
 

 Universidade de São Paulo

 

2011-01 

Fractal analysis of leaf-texture properties as a

tool for taxonomic and identification purposes:

a case study with species from Neotropical

Melastomataceae (Miconieae tribe)
 
 
Plant Systematics and Evolution, Wien : Springer Wien, v. 291, n. 1/2, p. 103-116, Jan. 2011
http://www.producao.usp.br/handle/BDPI/49624
 

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Física e Ciências Materiais - IFSC/FCM Artigos e Materiais de Revistas Científicas - IFSC/FCM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37522471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/49624


ORIGINAL ARTICLE
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Abstract Melastomataceae is a common and dominant

family in Neotropical vegetation, with high species diver-

sity which leads to a large variation in some morphological

structures. Despite this, some species of Melastomataceae

are very similar in their external leaf morphology, leading

to difficulties in their identification without the presence of

reproductive organs. Here we have proposed and tested a

computer-aided texture-based approach used to correctly

identify and distinguish leaves of some species of Melas-

tomataceae that occur in a region of Neotropical savanna in

Southeastern Brazil, also comparing it with other previ-

ously proposed approaches. The results demonstrated that

our approach may clearly separate the studied species,

analyzing the patterns of leaf texture (both adaxial and

abaxial surfaces), and achieving better accuracy (100%)

than other methods. Our work has suggested that leaf

texture properties can be used as a new characteristic for

identification, and as an additional source of information in

taxonomic and systematic studies. As the method may be

supervised by experts, it is also suitable for discrimination

of species with high morphological plasticity, improving

the automated discrimination task. This approach can be

very useful for identification of species in the absence of

reproductive material, and is a rapid and powerful tool for

plant identification.

Keywords Leaf texture � Fractal analysis � Volumetric

fractal � Melastomataceae � Plant identification � Computer

vision

Introduction

The process of taxonomy and plant identification has become

a systematic activity; however, mankind has searched for

more efficient plant-classification systems, and also for

mechanisms that facilitate plant identification (Judd et al.

2008). Botanical classification is basically done by using

herbaria (Bridson and Forman 1998) in which morphological

and anatomical characteristics of vegetative and reproductive

organs from different species can be examined and studied by

observation (Leenhouts 1968), being identified by compari-

son with voucher specimens (DeWolf 1968) and by using

diagnostic keys (Dallwitz 1974). The accuracy or success of

plant identification relies on the user or specialist’s experi-

ence and interpretation. The traditional discrimination

method is based on morphological studies and it sometimes

depends on subjective visual assessment leading, thus, to

failures in the detection of very small and specific differ-

ences, for example those occurring among very similar plant

species. Moreover, this procedure is very dependent on the

user’s knowledge of specialized terminology.
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2100, 19806-900 Assis, SP, Brazil

e-mail: rosanakolb@hotmail.com

123

Plant Syst Evol (2011) 291:103–116

DOI 10.1007/s00606-010-0366-2



For cataloging activity, which is essential in any eco-

logical, botanical or taxonomical study, it is necessary to

collect and dry a branch of the plant, to process the vou-

cher, comparing it with other vouchers in the herbaria,

using diagnostic keys, and sending the material to spe-

cialists for confirmation (Pankhurst 1978; Holgren and

Holgren 1992). One of the major problems in this process

is that flowers and fruits, the main sources used for diag-

nostic of characteristics, are not available for studies

throughout the year, but only at certain times, what causes

difficulties for plant identification/classification (Ash et al.

1999). Besides, the dehydration process may cause loss

of important and very informative properties for plant

identification, for example color, texture, and brightness

(Blanco et al. 2006).

Many attempts have been made with the purpose of

performing automated plant identification, making this

process faster, more precise and useful for botanists and

also for plant specialists, thus improving taxonomic work

(Wang et al. 2008). Some of these studies have focused on

the analysis of external leaf attributes, for example the

geometry and contour line of leaves (Mugnai et al. 2008;

Backes et al. 2009a; Wang et al. 2003, 2005; Plotze et al.

