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The Euclidean distance transform (EDT) is used in various methods in pattern recognition,

computer vision, image analysis, physics, applied mathematics and robotics. Until now, several

sequential EDT algorithms have been described in the literature, however they are time- and

memory-consuming for images with large resolutions. Therefore, parallel implementations of the
EDT are required specially for 3D images. This paper presents a parallel implementation based

on domain decomposition of a well-known 3D Euclidean distance transform algorithm, and

analyzes its performance on a cluster of workstations. The use of a data compression tool to
reduce communication time is investigated and discussed. Among the obtained performance

results, this work shows that data compression is an essential tool for clusters with low-

bandwidth networks.

Keywords : Euclidean distance transform; parallel computing; distributed computing.

1. Introduction

The distance transform (DT) is the operation that converts a binary matrix, repre-

senting an image made of 1-points and 0-points, into another, the distance map, in

which each element has a value corresponding to the distance from the corresponding

image point to the nearest 0-point by given a distance function.24,29 Various distance
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functions can be used in the algorithm, but the Euclidean distance, which is a par-

ticular case of the Minkowski distances, is often adopted, mainly because of its ro-

tational invariance property. The distance transform based on the Euclidean distance

is called the Euclidean distance transform (EDT). It has been extensively used in

numerical methods in pattern recognition, computer vision, image analysis, physics

and applied mathematics. Some examples of EDT applications are:

(i) For use in general numerical methods: Voronoi tessellations21,26,30; Delaunay

triangulation30; Bouligand–Minkowski fractal dimension1,2; Level Set

Method23,27,31; multi-phase °ow simulations.4

(ii) Applied to image analysis and computer vision: successive dilatation and erosion

in mathematical morphology operations25; curve smoothing33; skeletonization28;

Watershed segmentation14,15,30; path planning29 in applications such as robotics.

When presenting Euclidean distance transform algorithms, most authors adopt

the point of view of image processing, which is also the case in this paper. An image is

a matrix whose elements are called pixels. The ¯rst published EDT algorithm was by

Danielsson.10 It generates the Euclidean distance map of a binary matrix/image by

assuming that for any pixel there is another one in its neighborhood with the same

nearest background pixel. Since this assumption does not always hold, as described in

Ref. 9, it does not produce an exact distance map, in the sense that the results are not

completely error free. Other non-exact EDT algorithms were reported later.19,33

While non-exact EDTs are good enough for some applications, there are applications

where an exact (error free) Euclidean distance transform is required. For example,

the mathematical morphology dilatation operator can be implemented as a threshold

of the Euclidean distance map. If a non-exact distance map is used, the errors in the

distance map can lead to pixels missing from the dilated object.8

Various exact Euclidean distance transform algorithms have been described in

the literature7,8,11,12,20,22,26 however, unless the image is small, they are time- and

memory-consuming. Therefore, applications involving large images, mainly 3D

images, require parallel implementations of the EDT.

This paper presents a novel parallel algorithm based on a well-known 3D

sequential EDT algorithm (by Saito and Toriwaki26) on a cluster of workstations.

This algorithm was chosen because it is one of the fastest and simplest exact EDT

algorithms.12 This sequential algorithm produces the distance map of a 3D binary

image by making three one-dimensional transformations, one for each coordinate

direction.

We parallelized these transformations using domain decomposition partitioning.13

Initially the planes of the image are distributed by a master processor among all the

processors, including the master. Then each processor executes the ¯rst two trans-

formations on the planes assigned to it. Next, each processor exchanges the results

from these transformations with each other. This data exchange carries out a new data

division of the image. Then each processor executes the third transformation on its
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new image part. Finally, the results from the third transformation are returned to the

master processor to be combined into the ¯nal distance map.

This paper starts by describing the sequential EDT we adopted. Next, our parallel

EDT is presented in an abstract way, so as to make it more independent of hardware

or implementation issues. This approach to algorithm parallelization supplies the

basis enabling it to be implemented in di®erent distributed memory MIMD

machines. In the following section, implementation details on a cluster of work-

stations are presented and discussed. The use of a data compression tool to reduce

communication time is also presented and discussed. Finally, the performance of

the parallel EDT is quanti¯ed in terms of the speed-up obtained using di®erent

images.

