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We excite the lowest-lying quadrupole mode of a Bose-Einstein condensate by modulating the atomic scattering
length via a Feshbach resonance. Excitation occurs at various modulation frequencies, and resonances located at
the natural quadrupole frequency of the condensate and at the first harmonic are observed. We also investigate the
amplitude of the excited mode as a function of modulation depth. Numerical simulations based on a variational
calculation agree with our experimental results and provide insight into the observed behavior.
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Collective excitation of a Bose-Einstein condensate (BEC)
is an essential diagnostic tool for investigating properties of
the ultracold quantum state. Fundamental information about
condensate dynamics can be determined from observations of
collective modes [1–3], including the effects of temperature
[4–6], and the dimensionality of the system [7]. In addition,
the interplay between these modes and external agents, such
as random potentials [8,9], lattices [10,11], as well as other
atoms [12–16], can be investigated. Examining the excitation
spectrum of the BEC allows for a detailed comparison with
theoretical models [17–20] and related quantum systems such
as superfluid helium [21,22] and superconductors [23,24].

Generically, a collective excitation is generated by the
modification of the trapping potential of the condensate [25].
One convenient method is to apply a sudden magnetic field
gradient, thereby shifting the center of the trap and exciting a
dipole oscillation about the trap center. One may also suddenly
change the curvature of the trap to excite quadrupole modes.
The lowest-lying m = 0 quadrupole mode is characterized by
out-of-phase axial and radial oscillations.

If the condensate is not the only occupant of the trap (i.e.,
there exists a thermal component or another species of atoms)
then the other atoms may also be excited through these pro-
cesses. The evolution of a collective excitation can therefore
be complicated because the multiple components may affect
damping or induce frequency shifts of the oscillation [12–16].
Therefore, modulating the trap, although an extremely useful
tool for an isolated condensate, can be cumbersome when the
system to be studied is multispecied. An alternative approach
is to excite the condensate alone, leaving the other occupants
of the trap untouched.

In this work, we demonstrate the excitation of the lowest-
lying quadrupole mode in a BEC of 7Li by modulating the
atomic scattering length via a magnetic Feshbach resonance.
In contrast to abruptly changing the scattering length [26],
sinusoidal modulation enables the controlled excitation of a
single mode at a specific frequency. In addition, by using this
method, a coexisting thermal component will be minimally
excited by the mean-field coupling to the normal gas [27,28]. In
the case of a multispecies experiment, resonant modulation of
the scattering length of one species will not necessarily excite

the others, depending on the details of other Feshbach reso-
nances present in the system [29]. Therefore, this technique
may be useful for investigating nonzero temperature effects
and as a powerful diagnostic tool for multispecies ultracold
atomic experiments.

A trapped BEC at zero temperature may be described by the
three-dimensional cylindrically symmetric Gross-Pitaevskii
equation [30]

ih̄
∂

∂t
ψ = − h̄2

2m
∇2ψ + V ψ + 4πh̄2a

m
|ψ |2ψ, (1)

where m is the atomic mass, the trapping potential is V =
(1/2)m(ω2

r r
2 + ω2

zz
2) with ωz (ωr ) the axial (radial) trapping

frequency, a is the s-wave scattering length, and the density is
given by n = |ψ |2. It is convenient to introduce the anisotropy
parameter λ = ωz/ωr . We use a variational approach to solve
this equation and determine the frequencies of the lowest-
lying modes. Using a Gaussian ansatz and minimizing the
corresponding energy functional, we derive the following
coupled differential equations for the dimensionless axial and
radial half-widths uz and ur of the condensate [31]:
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where the interaction parameter P = √
2/π (Na/lr ), lr =√

h̄/mωr is the radial harmonic oscillator size, and N is the
number of condensed atoms. We solve Eq. (2) in the case of
harmonic motion of the Gaussian sizes about their equilibrium
values. The frequency of the lowest-lying quadrupole oscilla-
tion is [31]

ωQ = ωr

√
2
[
(1 + λ2 − P2,3)

−
√

(1 − λ2 + P2,3)2 + 8P 2
3,2

]1/2
, (3)

where Pi,j = P/(4ui
0ru

j

0z) and u0z and u0r are the equilibrium
axial and radial sizes, respectively. The frequency of the m = 0
breathing mode is the sum of the two terms in Eq. (3) rather
than the difference and is a factor of about 60 higher in
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frequency for our experimental parameters. For the case of
a highly elongated trap (λ � 1), in the Thomas-Fermi regime
(P � 1), we find the well-known relation ωQ = ωz

√
5/2

[18,32], and in the noninteracting limit (P → 0), we find
ωQ → 2 ωz, as expected.

We may also use Eq. (2) to determine the time evolution
of the size of the BEC [33]. In particular, we are interested
in the dynamics associated with the modulation of a using
a Feshbach resonance, which has been proposed previously
[34,35]. In a magnetic field B, the scattering length near a
Feshbach resonance may be described by

a(B) = aBG

(
1 − �

B − B∞

)
, (4)

where aBG is the background scattering length, � is the
resonance width, and B∞ is the resonance location. We
consider a time-dependent magnetic field of the form

B(t) = Bav + δB cos(�t),

where � is the modulation frequency. Using this form for
B, the result of expanding Eq. (4) to first order in the small
quantity δB � |Bav − B∞| is

a(t) � aav + δa cos(�t), (5)

where

aav = a(Bav) and δa = aBG�δB

(Bav − B∞)2
.

This expression for a is substituted into Eq. (2), and a
fourth-order Runge-Kutta method is used to solve the system of
equations numerically. The results may be directly compared
with those from experiment.