2005; Lee and Chen 2006), whereas others have used such

characteristics as the color of leaf surfaces (Castro-Esau

et al. 2004; Slaughter et al. 2008). Another category in

computer-aided plant identification is analysis of leaf

texture (Mancuso 2002; Dean and Ashton 2008), which

sometimes relies on non-computerized extraction of texture

features (Dean and Ashton 2008). Finally, the work of

Mugnai et al. (2008) used hybrid methodology (texture

and shape-based features) to classify Camellia japonica

L. genotypes.

Leaves can be easily found and collected practically

everywhere in all seasons, and the analysis of their mor-

phological and anatomical characteristics is easier, pro-

viding important information for identification and

taxonomy purposes (Bailey 1951; Dickison 2000; Endress

2003). Another advantage of using leaves is that they are

very complex in their form, shape, and color, providing

greater scope for differentiation using geometric aspects

(Persson and Gustavsson 2001), and also in texture, a

characteristic that can bring new sources of information for

plant identification (Backes et al. 2009b). The analysis of

external leaf morphology without a computer-analysis

approach could lead to doubts in the identification of plant

species with very similar morphology, which occurs in

plant species belonging to the same genus or from closely

related genera, or even inside the same family.

Among Melastomataceae tribes, Miconieae is one of the

most common and dominant in the Neotropics, containing

approximately 2,000 species among 30 genera (Michelangeli

et al. 2004), occurring practically in all plant formations of

South America (Martin et al. 2008). In Savanna formations

of Brazil, Miconia and Leandra are the most diversified

genera, with a high diversity of species (Mendonça et al.

2008) with similar leaf morphology. Many taxonomic and

phylogenetic studies have been conducted with Miconia

and Leandra genera in several plant formations of Brazil

(Martin et al. 2008; Goldenberg et al. 2008; Goldenberg

and Martin 2008). In the same family, tribe, or genus, the

within-leaf dissimilarity and within-species similarity are

higher, making classification and identification difficult

using only external morphological characteristics.

The main objective of this study was to investigate the

taxonomic and identification value of quantitative and

qualitative leaf surface characteristics across a number of

closely related species from the Miconieae tribe, intro-

ducing a new and powerful tool to improve taxonomic and

identification work. These species share similar leaf mor-

phology, which causes some difficulties in their identifi-

cation, even with reproductive material. Here we have

analyzed surface texture from different Miconieae species

by fractal analysis, using multivariate statistical techniques.

We have compared our approach with other methods

commonly used for analyzing leaf contour, texture, or

texture and shape (hybrid), employing the same dataset

as in our work, to provide evidence for the strength of the

proposed model.

Also, we have tested our model using different

hypotheses of plant species delimitation, to see how strong

our approach is. For this purpose, we have chosen three

specimens that may be viewed as either three different

species or three variations of the same species.

Materials and methods

Plant material

Plant leaves were collected at Assis Ecological Station,

Assis, São Paulo State, Brazil, situated between 22�
3306500–2203606800S and 5002202900–5002300000W. The veg-

etation is a Neotropical savanna locally called ‘‘cerrado’’.

According to Köppen’s classification, the climate in this

ecological station is transitional between Cwa and Cfa,

with concentrated rainfall in summer, with annual precip-

itation under 1,400 mm and temperatures around 21.8�C.

Dry season occurs between June and September, and wet

season between October and May. We selected some spe-

cies of the Melastomataceae family, especifically from the

Miconieae tribe (Table 1), comprising ten species from the

Miconia genus and two to five species from the Leandra

genus, which had similar patterns of leaf morphology. We

consulted a plant specialist and the species presented here

as 2, 3, and 4 can be either variations of the same species
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(Leandra aurea (Cham.) Cogn., see Souza and Baumgratz

2009) or different species, impossible to ascertain without

the presence of flowers. The species numbered 15 can be

from Leandra or Ossaea genera, being also impossible to

determine without the flowers. For this reason, we have

preferred to refer to it as simply belonging to the Miconieae

tribe. Species were identified through specific literature

(Durigan et al. 2004; Goldenberg 2004; Camargo 2008;

Ramos et al. 2008). Vegetative materials from Leandra

species were sent to a specialist for identification. In

addition, collected materials were identified by comparison

with previous plant materials deposited in the University

of Brasilia Herbarium (UB). Some vouchers were depos-

ited at ‘‘Herbário Don Bento Pickel’’, São Paulo, SP

(SPSF) and others at ‘‘Herbário Rioclarense’’, Rio Claro,

SP (HRCB).