2. A Short Review on Parallel EDT Algorithms

Some sequential EDT algorithms have been described in the literature. However,

unless the matrix is small, they are time- and memory-consuming. Therefore,

applications involving a large matrix, mainly a 3D matrix, require parallel

implementations of the EDT. Although there are some reports of parallel EDT

algorithms, most of them are developed to dedicated hardware or theoretical models,

which limits the real use of the technique for applications using general computers

and clusters.

Although Parallel exact EDT algorithms have been reported, most of them are

designed for SIMD architectures5,32 or speci¯c architectures, such as systolic and

recon¯gurable architectures6,17 or MIMD theoretical shared memory models.16

SIMD machines are especially designed to perform parallel computations for vector

or matrix types of data. In such machines, a program has a single instruction stream,

and each instruction operates on multiple data elements simultaneously. This par-

allel programming model is simpler but also more limited. Another problem with

SIMD machines is their relative high cost. Special architectures, such as systolic and

recon¯gurable architectures, are machines speci¯cally built to carry out a single task.

MIMD machines, on the other hand, are more general purpose and can be obtained

at relatively low cost, for example, a cluster of workstations.

There are also papers that deal with EDT MIMD implementations, but most of

them report just theoretical algorithms designed for abstract machines such as

PRAM, that models shared memory architecture.16 Considering MIMD on dis-

tributed systems (cluster of workstation), few works are reported in the literature.

Perhaps this happens because of the nature of the EDT algorithm, since it has a

strong demand for memory accesses, implying low parallel performance when clusters

are used. We found only two works3,18 that deal directly with cluster architecture. In

Ref. 3, a non-optimal optimized algorithm is reported, which is several times slower

than the one presented here; in Ref. 18, an optimized algorithm projected for EREW

PRAM computer model is presented, but the reported experiment on a SP2 (MIMD
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distributed memory machine) failed to achieve speed-up for more than three

processors.

The estimation of the algorithm performance of the EDT is a hard task, since it is

strongly dependent on input data. Fabbri et al.12 proposed a framework to compare

EDT performance. Most of the parallel EDT papers report new parallel algorithms

and achieved speed-up with respect to the sequential version. Such comparison is not

of much use, as optimized sequential EDT algorithms have huge variations of

execution time. Considering this, the algorithm proposed in this paper is a parallel

version of the sequential algorithm by Saito,26 which is one of the fastest EDT

algorithms.12

3. The Sequential EDT

The algorithm by Saito and Toriwaki26 is one of the most famous EDT algorithms,

both for its e±ciency and reasonably easy implementation. It computes the exact

Euclidean distance map of any n-dimensional (n-D) binary image by making n one-

dimensional transformations, one for each coordinate direction. For 3D images,

distance values are ¯rst computed along each row (¯rst transformation). These

values are then used to compute the distances into each plane (second transform-

ation). Finally, by using the values from the planes, the distance from each voxel to

the nearest background voxel in the three-dimensional space is computed (third

transformation). Formally:

Transformation 1. Given an input binary image F ¼ ffijkg having R rows, C

columns and P planes, (1 � i � R, 1 � j � C, 1 � k � P ), transformation 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

i

j

(a)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 4 1 0 0 0

0 0 1 4 9 4 1 0 0

0 0 1 4 9 4 1 0 0

0 0 1 4 9 4 1 0 0

0 0 0 1 4 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

(b)

Fig. 1. Example of transformation 1. (a) The ¯rst plane of a 3D binary image, and (b) this plane after

transformation 1.
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generates an image G = fgijkg de¯ned as follows:

gijk ¼ minfðj� yÞ2; fiyk ¼ 0; 1 � y � Cg ð1Þ
This corresponds to computing the distance from each voxel (i, j, k) to the nearest

0-voxel in the same row as (i, j, k). The algorithm for transformation 1 consists of one

scan from left to right (forward scan) plus one scan from right to left (backward scan)

on each row of the input image F. It is summarized in the following (assume every gijk
is initialized as 1, which is chosen to be larger than the maximum possible distance

for the input image):

Transformation 2. From G, transformation 2 generates an image H = fhijkg
de¯ned as follows (Fig. 2):

hijk ¼ minfgxjk þ ði� xÞ2; 1 � x � Rg ð2Þ
Actually, to calculate hijk, it is usually not necessary to check the value of all

voxels in the column including (i, j, k), as suggested in Fig. 2. Instead, the algorithm

acts by scanning each column of G once from top to bottom (forward scan) and once

in the opposite direction (backward scan).

