PDT) mediated by Curcumin
(CUR) against clinical isolates of C. albicans, C. tropicalis,
and C. glabrata, both in planktonic and biofilm forms.
Study Design/Materials and Methods: Suspensions of
Candida were treated with three CUR concentrations
and exposed to four LED fluences. The protocol that
showed the best outcomes for inactivation of the plankton-
ic phase was selected to be evaluated against Candida
biofilms. In addition, two higher CUR concentrations
were tested. The metabolic activity of biofilms was evalu-
ated by means of XTT reduction assay and the biofilm bio-
mass was evaluated using crystal violet (CV) staining
assay. Data were analyzed in a mixed model nested
ANOVA, Wilcoxon’s nonparametric tests, and the
Kruskal-Wallis test (¢« = 5%).

Results: The use of CUR in association with light was
able to promote a significant antifungal effect against the
planktonic form of the yeasts. When using 40 pM of CUR,
the metabolic activity of C. albicans, C. glabrata, and
C. tropicalis biofilms was reduced by 85%, 85%, and
73%, respectively, at 18 J/cm?. CUR-mediated PDT also
decreased the biofilm biomass of all species evaluated. In
addition, CV staining showed that C. albicans isolates
were strong biofilm-forming strains, when compared with
C. glabrata and C. tropicalis isolates.

Conclusion: The results from the present investigation
showed that low CUR concentrations can be highly effec-
tive for inactivating Candida isolates when associated
with light excitation. Lasers Surg. Med. 43:927-934,
2011. © 2011 Wiley Periodicals, Inc.
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INTRODUCTION

In healthy individuals, Candida species are considered
commensal yeasts of the oral cavity. Candida albicans
represents the predominant species, while Candida tropi-
calis and Candida glabrata are considered the second
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most frequent [1,2]. These microorganisms can also act as
opportunist pathogens, being the so-called non-albicans
Candida species (NAC) increasingly recognized as impor-
tant agents of human infection. Some predisposing factors
can markedly increase the host’s susceptibility to oral
candidiasis, such as the use of ill-fitting dentures, AIDS
and long-term antibiotic therapy [3—5]. For immunocom-
promised individuals, the disseminated forms of the
disease can be a serious problem, often resulting in
high mortality rates [6]. A number of surveys have docu-
mented increased rates of C. glabrata and C. tropicalis in
systemic fungal infections [6-8]. C. tropicalis may be of
particular concern in these cases because of its high path-
ogenicity in causing fungaemia [8].

Treatments available for Candida infection are typical-
ly drug based and can involve topical and systemic anti-
fungal agents [4]. However, the wuse of standard
antifungal therapies can be limited because of toxicity,
low efficacy rates, and drug resistance [9]. In fact, the re-
sistance of NAC to antifungals represents a major chal-
lenge for therapeutic and prophylactic strategies [6].
Some of these species, such as C. glabrata, are inherently
less sensitive to fluconazole and other antimycotic drugs
frequently used to combat fungal infections. In addition to
the intrinsic resistance of some species, different clinical
isolates belonging to a single species can vary widely in
their susceptibility to antifungal agents [10]. This diversi-
ty could predispose the selection of more resistant strains
and the persistence of the disease [10]. Moreover, most
manifestations of candidiasis are associated with the for-
mation of Candida biofilms on surfaces such as oral tis-
sues, prostheses, and implanted devices [9]. Biofilms
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represent a protective reservoir for oral microorganisms
that provides survival advantage to the yeast and elevat-
ed resistance to antifungal drugs [11]. Therefore, the in-
creasing worldwide occurrence of antifungal resistance
has driven research to the development of alternative
strategies to inactivate Candida species and to treat oral
candidiasis.