Fully expanded leaves were collected in July 2009,

during the morning, from different individuals (4–5 per

species). These were immediately placed in sealable plastic

bags and carried to the laboratory for scanner digitization.

Image acquisition and determination of phyllometric

characteristics

Each leaf was digitized with a traditional scanner (HP

Scanjet 3800), with a resolution of 1,200 dpi (dots per

inch) and saved in PNG format. The high resolution was

used to enable access to details in image texture. To avoid

rotation problems, all leaves were oriented in same direc-

tion while assembled on the scanner. Both surfaces (abaxial

and adaxial) of the leaf epidermis were digitized. The

adaxial surface of all species can be seen in Fig. 1. Ten

128 9 128 texture samples were randomly extracted from

both sides of each leaf, without overlapping (Fig. 2). This

procedure is necessary to minimize texture variation in a

single leaf and to avoid texture samples containing noise

caused by fungi, disease, or lesions. In addition, the

extracted textures were converted to grayscale for sub-

sequent analysis.

Computer description of leaf texture

The key issue in leaf classification is the texture features

observed in the images. Texture is recognized as one of the

most important sources of information in human visual

perception, although there is no formal definition of it. In

general terms, natural textures, for example leaf surfaces,

have random but persistent patterns, and do not contain any

detectable quasi-periodic structure (Kaplan 1999). The

same author has suggested that fractal theory is better than

statistical, spectral, and structural approaches for describ-

ing natural textures. In fact, the volumetric fractal dimen-

sion has been very useful for identification and

classification of leaf textures (Backes et al. 2009b). So, we

decided to describe and study texture using the volumetric

fractal dimension (Backes et al. 2009b).

Considering an image f(x, y) in gray scale, we can state

that its three-dimensional representation can be given by

S(x, y, z), where (x, y) are the spatial coordinates of the

image and the third coordinate z, the intensity of the gray

color. By dilation of surface S until a radius r, estimated at

each step, the value of V(r) is given by Eq. 1:

VðrÞ ¼ p 2 R3j9p0 2 S : p� p0j j � r
� �

ð1Þ

Table 1 Miconieae species

selected for this study at the

Estação Ecológica de Assis, São

Paulo State, Brazil

Species No. on

Fig. 1

No. of

leaves

Location of

occurrence

Voucher

number

Leandra melastomoides Raddi 1 19 Forest HRCB 44091

Leandra sp1 2 20 Savanna HRCB 44075

Leandra sp2 3 10 Forest HRCB 44079

Leandra sp3 4 20 Savanna/forest HRCB 44083

Miconia albicans (Sw.) Triana 5 21 Savanna SPSF 35912

Miconia chamissois Naudin 6 20 Marsh camp SPSF 36994

Miconia cinerascens Miq. 7 21 Forest SPSF 34926

Miconia fallax DC. 8 20 Savanna SPSF 35833

Miconia langsdorfii Cogn. 9 20 Forest SPSF 35815

Miconia ligustroides (DC.) Naudin 10 20 Forest SPSF 35823

Miconia pusilliflora (DC.) Naudin 11 20 Forest HRCB 45614

Miconia sellowiana (DC.) Naudin 12 20 Forest HRCB 44109

Miconia stenostachya DC. 13 20 Savanna SPSF 37026

Miconia theaezans (Bonpl.) Cogn. 14 20 Marsh camp SPSF 35844

Miconieae 1 15 14 Forest HRCB 44086
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where p0 = (x0, y0, z0) is a point in R3 whose distance from

p = (x, y, z) is smaller than or equal to r, and V(r) is the

influence volume obtained by dilation of each point p of S,

using a sphere of radius r.