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 4 1 0 0 0

0 0 1 4 9 4 1 0 0

0 0 1 4 9 4 1 0 0

0 0 1 4 9 4 1 0 0

0 0 0 1 4 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0

0

4

9

9

9

4

0

0

4

1

0

1

4

9

16

25

36

4

1

4

10

13

18

20

25

36

1

i

j

gijk min hijk

G (i – x)2 H

+ =

Fig. 2. Example of transformation 2 process. In order to calculate hijk, add to the value of each voxel (x, j,

k), i.e. the voxels in the column including (i, j, k), the distance from that voxel to (i, j, k), i.e. ði� xÞ2. The
value hijk is then de¯ned as the minimum of the additions.
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In the forward scan, the following procedure is performed:

Remember that after transformation 1 each voxel has a value equal to the dis-

tance from this voxel to the nearest 0-voxel in its row. The tests above are then

carried out to check if the voxel (iþ n; j; k), for 0 � n � ðgijk � gði�1Þjk � 1Þ=2,
is nearer to the 0-voxel in the row i� 1 than to the 0-voxel in its row. If this is

true, its value is rede¯ned to indicate its distance in relation to that 0-voxel (i.e.

gði�1Þjk þ ðnþ 1Þ2). The maximum value of n is found by noting that gði�1Þjk þ
ðnþ 1Þ2 > gijk þ n2 for any n > ðgijk � gði�1Þjk � 1Þ=2Þ. Note that the second

transformation will take more or less time to execute depending on the values of the

¯rst transformation, which in turn depends on the contents of the image.

After the forward scan the backward scan proceeds similarly. At the end of the

backward scan, each voxel has a value equal to its distance to the nearest 0-voxel into

its plane.

Transformation 3. From H, transformation 3 generates an image S = fhijkg
(actually, the images F, G, H and S can be assigned to the same address in computer

memory) given by the following equation:

sijk ¼ minfhijz þ ðk� zÞ2; 1 � z � Pg ð3Þ
The algorithm for transformation 3 is the same for transformation 2. Only, su±x k

is changed instead of the su±x i, i.e. both the forward scan and the backward scan

proceed in the k-axis direction.

Note that Saito and Toriwaki's EDT uses the squared Euclidean distance, instead

of the Euclidean distance. The square root operation must be used in the post

processing to obtain the Euclidean distance map from the squared Euclidean

distance map.
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4. The Parallel EDT

This section presents the strategy adopted for the parallelization of the EDT algor-

ithm. Such parallelization strategy is presented here in a more abstract way, so as to

make it more independent of hardware or implementation issues. The aim of this

approach to algorithmpresentation is to supply the basis enabling it to be implemented

in di®erent distributed memory MIMD machines. Distributed memory MIMD

machines are those having two or more independent processors that do not share a

memory and communicate by passingmessages over a network. The implementation of

such parallelization strategy on a cluster of workstations is presented in the next

sections.

Figure 3 graphically presents the overall organization of the parallelization

strategy. For the sake of a clearer presentation, it is divided into stages. The ¯rst

stage consists of loading and dividing the 3D image. On a parallel computer with p

processors, one master and p� 1 slaves, the master divides the image into p chunks,

each of which contains a number of consecutive planes. The master then sends one

chunk to each processor, including itself. Note that load balancing could be per-

formed at this stage by including more or less planes into each chunk, proportional to

processor speed. At the second stage, each processor executes transformation 1 and

then transformation 2 on the planes at its image chunk; at this stage, each process

executes independently in parallel, and no communication is needed among pro-

cessors. The third processing stage involves executing transformation 3, but before

such a transformation is to be performed some data exchange is necessary. As it was

described in Sec. 3, during transformation 3 the image is scanned in the k-axis

direction. However, in the ¯rst stage of our parallel algorithm, the planes are dis-

tributed among the processors, which do not share a memory. Therefore, before

transformation 3 is to be performed, we need to join the planes. Afterwards, we need

to divide the image into parts to be concurrently processed in the third

Master

Processor 2Master

a

b

c

d

3D binary image

Transformations 1
and 2

Loading and division

Processor 3

Processor 2

Processor 1

Master

Processor 3

Processor 1

Data exchanging and
transformation 3

Master

Distance map

Joining

a
b

c
d

(Stage 1)
(Stage 2) (Stage 3)