Photodynamic inactivation of microorganisms is based
on the combination of a drug, known as photosensitizer
(PS), and the delivery of a visible light of the appropriate
wavelength to excite the PS molecule [12]. The microbial
killing is a result of chemical and phototoxic reactions, in
which PS absorbs photons and induces the formation of
free radicals and reactive oxygen species (ROS). These
ROS can rapidly react with nonspecific targets, such as
cell membranes and proteins which lead to microbial de-
struction [12]. When compared with other therapies, pho-
todynamic therapy (PDT) has several advantages, such as
high target specificity (PS can be delivered to cells and
light can be focused on the site of the lesion), few unde-
sired side effects, and little likelihood of leading to the de-
velopment of resistance by microorganisms [13]. For this
reason, there has been an increased interest in developing
PDT for local infections treatment. Different types of PS
have been proposed in laboratory investigations, includ-
ing porphyrins [14,15], phenothiazine dyes [16,17], chlor-
ins [18,19], and phthalocyanines [20]. However, complete
killing of the microorganisms is not frequently achieved
and some of the available PS showed limited effectiveness
against Candida biofilms and animal models of candidia-
sis [15,21]. Such facts have driven research to find ade-
quate parameters of PDT prior to clinical investigations
and the search for new PSs remains an important goal.

Curcum (CUR) is an intensely yellow pigment, isolated
from rhizomes of Curcuma longa, which is in worldwide
used as a cooking spice, flavoring agent, and colorant [22].
An increasing number of investigations have suggested
that CUR exhibits potential therapeutic applications that
may be enhanced by combination with light, as it displays
a high light absorption in the visible spectral region,
around 400-500 nm [23-26]. Recently, this natural com-
pound has been shown to possess phototoxic potential
against yeast cells [23]. The authors found that CUR was
an effective PS for the inactivation of one reference strain
of C. albicans, in planktonic form. It was also showed that
the therapy was more effective in inactivating the yeast
cell than a macrophage cell line, suggesting certain speci-
ficity of CUR-mediated PDT. However, some aspects need
to be further investigated before a clinical recommenda-
tion of the therapy, such as the adequate protocol for the
effective photosensitization of Candida biofilms. As PDT
mediated by CUR already showed preliminary results for
yeast inactivation, the present study evaluated different
PDT protocols against C. albicans and non-albicans spe-
cies, both in planktonic and biofilms form. Considering
the important clinical relevance of investigating more
than one isolate belonging to a single species, we evaluat-
ed a total of 15 clinical isolates belonging to the species
C. albicans, C. tropicalis, and C. glabrata.
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MATERIALS AND METHODS

Photosensitizer and Light Source for PDT

Natural CUR (Fluka Co.) was obtained from Sigma—
Aldrich (St. Louis, MO). A stock solution of CUR (600 pn.M)
was prepared in DMSO and then diluted in saline solu-
tion to obtain the concentrations to be tested. A light emit-
ting diode (LED) based device, composed of eight royal
blue LEDs (LXHL-PR09, Luxeon® III Emitter, Lumileds
Lighting, San Jose, CA), was used to excite CUR [23].
The LED device provided a uniform emission from 440 to
460 nm, with maximum emission at 455 nm. The mean
irradiance delivered was of 22 mW/cm?, which was mea-
sured at the same location in which the microorganisms
were exposed to PDT.

Candida Strains and Grown Conditions

A total of 15 clinical isolates of Candida comprising
C. albicans: Cal, Ca2, Ca3, Ca4, and Cab; C. glabrata:
Cgl, Cg2, Cg3, Cg4, and Cg5; and C. tropicalis: Ctl, Ct2,
Ct3, Ct4, and Ct5, were used in this study. The strains
were previously isolated from patients with oral candidia-
sis and identified by CHROMagar technique and the car-
bohydrate assimilation tests (ID 32C-BioMérieux, Paris,
France). Isolates were maintained in Yeast—Peptone—Glu-
cose medium and frozen at —70°C. Prior to each experi-
ment, yeasts were aerobically cultured at 37°C for
24 hours on Sabouraud Dextrose Agar containing 5 mg/l
gentamicin (SDA).