In this method, the arrangement of points alters the

process of expansion. While the value of r grows, the

spheres produced by different points on the surface begin

to interact. This interaction causes effects on the amount of

V(r), i.e., it affects the volume calculated for a certain

radius. This feature enables the perception of changes

in the texture pattern, because different textures differ

in the organization of their pixels. Figure 3 exemplifies

this process by the dilation of surface S to different values

of r.

As a result of this procedure, each texture produces a

characteristic value of V(r) for each stage of the dilation

process. This makes possible the use of the values of

V(r) as descriptors of texture, because V(r) describes,

indirectly, the organization of the pixels. As shown by

Backes et al. (2009b), all radii between 9 and 16 yield good

results, thus, in this study we chose to use a radius of 15.

Thus, the feature vector is composed of 189 descriptors

arising from the logarithm of the volume of influence V(r),

calculated for all values of r [ E, where E is the set of

Euclidean distances to a radius r(max) = 15:

E ¼ 1;
ffiffiffi
2
p

;
ffiffiffi
3
p

; . . .; rmax

n o
ð2Þ

x ¼ ½log Vð1Þ; log Vð
ffiffiffi
2
p
Þ; . . .; log VðrmaxÞ�: ð3Þ

Classification strategy

With the observed features it is possible to identify dif-

ferent plant species. However, direct classification was not

used in our strategy. As shown before, ten texture samples

were randomly extracted from each leaf and, therefore, we

had ten different feature vectors for each leaf. To minimize

problems with noise presence and texture variation we

Fig. 1 Leaf adaxial surfaces of the Melastomataceae species studied

Fig. 2 Examples of leaf textures obtained from adaxial surfaces

showing high within-species similarity
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calculated the mean feature vector. With a single feature

vector for each leaf we chose to use the naive Bayes clas-

sifier (Mitchell 1997). In addition, we used a tenfold cross

validation. The naive Bayes classifier is a simple probabi-

listic classifier based on Bayes’s theorem. This classifier

assumes the conditional independence hypothesis among

attributes. The classification rule can be seen as the attri-

bution of the object to the group with the highest conditional

probability. For g groups, the Bayes rule assigns an object to

the group i when:

Pðij xÞ[ PðjjxÞ; for 8j 6¼ i: ð4Þ

In this case, assuming the hypotheses of independence, we

have for the aleatory variables:

PðijxÞ ¼ PðiÞ
Qn

k¼1 PðxkjiÞQn
k¼1 PðxkÞ

ð5Þ

where:

PðxkjiÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
2pr2

ik

p e

ðxi�lik Þ2

2r2
ik ð6Þ

being P(x|i) is the probability of obtaining a particular set of

features x, given that the object belongs to the group i and

P(i) is the probability a priori, that is, the probability of

choosing the group i without any feature of the known object.

The naive Bayes is a statistical classifier assuming

the conditional independence hypothesis among features.

Although naive Bayes is very competitive even when this

assumption is violated, this methodology is not appropriate

when you have characteristics that are naturally dependent

and highly correlated. To solve this problem we have used

canonical discriminant analysis. This method removes the

correlations among features and optimizes the separation

between classes. Given the original features, we can obtain the

so called canonical variables; these variables are not corre-

lated and can be used in naive Bayes classifier, respecting the

hypothesis of independence among attributes. Canonical

discriminant analysis (CDA) is a multivariate statistical

technique with the objective of maximizing the separation

between classes, and is similar to principal-components

analysis (PCA) and to canonical correlations (McLachlan

1992). Also known as multiple discriminant analysis (MDA),

CDA seeks linear combinations of original variables into

so-called canonical variables.

Given the matrix S, indicating the total dispersion

among the feature vectors, defined as:

S ¼
XN

i¼1

ðxi � lÞðxi � lÞ0 ð7Þ

and the matrix Si indicating the dispersion of objects of Ci:

Si ¼
X

i2Ci

ðxi � liÞðxi � liÞ0 ð8Þ

we can define the intra-class variability Sintra (indicating the

combined dispersion within each class) and the interclass

variability Sinter (indicating the dispersion of the classes in

terms of their centroids) as:

Sintra ¼
XK

i¼1

Si ð9Þ

Fig. 3 Effect of volume characteristics for specific texture pattern: a original leaf texture; b r = 2; c r = 5; d r = 10 (adapted from Backes et al.