(Stage 4)

Fig. 3. Parallelization strategy (dashed rows indicate communications through memory).
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transformation. We choose to divide the image into p parts, each of which contain a

number of consecutive rows, as in Fig. 4(a). There are at least two real ways to

perform such operations: (i) each processor sends the planes with the results from the

second transformation to the master processor; the master then joins all the planes,

divides the image into those new p parts, and sends one part to each processor; or

(ii) each processor directly sends the rows that the processor uses in transformation 3

to each other (in such a case, it is necessary for each processor to previously know the

rows to send to each other). We choose this second way, because the amount of data

which is necessary to transmit through the network is smaller. Furthermore, we can

achieve some parallelism, since di®erent processors can communicate at the same

joining

Transformation 2 results

Proc. 1
Proc. 2

Proc. 3
Master

Proc. 1

Proc. 2

Proc. 3

division

Master

Data division for
transformation 3

(a)

Master

Proc. 1

Proc. 2

Proc. 3

Proc. 2
(data for transformation 3)

Master

Proc. 1

Proc. 2

Proc. 3

Master

Proc. 1

Proc. 2

Proc. 3

Master

Proc. 1

Proc. 2

Proc. 3

Proc. 3
(data for transformation 3)

Proc. 1
(data for transformation 3)

Master
(data for transformation 3)

(b)

Fig. 4. Joining and division. (a) Logical joining and division; (b) real joining and division.
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time. This data exchange scheme is illustrated in Fig. 4(b). Note that each processor

sends one message to each other processor. Although the messages can be sent in any

order, sending the messages in such a way that simultaneously there is no more than

one processor sending a message to the same destination processor, can improve the

parallelism in communication. Each processor, after receiving the messages with the

rows from all the others, executes transformation 3 on these rows (image part). Then

each processor sends such data to the master processor. In the fourth processing

stage, the master joins the parts from all the processors to make the ¯nal Euclidean

distance map.

5. Performance Issues

Saito and Toriwaki's EDT, as almost all exact EDT algorithms, is image dependent,

i.e. even for the same image size its execution time varies depending on both the

number and the shape of the objects in the image. Therefore, the choice of the images

on which the implementations are executed can signi¯cantly a®ect the results. In

order to validate our implementations we used di®erent images of di®erent sizes. The

content of such images are described below, together with an explanation of their

properties useful for this task:

A single background voxel in a corner (Fig. 5(a)). In such cases, the EDT

produces the largest possible distance for a given image size. Moreover, the number of

voxels which receive a nonzero distance value is also the biggest.

An inscribed sphere (Fig. 5(b)). The Voronoi tiles of such an image are very

irregular. Some EDT algorithms perform poorly in such cases.

Random cubes (Fig. 5(c)). They imitate a real image. The cubes represent objects

with straight boundaries � the midpoint of each cube is randomly chosen; the image

has about 50% of background voxels.

(a) (b) (c)

Fig. 5. Test images: (a) single voxel; (b) inscribed sphere; and (c) random cubes.
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6. Implementation Issues

This section reports on the implementation of the parallel EDT on a cluster of

workstations. Clusters of workstations are becoming increasingly popular as a par-

allel hardware platform, mainly because of their good cost-bene¯t relationship. In 3D

digital image processing, a cluster can be used not only to speed-up the applications

by parallel processing, but also to overcome memory constraints. Since single com-

puters usually have low memory resources, using the memories of the computers of a

cluster may overcome this problem.