Planktonic Culture of Candida and PDT Treatments

To obtain standardized suspensions of Candida, each
isolate was individually inoculated in Tryptic Soy Broth,
incubated at 37°C, harvested after centrifugation, washed
twice and resuspended in sterile saline to a turbidity
of 107 cells/ml. The yeast suspension was standardized by
adjusting the optical density to a turbidity corresponding
to spectrophotometric absorbance 0.38 at 520 nm. Ali-
quots of 100 wl of the standardized suspensions of Candi-
da were individually transferred to separate wells of a 96-
well microtitre plate. Curcumin solutions were added to
the wells to give the final concentrations of 5, 10, and
20 pM, which correspond to 1.8, 3.7, and 7.4 mg/1 [23]. Af-
ter dark incubation for 20 minutes (pre-irradiation time),
the plate was placed on the LED device and illumination
was performed at 5.28, 18, 25.5, and 37.5 J/cm? (PDT
groups). To determine whether CUR alone, at the tested
concentrations, induced any effect on cell viability (dark
toxicity), additional wells containing the yeast suspen-
sions were exposed to CUR under identical conditions to
those described above, but not to LED light (P+L—). The
effect of LED light alone was determined by exposing cells
to light without being previously exposed to CUR (P—L+).
The overall control consisted of Candida suspensions not
exposed to CUR or LED light (P—L-). Ten-fold serial dilu-
tions of aliquots of the contents of each well were obtained
and plated on SDA. After incubation (37°C for 48 hours),
colony counts were quantified using a digital colony
counter (CP 600 Plus, Phoenix Ind Com Equipamentos
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Cientificos Ltda, Araraquara, SP, Brazil). The number of
colony forming units per milliliter (CFU/ml) was deter-
mined and transformed into logarithm (logy).

C. albicans Biofilm and PDT Treatments

Based on the results of the experiments reported above,
the concentration of CUR (20 uM) and light fluences
(5.28 and 18 J/cm?) that achieved the most promising
results against planktonic cultures were selected to be
tested toward Candida biofilms. In addition, two higher
concentrations of CUR were evaluated (30 and 40 pM).
For in vitro biofilm formation, the isolates were individu-
ally inoculated in 5 ml of RPMI-1640 medium and incu-
bated overnight in an orbital shaker (AP 56, Phoenix Ind
Com Equipamentos Cientificos Ltda, Araraquara, SP,
Brazil) at 120 rpm, 37°C, for 16 hours. After incubation,
the yeast were washed twice with 5 ml of phosphate-buff-
ered saline (PBS), and suspended to 10° cells/ml by
adjusting the optical density of the suspension to 0.38 at
520 nm [27,28]. Aliquots of 100 pl of the standard cell sus-
pension were transferred into each well of pre-sterilized
polystyrene, flat-bottomed 96-well microtiter plates. The
plate was incubated at 37°C for 1.5 hours in an orbital
shaker at 75 rpm (adhesion phase). After that, the sus-
pensions were carefully aspirated, and each well was
washed twice with 150 pl of PBS to remove nonadherent
cells. In order to allow biofilm growth, 150 ul of fresh
RPMI-1640 was transferred into each well, and the plates
were incubated at 37°C for 48 hours at 75 rpm.

After biofilm formation, the wells were -carefully
washed twice with 200 pl of PBS to remove remaining
nonadherent cells. Then, 100 pl of CUR was added to
each well. The CUR concentrations tested were 20, 30,
and 40 pM, which corresponded to 7.4, 11.05, and
14.7 mg/l. The plates were incubated in the dark for
20 minutes, followed by illumination of 5.28 and 18 J/
cm?. Control wells received PBS instead of CUR solution
and samples were not illuminated (P—L-).