2009b)
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Sinter ¼
XK

i¼1

Niðli � lÞðli � lÞ0 ð10Þ

where K is the number of classes, N, the number of samples,

Ni, the number of objects in class i, Ci, the set of samples

of class i, l, the global average, and li, the average of

objects in class i. For these measures of dispersion we have

necessarily:

S ¼ Sintra þ Sinter ð11Þ

Thus, the ith canonical discriminant function is given by:

Zi ¼ ai1X1 þ ai2X2 þ � � � þ aipXp ð12Þ

where p is the number of features of the model and aij are

the elements of the eigenvector ai = (ai1, ai2, ..., aip) of

matrix C given by:

C ¼ Sinter � S�1
intra ð13Þ

This formulation leads to a condition where there is no

correlation between Zi and Z1; Z2; . . .; within the classes.

From p-original variables the p-principal components can

be obtained. However, in general, a reduction in the

number of variables to be assessed is desired, i.e., that the

information contained in the p-original variables be

replaced by the information contained in k (k \ p) uncorre-

lated principal components. Thus, the system of random

variability of the original vector with p-original variables is

approximated by the variability of the random vector

containing the k-principal components.

Our experiments were designed to classify each test

image into a single class (species) using the tenfold cross-

validation strategy mentioned above. As the true species

for all collected leaves are known, the classification accu-

racy can be defined as the ratio of the number of images

correctly classified to the total number of test images. An

overview of all process can be seen in Fig. 4.

Nam and Hwang (2005) and Nam et al. (2008) have

discussed how images with similar color or texture, as has

been presently found in some leaves, could be more

effectively separated by shape-based image retrieval than

by use of color or texture. To verify this, we compared our

approach with a contour-based (Backes et al. 2009a)

method, a texture-based method (Mancuso 2002), and an

hybrid method (Mugnai et al. 2008), that uses texture and

shape-based features together for leaf identification; in all

analysis we used the same species and images used in our

own texture method. Backes et al. (2009a) showed that

classification using the complex network method is better

than CSS (Abbasi et al. 1997), Fourier (Ferson et al. 1985;

Neto et al. 2006), Zernike moments (Zhenjiang 2000), and

fractal dimension (Plotze et al. 2005; Bruno et al. 2008) for

leaves and other complex shapes. In our experiments we

used the degree descriptor with T0 = 0.025, Tinc = 0.075,

and TQ = 0.775. In Mancuso (2002) the texture features

were extracted with the fractal dimensions of the color

channels from 12 genotypes of Vitis vinifera L. Mugnai

et al. (2008) discriminated 25 C. japonica genotypes with

phyllometric and fractal data together. In our experiments

we used the exact features proposed by these authors. In

addition, for all comparisons, the same classification

strategy (CDA ? naive Bayes) was used.

Working hypotheses for the classification of images

Because it was not possible to determine if Leandra sp1,

Leandra sp2, and Leandra sp3 are different species or

phenotypic variations of a same species (because of the

absence of reproductive material), we worked with both

hypotheses and tested whether our classification strategy

could have the same accuracy in both cases. The classifier

used here (Bayes ? CDA) is a type of supervised classifier.

In this model, the number of classes (i.e., the number and

name of species) is previously input to the system. In this

way, the system needs to be adjusted with the number of

classes (species) and also with the mathematical model of

each class (i.e., the user trains the system with examples of

each class). In this approach, someone can configure the

system with a variable number of classes. The key to

obtaining good classification performance is to have a good

set of descriptors. With that, the model can for example,

match the knowledge of a plant specialist. If the training

data have 15 species (in the case of L. sp1, L. sp2, and L.

sp3 being different species), the classifier will create a

model to distinguish among the 15 species. But if the

training data have 13 species (L. sp1, L. sp2, and L. sp3

being phenotypic variations of a same species), the clas-

sifier will create a different model to distinguish among

these 13 species.