In this work we used a ten-node cluster. Each node had a 2.8GHz Pentium 4,

1.5GB of RAM and a Fast-Ethernet network interface connected to a 100Mbps

switch. We call \master" (or node 0) the node where the images are stored. We call

\slaves" (or node 1, node 2,…, node 9) the other nodes. Although the framework

presented in this section could be implemented with any message-passing tool, we

decided for MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/), a freely available

implementation of Message Passing Interface (MPI) standard (http://www.mpi-

forum.org). MPI is the de facto standard for message-passing parallel programing, and

MPICH is the most commonly used implementation of MPI.

The master node is responsible for loading and dividing the 3D image. Such

operations are summarized in the following code:

for i ¼ 1 to p� 1 do f // p is the number of nodes

load img part i ;

compress img part i ;

send img part i to node i ;

free img part i ;

g
In the above code we see that the master node loads, compresses and then sends to

each node i one image part, which is represented by img part i— such an image part

contains a number of planes of the image. Data compression is used to reduce

communication time.3 It is performed with zlib (http://www.zlib.org), a lossless data

compression tool. Since the voxels of a binary image can just be 0- or 1-valued, the

image shows a good degree of redundancy favoring compression. Figure 6(a) shows

the compression rates obtained while compressing the parts of the three test images.

Note that high compression rates were obtained in all cases. The compression

operation was, in turn, very fast. Figure 6(b) shows the average time necessary to

transmit one image part with and without compression for the random cubes test

image (when using compression, the times shown include compression, transmission

and decompression times). Observe that, even for such an image, which was the one

with the poorest compression rates, compressing and sending one image part was

always signi¯cantly faster than sending that image part without compression.

The compressed image parts are sent through the Ready mode MPI send function.

Such a function requires a matching received to be posted before send is called, but

906 J. C. Torelli et al.
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Fig. 6. Graphs describing the compression operation for the parts of the test images. (a) Compressing

ratio for the three test images; (b) sending time with and without compression for the random cube test
image.
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communication overhead is reduced because shorter protocols are used internally by

MPI when it is known that a receipt has already been posted. Observe that the

img part i is loaded from the disk to the master node's memory right at the moment

it is sent to node i (and it is removed from the memory after sending). Such a strategy

avoids the physical memory of the master node to be completely full, when the

operating system of such a node starts swapping data to and from the disk, increasing

the program's execution time.

By possessing its image part, each node executes transformation 1 and then

transformation 2 on it. Afterwards, it sends the image rows that the node uses in the

third transformation to each other � such a data exchange scheme was explained in

Sec. 4. Before sending, these rows are also compressed. The compressed rows are sent

through the nonblocking standard MPI send function. Such a function returns

immediately, with no information about whether the completion criteria have been

satis¯ed. The advantage is that the nodes are free to compress the rows of other

nodes while some communication proceeds \in the background."

After receiving the rows from all the other nodes, each node executes trans-

formation 3 on these rows. Then it compresses and sends them to the master node,

which joins the rows from all the processors to build the ¯nal Euclidean distance

map. In the distance transformation, each background voxel produces a series of

equidistant sets that propagate along the matrix. Such a propagation proceeds until

an obstacle (another propagating front) is found. Thus, the number and distribution

of the background voxels become related to the compression ratio of the distance

map, i.e. the compression ratio of the image parts with the results from the third

transformation. Figure 8(a) shows the compression rates obtained while compressing

the parts of three test images. Note that the poorest compression ratio occurred with

the single background voxel image. Since there is only one background voxel in such

an image, the number of voxels having the same distance value is smaller than in the

other two images. However, compressing and sending the parts of the single back-

ground voxel image was still faster than sending those image parts without com-

pression, as shown in Fig. 8(b).

7. Load Balance

Load imbalance occurs when a part of a parallel program takes more time on one

processor than on the others and the processors have to wait for one another. On the

parallel EDT, we noted that the image distribution is a source of load imbalance

whether the image is divided into parts with the same number of planes. Figure 7

shows the activity plot of the execution of the parallel EDT while processing the

800� 800� 800 inscribed sphere test image. Note that, although the nodes have the

same processing power, bubbles appear in the execution as a consequence of the delay

in loading, compressing and sending of each image part. Furthermore, we can see

that the time each node spends processing the second transformation (and the third

transformation) is di®erent from the others, because the content of each image part is

908 J. C. Torelli et al.



di®erent from the others. That is why a perfect load balance scheme cannot possibly

be reached. In order to reach a perfect load balance situation, an analysis of the

content of the image would be necessary, but such a type of analysis would be more

expensive than the delay caused by the load imbalance.