The antifungal effects against the biofilms were evalu-
ated by a metabolic assay based on the reduction of XTT,
a tetrazolium salt (Sigma—Aldrich). To prepare the XTT
solution, the salt was dissolved in Milli-Q water (1 mg/ml)
and stored at —70°C. For each experiment, 158 ul of PBS
prepared with glucose at 200 mM, 40 pl of XTT plus 2 pl
of menadione at 0.4 mM were mixed and transferred to
each well. The plates were incubated in the dark at 37°C
for 3 hours. After this, 100 wl of the reacted XTT salt solu-
tion was transferred to a new 96-well microtiter plate and
the cell viability was analyzed by proportional colorimet-
ric changes. Light absorbance measured by a microtiter
plate reader (Thermo Plate—TP Reader) at 492 nm.

In order to evaluate whether PDT could cause the de-
tachment of Candida biofilms from the plastic surface,
the quantification of the cells adhered to the wells was
performed by means of Crystal Violet (CV) assay [27]. For
this purpose, additional samples from P—L- and PDT
groups (40 uM of CUR with 18 J/cm? of illumination)
were included in this evaluation. The biofilm coated wells
of microtiter plates were washed twice with 200 pl of PBS

929

and then air dried for 45 minutes at room temperature.
Then, each of the washed wells was stained with 110 pl of
0.4% aqueous CV solution for 45 minutes. Afterwards,
each well was washed three times with 200 pl of sterile
distilled water and immediately destained with 200 pl of
95% ethanol. After 45 minutes at room temperature,
100 pl of the destaining solution was transferred to a new
well and the amount of the CV stain was measured with a
microtiter plate reader (BIO-RAD, model 3550-UV, micro-
plate reader, Hercules, CA) at 595 nm.

Statistical Analysis

For each Candida isolate, the experimental treatments
(PDT, P+L— and P-L-) were tested in five independent
samples. Descriptive analysis was performed to summa-
rize the results of each Candida isolate. Then, the results
from the five isolates of the same species were joined to
obtain a general response of the species. Data from colony
counts and XTT assay were analyzed in a mixed model
nested ANOVA: experimental (PDT) and control (P+L—,
P-L+, and P-L—-) groups were treated as fixed factors,
whereas the five Candida isolates were random factors
nested within groups. The test was based on the assump-
tion of a linear model with errors normally distributed
around zero with corrected variance between groups to fit
heteroscedasticity for fixed effects and random effects nor-
mally distributed with constant variance. The ANOVA
was followed by Tukey’s post-hoc tests for multiple com-
parisons among experimental and control groups (fixed
effects). Data obtained after the evaluation of CV staining
assay were evaluated using Wilcoxon’s nonparametric
tests for pairwise comparisons between control (P—L—)
and PDT groups of each species and the Kruskal-Wallis
test was used to test the null hypothesis among P—L—
groups of the three species. The significance level adopted
was 5% (P < 0.05).

RESULTS

Photodynamic Inactivation of Planktonic Cultures
of Candida

Table 1 shows the minimal CUR concentration required
to achieve at least 4 log decrease in log(CFU/ml) values
after PDT. It can be seen from this table that the efficien-
cy of CUR as a fungicidal PS was not homogeneous among
the different isolates belonging to the same species. Con-
sidering the mean response obtained from the five isolates
of each species, the 4 log reduction in C. albicans and
C. tropicalis viability occurred with the use of 10 uM
of CUR at all light fluences tested, while C. glabrata
required 20 pM of CUR associated with light fluences
starting at 18 J/cm?.