Results and discussion

This proposed classification method was 100% effective

using texture features of adaxial leaf surfaces, considering

15 species (Table 2). For that, only ten canonical variables

are used in the naive Bayes classifier. These ten main

components represent 99.99% of total variance, demon-

strating that the volumetric fractal dimension has very high

correlated features. In Fig. 5 we can see the high correla-

tion among all 189 original features, and in Fig. 6, after

canonical transformation, the low correlation among the

ten first canonical variables. The small number of canoni-

cal variables used enables creation of efficient and accurate

leaf image retrieval systems.

In canonical eigenspace (Fig. 7), leaf samples from the

same species are clustered more tightly than with samples
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from other species, with few exceptions, where there is no

substantial overlap. It is important to emphasize here that

the real separation of all species occurs when the Bayes

classifier uses all ten canonical variables together. The two

canonical variables plotted in the figure, and the clusters

formed, give only an idea about the quality of the

separation of groups. Therefore, the variability of texture

features within-leaf seems to be fairly low, whereas the

variability within-species is high, which makes evaluation

of the proposed characteristics a good and promising

method for automatic plant taxonomy and identification.

In order to verify the effect of leaf face we repeated the

experiment with the abaxial surfaces. The same results

were achieved in this analysis. For both adaxial and abaxial

faces within-species and within-genus separation is good

(Fig. 8), and only ten canonical variables are necessary to

achieve accuracy of 100% (Table 2). The work of Ramos

and Fernández (2009), with microphotographs, suggests

that the abaxial epidermis side is more discriminative than

the adaxial one, because of the presence of stomata, tric-

homes, and other morphological structures related to phy-

logenetic aspects. In our experiments, with digitized

images, both sides furnished 100% accuracy. So, further

experiments should be conducted to confirm the adaxial

Fig. 4 Overview of the approach used in this work for plant species identification

Table 2 Leaves classification summary for texture, contour, and

hybrid-based approaches, considering L. sp1, L. sp2, and L. sp3 as

different species

Method No. of

features

No. of correctly

identified leaves

Accuracy

(%)

Adaxial texture 10 285 100.0

Abaxial texture 10 285 100.0

Backes et al. (2009a) 12 209 73.33

Mancuso (2002) 12 224 78.59

Mugnai et al. (2008) 10 253 88.77
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surface texture as a good indicator for clustering plant

species. On the other hand, both adaxial and abaxial fea-

tures can be used together to improve the quality of dis-

crimination. In this case it was not necessary because both

resulted in 100% accuracy in plant identification.

Different leaf-surface patterns could be caused by the

presence of stomata and trichomes on the abaxial surface

(Dean and Ashton 2008), with the density and length of

these structures being under phylogenetic and environ-

mental control. Despite the variation of stomatal patterns

that occurs in different species growing under different

environmental conditions (Hlwatika and Bhat 2002; Gra-

tani et al. 2006; Pearce et al. 2006) or even in different

leaves of the same individuals (Rossatto and Kolb 2009),

Beaulieu et al. (2008) have demonstrated that some sto-

matal patterns are intrinsic to determined species, and,

sometimes, can be used as a significant source of infor-

mation for identification and classification. These struc-

tures were generally assessed by the observer, by

measuring their density and length (Hetherington and

Woodward 2003); the analysis proposed here can, how-

ever, extract much more information hidden in the patterns

of the leaf surface. On the other hand, differences on

adaxial surfaces can be linked to patterns of cuticle/epi-

cuticular wax deposition (Salatino et al. 1986), which in

turn are also affected by phylogenetic and environmental

factors. Furthermore, differences in adaxial surface texture

can also be related to leaf-venation patterns (Fig. 2), which

strongly contribute to differences in texture among species.

Leaf venation patterns have been used for taxonomic and

identification purposes in several plant families (Klucking

1987; Ash et al. 1999), and with the proposed method they

could be assessed as a source of different texture patterns.