70,0
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95,0

100,0

50x500x500 55x550x550 60x600x600 65x650x650 70x700x700 75x750x750 80x800x800

Image part size

Point Random cubesInscribed sphere
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o
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)

(a)

Fig. 8. Graphs describing the compression for the data of the third transformation. (a) Compressing ratio

for the test images; (b) sending time with and without compression.

Fig. 7. Execution time diagram.
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8. Experimental Results

Speed-up is a metric which shows the increase in speed obtained from a parallel

implementation of a problem. An indication of e±cient use of the hardware resources

is often considered. We calculate the speed-up by dividing the time spent with the

sequential EDT execution by the time spent with the parallel EDT execution.

Table 1 shows the average execution time of the sequential EDT while running on

one node of the cluster.

T
im

e
(m

s)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

50x500x500 55x550x550 60x600x600 65x650x650 70x700x700 75x750x750 80x800x800

Image part size

Send
Compress & send - sphere

Compress & send - cubes

Compress & send - point

(b)

Fig. 8. (Continued )

Table 1. Execution time of the sequential EDT, in seconds, for

the test images. The number in brackets represents the standard

deviation around the average.

Image Size Single Inscribed Random

Point Sphere Cubes

500� 500� 500 36 (0) 53 (0) 33 (0)

550� 550� 550 48 (1) 74 (0) 44 (0)

600� 600� 600 64 (0) 100 (0) 58 (1)
650� 650� 650 80 (0) 133 (1) 73 (0)

700� 700� 700 103 (3) 172 (1) 91 (0)

750� 750� 750 535 (28) 598 (42) 486 (13)

800� 800� 800 974 (20) 1044 (32) 863 (41)
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Note that the execution time of the sequential EDT drastically increases when

images with 750� 750� 750 or more voxels are used. Since a single node in the

cluster has 1.5GB of RAM, an image with 750� 750� 750 voxels, which is close to

1.57GB in size, cannot be completely loaded into its physical memory. In such a case,

the operating system starts swapping parts of the image to and from the disk

drastically increasing the execution time of the program.

In the currently considered parallel hardware (a cluster with a 100 Mbps network)

the speed-up is mostly adversely a®ected by the overheads in communication. Thus,

this was the motivation for using data compression, which allowed good speed-ups

for large images. In order to characterize the performance of the parallel EDT, it was

executed considering the three test images. Figure 9 presents the speed-ups obtained

for such an experiment — note that ten processing elements were used.

As far as scalability is concerned, the cluster can virtually incorporate any number

of nodes. Although the number of messages grows together with the number of nodes

of the cluster, the amount of data transmitted through the network will always be

the same for a given image size. Figure 10 presents the speed-ups obtained while

processing the 650� 650� 650 voxel test images using two, four, six, eight and

ten processing elements. Note that the execution time was smaller when more nodes

were used.

S
p

ee
d

u
p

1,0

2,0

3,0

4,0

5,0

6,0

7,0

500 x 500 x 500 550 x 550 x 550 600 x 600 x 600 650 x 650 x 650 700 x 700 x 700 750 x 750 x 750 800 x 800 x 800

Image size

Single point Inscribed sphere Random cubes

Fig. 9. Speed-up results when ten processing elements were used.
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9. Concluding Remarks

This article has reported a parallel implementation of a 3D exact Euclidean distance

transform algorithm. The considered hardware was a cluster of workstations.

The considered message-passing tool was MPICH. The parallelization strategy

consists of (i) dividing the planes of the 3D binary image among the nodes of the

cluster, which execute two ¯rst transformations on the planes in their part;

(ii) joining these planes; (iii) redividing the 3D image among the nodes, which then

execute a third transformation on their new part; and (iv) joining these parts to build

the ¯nal Euclidean distance map. Data compression was used in a much successful

attempt to reduce communication time.
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