The mixed model nested ANOVA showed that PDT
groups presented a significant level of variation within
the same species, which suggested a different response of
the distinct isolates to photoinactivation. Confidence
intervals of 95% showed that the random effect repre-
sented by the five Candida isolates of each species was
the major factor influencing the variability in colony
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TABLE 1. Minimal CUR Concentration (nM) Required
to Achieve 4 log Decrease in log(CFU/ml) Values After
PDT at Different Light Fluences

Candida

isolate 528 J/em? 18 J/em? 25.5 J/em? 37.5 J/cm?
Cal 10 10 5 5
Ca2 10 10 10 10
Ca3 20 20 10 10
Ca4 20 10 10 10
Cab 5 5 5 5
Ca mean® 10 10 10 10
Cgl 20 20 20 20
Cg2 NA NA NA NA
Cg3 20 20 20 20
Cg4 20 20 20 20
Cgb NA 20 20 20
Cg mean® NA 20 20 20
Ctl 10 5 5 5
Ct2 NA 10 10 20
Ct3 10 10 10 10
Ct4 10 5 5 5
Cts 20 10 10 10
Ct mean® 10 10 10 10

NA, 4 log drop was not achieved at the light fluence.
#Results obtained from the mean of the five clinical isolates.

counts within each PDT group. The use of different
strains accounted for 98.0; 99.3% and 98.8% of the total
variability observed in the PDT groups, for C. albicans,
C. glabrata, and C. tropicalis, respectively. ANOVA also
showed a significant variation of the mean colony counts
among the P-L—, P+L—, P-L+, and PDT groups. The
results of multiple comparisons are shown in Table 2. All
the associations of CUR and LED light were able to pro-
mote a significant reduction in C. albicans and
C. tropicalis viability, when compared with the P—L—
condition. A significant reduction in C. glabrata viability
was observed with the use of 10 and 20 M of CUR, at the
four LED fluences. Complete inactivation of C. glabrata
was not observed. On the other hand, the five C. albicans
isolates were completely killed after PDT mediated by

DOVIGO ET AL.

20 uM of CUR, even at the lowest LED fluence. Similarly,
C. tropicalis isolates were inactivated with 20 uM of
CUR, but at fluences starting at 18 J/cm?. Control groups,
comprising the P-L—, P+L—, and P-L+ conditions,
showed similar values of colony counts.

Photodynamic Inactivation of Candida Biofilms

Figure 1 shows the effect of PDT mediated by different
concentrations of CUR on the metabolic activity of bio-
films (absorbance after XTT reduction assay). When com-
pared with the control, PDT induced a significant
decrease in absorbance values of all Candida species. For
C. albicans and C. tropicalis isolates, the use of CUR con-
centrations of 30 and 40 uM associated with 5.28 J/cm?,
as well as the use of 20, 30, and 40 pM at 18 J/cm?, pro-
moted a similar reduction in the metabolic activity of bio-
films (P < 0.05). However, the lowest values of metabolic
activity of C. albicans biofilms were observed with the use
of 40 uM of CUR, associated with both 5.28 and 18 J/cm?.
Under these experimental conditions, the percentage of
reduction in metabolic activity was over 80% in compari-
son with the P—L— group (Table 3). Similar results were
observed for C. glabrata biofilms. For C. tropicalis, the as-
sociation of 40 pM with 18 J/em? showed the lowest val-
ues of metabolic activity of biofilms, reaching 73% of
reduction compared to control group (Table 3).

It can be seen from Table 3 that variations in response
to PDT were detected in the individual strains of each
species. Similar to the results found for the planktonic
phase, the mixed ANOVA was able to verify that PDT
groups presented a significant level of variation within
the same species. Considering the microorganisms in the
biofilms phase, the use of different isolates accounted for
85.3; 42.0% and 80.1% of the total variability of XTT val-
ues observed in the PDT groups, for C. albicans,
C. glabrata, and C. tropicalis respectively.