Comparison with the other texture, contour, and hybrid

methods has shown that those methods are not as good at

separating among Miconieae species (Table 2). These

results have shown that the contour method used by Nam

and Hwang (2005) and Nam et al. (2008) may be appli-

cable to some specific situations, but can fail to separate

very similar species with very similar shape and contour of

their leaves. The texture approach proposed here, at least

for some species in the Miconieae tribe, is better than the

contour-based approach, for which accuracy of species

identification was only 73.33%. In addition, the accuracy of

the texture approach of Mancuso (2002) and the hybrid

approach of Mugnai et al. (2008) was not good (78.59 and

88.77%, respectively). Tables 3, 4 and 5 show the con-

fusion matrix for classification of the plant species using

contour, texture, and hybrid-based methods. We can see

that classification and separation of leaves was 100%

accurate for few species only; these results show that these

methods are not robust for the studied case, leading to a

large confusion among most species.

So, our approach has correctly discriminated differences

and similarities, by extracting texture features from foliar

surfaces that are morphologically distinct from each other.

However, as mentioned in ‘‘Materials and methods’’, there

is a possibility that species 2, 3, and 4 may be variations of

the same species (L. aurea). The work of Souza and

Baumgratz (2009) describes the last species, which has

high morphological plasticity, for example differences in

trichomes and in leaf surface undulation. This makes its

distinction in the vegetative phase difficult if leaves with

different textures can belong to this taxon. Considering this

working hypothesis, we have redefined the classifier

method with only 13 species. The results obtained are very

similar to those previously described, reaching 100%

accuracy using texture features of both leaf surfaces

(Table 6). This is not a surprise, because in adaxial and
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Fig. 5 Correlation coefficients for all 189 Minkowski 3D features,

obtained from leaves’ adaxial surfaces. All values are highly correlated
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Fig. 7 Minkowski 3D descriptor: first and second canonical variables of leaves’ adaxial surfaces—groups formed by the different species
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abaxial canonical eigenspaces (Figs. 7, 8), we can see the

variations of L. aurea forming groups that are close to each

other. So, because of the cluster proximity in the canonical

eigenspaces, it is computationally possible to create a new

classifier that considers the variations of L. aurea as a

single group. This implies that, when we have a good

descriptors’ set, our texture method can work perfectly well

even if some species show great variability in their leaf

surfaces.

The confusion matrixes for contour, texture, and hybrid-

based methods are presented in Tables 7, 8, and 9 (number

2 corresponding to L. sp1, L. sp2, and L. sp3 as a single

group). Here again, 100% accurate discrimination is

achieved for a few species only.

Conclusion

Leaves’ texture has been shown to be a good discriminative

character and very useful for computer-aided plant classi-

fication. Both abaxial and adaxial epidermic surfaces lead

to 100% accuracy in species identification, a result that is

far superior to that from methods based on contour, texture,

or both together. The discriminative quality of our

Table 3 Confusion matrix for classification of Leandra and Miconia species using contour descriptors (Backes et al. 2009a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 73.7 20.0 10.0

2 85.0 14.3 5.0 7.1

3 15.8 70.0 25.0 5.0 14.3

4 50.0 5.0 7.1

5 10.0 66.7 5.0 9.5 25.0

6 5.0 15.0 14.3 30.0 9.5 10.0 7.1

7 15.0 52.4

8 10.0 90.0 5.0 5.0

9 100

10 25.0 4.8 95.0 5.0

11 5.3 90.0

12 100

13 19.0 10.0 9.5 5.0 55.0

14 5.0 10.0 80.0 7.1

15 5.3 10.0 5.0 5.0 57.1

Table 4 Confusion matrix for classification of Leandra and Miconia species using texture descriptors (Mancuso 2002)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 68.4 9.5 5.0 10.0

2 75.0 30.0 10.0 7.1

3 5.3 10.0 60.0 5.0 5.0 10.0 5.0

4 15.0 85.0 4.8 5.0

5 90.5 5.0 5.0

6 90.0 10.0 10.0

7 5.3 85.7 5.0 5.0

8 85.0 10.0

9 95.0 5.0 5.0

10 10.5 70.0

11 5.0 55.0 10.0

12 30.0 80.0 5.0 7.1

13 4.8 10.0 85.0

14 10.5 5.0 4.8 5.0 5.0 5.0 60.0

15 10.0 85.7
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Table 5 Confusion matrix for classification of Leandra and Miconia species using hybrid descriptors (Mugnai et al. 2008)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 89.5 20.0