The quantification of biofilm biomass using the CV as-
say was performed in P-L— and PDT (40 pM at 18 J/
cm?) samples. Biofilm biomass was significantly lower in
the PDT samples (P < 0.05), suggesting that PDT promot-
ed the partial detachment of biofilms from the wells.
The reduction in biomass observed in PDT samples

TABLE 2. Mean Values and Standard Deviation of log (CFU/ml) Calculated From the Results of the Five Clinical

Isolates of Each Candida Species

P-L+ P+L— PDT 5.28 J/cm?® PDT 18 J/cm?® PDT 25.5 J/cm?® PDT 37.5 J/cm?®
Species 37.5J/
(mean) P-L- cm® 5pM 10puM 20 uM 5pM 10 uM 20 uM 5uM 10 pM 20 pM 5 uM 10 pM 20 pM 5 uM 10 uM 20 uM
C. albicans 6.43* 6.44* 6.48% 6.43* 6.42° 3.21° 155" 0.00 298> 1.45* 0.00 256> 0.86° 0.00 252" 1.05> 0.00
0.17 0.17 0.09 0.15 012 114 137 000 123 134 000 152 0.8 000 150 0.93  0.00
C. glabrata  6.55% 6.53% 6.58* 6.55% 6.56% 5.19%° 3.96" 2.84°% 486> 3.62°d° 1.85%° 4.90%> 3.59Pde 1.83% 4.97%P 3644 1.79°
0.07 0.08 0.05 0.06 004 046 0.86 0.78 0.59 0.94 1.26 058 0.74 1.43 056 0.85 1.45
C. tropicalis 5.59° 5.71° 5.65% 5.62% 5.64% 2.87° 0.92° 0.30° 1.59° 0.27° 0.00 1.61° 0.28° 0.00 1.62° 0.29° 0.00
033 0.36 029 032 031 030 092 062 090 054 000 091 056 000 092 058  0.00

Different lower case letters denote significant differences among columns (groups) according to Tukey’s Test (P < 0.05).
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Fig. 1. Graphic representation of mean values and standard
deviation of absorbance values (XTT assay) observed after
experiments with the C. albicans (A), C. glabrata (B), and
C. tropicalis (C) isolates. Different lower case letters denote
significant differences among columns (groups) according to
Tukey’s Test (P < 0.05).

corresponded to 52.3%, 69.1%, and 64.1% in comparison
with the P—L— groups for C. albicans, C. glabrata, and
C. tropicalis, respectively. In addition, the use of CV
staining revealed that the ability to produce biofilms
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in vitro was higher in C. albicans isolates when compared
with C. glabrata and C. tropicalis (P < 0.05).

DISCUSSION

Some previous investigations have already suggested
that CUR per se may have antifungal properties [29,30]
and its combination with light has been proposed in order
to improve its antifungal action [23]. The results showed
that the use of CUR in association with light was able to
promote a significant antifungal effect against the plank-
tonic form of the yeasts. According to Jori et al.[31], the
efficiency of a PS can be expressed as the minimal concen-
tration which induces a 4 log decrease in survival of
microorganisms. For C. albicans and C. tropicalis isolates,
the 4 log drop in viable counts was observed with 10 uM
(8.7 mg/L) of CUR at all light fluences tested, while
C. glabrata isolates required 20 pM (7.4 mg/L) of CUR
with illumination of 18 J/em? or higher. In addition, no
evidence of colony growth was observed for C. albicans
and C. tropicalis isolates after photosensitization with
20 uM of CUR and illumination at 5.28 and 18 J/cm? of
LED light, respectively. These results are in agreement
with those recently published in which a reference strain
of C. albicans (ATCC 90028) was efficiently killed after
CUR-mediated PDT [23]. The photodynamic effect of CUR
against Candida species has not been widely documented
in the medical literature, but its antibacterial effect has
been described with the use of comparable CUR concen-
trations (1-25 uM) and light fluences (0.5-30 J/cm?) [26].
In the present study, the reduction in viability of the clini-
cal isolates was observed only when CUR was used in con-
junction with LED light. In contrast, Garcia-Gomes et al.
[32] found that 50 WM-CUR, without light excitation, was
able to inhibit the growth of one strain of C. albicans. A
recent publication found that the minimum inhibitory
concentration (MIC) of CUR against 14 Candida strains
ranged from 250 to 2,000 mg/L. while fluconazole MICs
were between 4 and 64 mg/L [33]. In comparison with
these investigations, the present study used lower CUR
concentrations to sensitize the Candida isolates in the
planktonic form (<20 uM or 7.4 mg/L). Thus, although
promising results were described with the use of CUR
without light excitation, higher concentrations of the com-
pound were needed to induce the antifungal effect. Like-
wise, the studies of Dahl et al. [34] and Tgnnesen et al.
[35] reported that the antibacterial activity of some CUR
concentrations was greatly enhanced by light. Another
finding in the present study was that PDT effectiveness
was not always fluence-dependent. The use of fluences
higher than 18 J/cm? did not improve the effectiveness of
PDT for inactivating the Candida species. This could be
as a result of the CUR photobleaching which leads to pho-
todegradation of the PS solution and decreases in reactive
oxygen species production [23,25].

Since the light fluences of 5.28 and 18 J/cm? showed the
best outcomes for Candida photoinactivation (planktonic
phase), these parameters were selected to be tested
against biofilms. When using 40 puM of CUR, the
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TABLE 3. Percentage of Reduction (%) in Metabolic Activity (XTT Reduction Assay) Obtained After Treatment

of Candida Biofilms With PDT

PDT 5.28 J/cm?

PDT 18 J/cm?

Candida isolate 20 pM 30 pM 40 pM 20 pM 30 pM 40 pM
Cal 67 71 88 65 74 90
Ca2 30 48 70 56 76 87
Ca3 59 72 86 62 75 73
Ca4 69 71 82 73 76 87
Cab 62 70 81 61 72 84
Ca mean® 57 66 81 63 75 85
Cgl 43 61 80 59 79 81
Cg2 71 71 80 76 86 84
Cg3 43 69 79 64 67 86
Cg4 53 70 83 74 84 90
Cgb 22 67 81 66 76 87
Cg mean® 46 67 81 67 79 85
Ctl 28 55 67 60 73 76
Ct2 33 54 69 47 80 89
Ct3 31 45 47 39 48 57
Ct4 22 39 66 33 53 71
Ctb 36 36 54 53 57 72
Ct mean® 29 46 61 46 62 73

The percentage was calculated versus the XTT value obtained with P—L— group.

2Results obtained from the mean of the five clinical isolates.

metabolic activity of C. albicans, C. glabrata, and
C. tropicalis biofilms was reduced by 85%, 85%, and 73%,
respectively, at 18 J/cm?. The ability of CUR to act as an
antifungal agent against C. albicans biofilms has been
previously reported [23,36]. Accordingly, a similar proto-
col (40 pM of CUR and 18 J/cm?) was used against one
ATCC strain of C. albicans and the authors observed a
decrease of 87% in biofilm viability [23]. On the other
hand, the photosensitization of C. glabrata and
C. tropicalis biofilms by CUR is a completely new result.
It was interesting to note that C. glabrata isolates in the
planktonic phase seemed to be less susceptible to PDT in
comparison with C. albicans and C. tropicalis, but this ob-
servation was not true when biofilms were considered.
C. glabrata required a higher CUR concentration to
achieve 4 log reduction in CFU/ml counts and it was not
completely inactivated in any of the protocols tested. Oth-
er investigations also found the reduced susceptibility of
C. glabrata suspensions to photoinactivation [14,15].
However, this reduced susceptibility was not observed in
C. glabrata biofilms, which showed similar levels of photo-
inactivation in comparison with C. albicans biofilms.
According to Seneviratne et al. [11], C. albicans isolates
usually form thicker biofilms with the presence of hyphal
elements that support the exopolymeric substances and
blastospores, promoting a three-dimensional multilayered
community. In contrast, C. glablata isolates are more
prone to producing thinner and compact biofilms [11]. In
the present investigation, a liquid medium was used to
grow the biofilms (RPMI-1640) which induces hyphal for-
mation in C. albicans cultures [37]. Thus, the presence of