2 100

3 10.5 70.0 10.0

4 10.0 70.0 5.0

5 100 5.0

6 80.0 10.0 20.0

7 95.2

8 5.0 95.0

9 100

10 5.0 80.0 5.0

11 20.0 85.0

12 5.0 100

13 85.0

14 15.0 15.0 75.0

15 4.8 5.0 5.0 100

Table 6 Leaves classification

summary for texture, contour,

and hybrid-based approaches,

considering species 2, 3, and 4

as variations of the same species

Method No. of features No. of correctly

identified leaves

Accuracy (%)

Adaxial texture 10 285 100.0

Abaxial texture 10 285 100.0

Backes et al. (2009a) 12 215 75.43

Mancuso (2002) 12 223 78.24

Mugnai et al. (2008) 10 251 88.07

Table 7 Confusion matrix considering species 2, 3, and 4 as variations of Leandra aurea

1 2 3 4 5 6 7 8 9 10 11 12 13

1 84.2 2.0

2 5.3 76.0 5.0 10.0 14.3

3 4.0 71.4 5.0 14.3 20.0

4 15.0 14.3 5.0 15.0

5 4.0 20.0 66.7 10.0

6 15.0 100.0 5.0

7 100.0

8 20.0 95.0 5.0

9 10.5 6.0 85.0 7.1

10 100.0

11 4.0 23.8 15.0 4.8 50.0 5.0

12 4.8 5.0 75.0 21.4

13 4.0 5.0 15.0 57.1

Using Backes et al. (2009a) descriptors (contour)
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approach is very good, leading to low within-leaf and high

within-species variability. We recognize that further work

is required to clarify the physiological and structural

mechanisms behind the differences between the species

and genera surfaces.

These results suggest that computer-aided plant classi-

fication can provide new useful tools for experimental

taxonomists and plant morphologists, improving their

work, bringing also new forms to assess informative

characters that can be useful in systematic and phyloge-

netic studies. The method proposed here may be a new,

important tool for non-taxonomic botanists or ecologists,

working with plant species with very similar morphology,

because it requires readily available equipment, for

example a conventional computer and an optical scanner.

Finally, the proposed computational analysis has been

shown to be an important tool because it can be calibrated

according to the specialist’s expertise, thus improving the

identification in confused groups with large leaf morpho-

logical variation.
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Table 8 Confusion matrix considering species 2, 3, and 4 as variations of Leandra aurea

1 2 3 4 5 6 7 8 9 10 11 12 13

1 73.7 5.0 14.3 5.0 15.0

2 86.0 5.0 10.0 5.0 5.0 7.1

3 95.2 5.0

4 5.3 80.0 10.0 15.0

5 81.0

6 75.0 20.0

7 90.0 10.0 7.1

8 5.3 5.0 10.0 85.0

9 10.0 5.0 60.0 15.0 5.0

10 2.0 25.0 80.0 7.1

11 4.8 25.0 75.0

12 15.8 5.0 50.0 7.1

13 2.0 4.8 71.4

Using Mancuso (2002) descriptors (texture)

Table 9 Confusion matrix considering species 2, 3, and 4 as variations of Leandra aurea

1 2 3 4 5 6 7 8 9 10 11 12 13

1 100 2.0

2 82.0 20.0

3 100 5.0

4 85.0 5.0 20.0

5 95.2

6 5.0 95.0 5.0

7 100

8 75.0 5.0 10.0

9 16.0 10.0 70.0

10 100

11 5.0 85.0

12 10.0 15.0 5.0 70.0

13 4.8 100

Using Mugnai et al. (2008) descriptors (hybrid)
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Camargo EA (2008) O gênero Leandra, seções Carassanae, Niangae
e Secundiflorae (Melastomataceae) no Paraná. MSc thesis,
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