a robust architecture in C. albicans biofilms was probably
an important factor influencing the penetration of CUR
and light during PDT, differently from the thinner
C. glabrata biofilms mainly composed of blastospores. For
this reason, it is believed that even with the C. glabrata
cells being more resistant to photoinactivation, the effect
against biofilms was equivalent between the two species.
In addition, the comparison made among the mean absor-
bance values (CV staining) found in control biofilms
showed that C. albicans isolates were strong biofilm-form-
ing strains, when compared with C. glabrata and
C. tropicalis isolates (P < 0.05). Conversely, other investi-
gations have found that C. tropicalis may have a similar
ability to form biofilms when compared with C. albicans
[38]. These different results probably reflect the different
growth conditions, that is, culture medium and substrate,
and physiological variations among the strains used in
different investigations. The results also showed signifi-
cant variation in response to PDT among the individual
strains of each species. The level of variation within the
same species was more pronounced in the planktonic cul-
tures exposed to PDT, but biofilms also showed significant
discrepancies. Significant differences observed in the
present study among Candida species and strains with
regard PDT susceptibility also concur with previous stud-
ies [15,32,39]. Therefore this investigation once again con-
firms the importance of testing more than one isolate of
Candida belonging to a given species to characterize the
species-specific behavior. In general, significant variation
in the response of individual strains was observed, but all
of the isolates were susceptible to CUR-mediated PDT.
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The CUR-phototoxicity to microbial systems seems to
be mediated through the excited states of CUR, their sub-
sequent reactions with oxygen and formation of reactive
species [40]. The production of nonspecific reactive compo-
nents has important advantages over traditional antifun-
gal treatments. It is unlikely that yeasts could develop
resistance to them and microorganisms with innate or ac-
quired resistance to antifungal drugs should be suscepti-
ble to photodynamic damage. C. glabrata is recognized
as having a stable resistance to fluconazole, while
C. tropicalis has shown rapid development of resistance
to fluconazole and amphotericin B, especially in cancer
patients [6]. Our results showed that although Candida
isolates differed in the response to PDT, the five clinical
strains belonging to each species were susceptible to
CUR-mediated PDT indicating its broad spectrum of ac-
tion against Candida. According to CV staining assay,
CUR-mediated PDT not only reduced the metabolic activi-
ty of Candida biofilms, but also decreased the biofilm
biomass of all species evaluated. It has previously been
suggested that PDT can target bacterial biofilms by kill-
ing the cells and disrupting biofilm architecture [41].
Light micrographs performed by Goulart et al. [42]
showed that PDT was able to detach bacterial cells from
the well in which biofilms were formed. Thus, it possible
to suggest that CUR-mediated PDT can act against Can-
dida biofilms in a similar way, simultaneously altering
yeast metabolism and causing biofilm disarticulation. It
has been suggested that lethal photosensitization is likely
to occur in the outermost layers of C. albicans biofilms
probably due to the superficial penetration of PS into the
biofilm layers [43]. Since PDT can superficially disrupt
the biofilm structure after a single application, it is possi-
ble to suppose that repeated cycles of the therapy may be
capable of reducing the biofilm biomass, allowing deeper
penetration of the PS and promoting higher levels of bio-
film inactivation. This mode of action can have important
relevance for the design of future clinical investigations
on CUR-mediated PDT.

In conclusion, the results from the present investigation
showed that low CUR concentrations could be highly
effective for inactivating Candida isolates when associat-
ed with light excitation. The three main Candida species
that are frequently associated with fungal infections were
efficiently photosensitized with the protocols tested. Thus,
the parameters established in this in vitro investigation
will shortly be used in an animal model of Candida infec-
tion in order to verify the effectiveness of the therapy for
the treatment of oral candidiasis.
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