Our methods for creating an ultracold gas of 7Li have
been described previously [36,37]. We confine atoms in the
|1,1〉 hyperfine state of 7Li in an optical trap and use a set of
Helmholtz coils to provide an axially oriented bias field. We
determine the radial trapping frequency by parametric heating
to be ωr = (2π )235(10) Hz, and the axial trapping frequency
by dipole oscillation to be ωz = (2π )4.85(1) Hz. After evap-
oration from the optical trap at 717 G, where a ∼ 200 a0, we
have N ∼ 3 × 105 atoms with a condensate fraction > 90%.
We then ramp the bias field in 4 s from the initial value
to Bav = 565 G (where aav ∼ 3 a0). For these experimental
values, the dimensionality parameter is λP ≈ 0.3, close to the
transition into the quasi-one-dimensional regime (determined
by λP � 1) [38]. At this point we oscillate the magnetic
field with a modulation depth of δB = 14 G, corresponding to
δa ∼ 2 a0. We use in situ polarization phase-contrast imaging
to obtain the density distribution of the condensate [39], to
which we fit a Gaussian characterized by 1/e axial and radial
half-widths.

In Fig. 1, we show pictures taken with � = (2π )10 Hz.
A quadrupole oscillation of the cloud is readily observable.
The large oscillation amplitudes considered here extend
over approximately 1 mm of the optical trap. A harmonic
approximation of the trapping potential about the trap center
is less than 10% in error over this range. The size of the
cloud in Fig. 1 as a function of time is modeled well by the
variational calculation, consistent with negligible anharmonic

30
0

µm

FIG. 1. (Color online) Quadrupole oscillation excited by the
modulation of a. A series of in situ polarization phase-contrast
images of condensates taken during excitation at � = (2π ) 10 Hz,
separated in time by 15 ms. The change in peak density is nearly an
order of magnitude from the most compressed to the most extended
condensate. The horizontal scale of these images has been stretched
by a factor of 2 for clarity. There is negligible excitation of the dipole
mode.

contributions. Furthermore, we observe no damping of the
quadrupole mode over many oscillation periods, consistent
with a negligible thermal fraction.

Results from the variational calculation show that, during
the excitation, if � < ωQ then the axial and radial sizes of
the cloud follow the change in a: growing as a increases, and
shrinking as a decreases. This in-phase behavior of both the
axial and radial sizes of the cloud is expected for adiabatic
changes in a and, therefore, should not be confused with
the high-lying m = 0 breathing mode for low frequencies.
However, when � > ωQ, the radial size follows nearly in
phase, while the axial size lags behind the radial size by half
a period—an out-of-phase oscillation. In both cases when the
excitation is stopped, the cloud undergoes free quadrupole
oscillations with the axial and radial sizes π out of phase.
Characteristic data for these two regimes are shown in Fig. 2
and reasonably agree with the variational results. We fit the
time evolution of the size of the cloud after excitation and de-
termine the free quadrupolar oscillation frequency to be ωQ =
(2π )8.2(1) Hz, in good agreement with the predicted value
of 8.17 Hz from Eq. (3), where we have used λ = 0.021 and
P ≈ 15. Similar agreement between measured and predicted
quadrupole frequencies in the dimensional crossover regime
have been previously observed [7]. The amplitude of this free
oscillation is dependent on the duration of excitation as well as
the phase of the driving force at the time when the excitation is
stopped. Therefore, care must be taken when comparing data
with theoretical predictions of the amplitude during the free
oscillation.

A less parameter-dependent measure is to observe the
amplitude of the oscillation during excitation. As can be
discerned from Fig. 2, during excitation the size of the con-
densate oscillates at both the drive frequency and the natural
quadrupole frequency. Beating between these frequencies
modulates the instantaneous deviation from the unperturbed
size. An ideal method for determining the energy in the driven
mode and the excited quadrupole mode separately is to use
Fourier analysis [40]. This method can be experimentally
difficult, however, given the required number of coherent
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FIG. 2. (Color online) Axial [(red) circles] and radial [(blue)
squares] 1/e sizes of a condensate during and after excitation with
aav ∼ 3 a0 and δa ∼ 2 a0, where (a) � = (2π )3 Hz or (b) � =
(2π )10 Hz. The natural oscillation frequency is ωQ = (2π )8.2(1) Hz.
Note that the 1.8-Hz beat note is the cause of the diminished amplitude
in (b) after the modulation drive is turned off. The solid lines are
results of the variational calculation using the same parameters as in
the experiment and contain no adjustable parameters. The dashed
lines are representative of the driving excitation. The resolution
of the optical imaging system is ∼3 µm, which limits accurate
determination of the radial sizes. The frequency of the breathing
mode is on the order of 470 Hz and therefore no effects of this mode
are present.

oscillations needed to accurately resolve the sinusoidal peak
in the Fourier spectrum. Instead, we assume that the system
can be described by the linear combination of sinusoids at the
known frequencies � and ωQ. After driving an excitation for
0.5 s, we fit the observed condensate axial size to the following
expression during an additional 0.5 s of excitation:

u(t) = u0 + u� sin(�t + 	) + uQ sin(ωQt + φ), (6)

where u0 is the equilibrium 1/e size, u� and uQ are the
amplitudes of the drive and quadrupole modes, respectively,
and 	 and φ are the respective phases. The fractional
amplitudes u�/u0 and uQ/u0 are shown as functions of � in
Fig. 3. As expected, there is a resonant enhancement in both the
quadrupole and the drive modes when � = ωQ. In addition,
we see a parametric enhancement when � ≈ 2ωQ. The dip
at exactly 2ωQ is due to destructive interference between the
drive mode and the resonantly excited mode. This interference
structure is observed in both the data and the simulation.
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FIG. 3. (Color online) Fractional amplitude of the drive [(red)
circles] and quadrupole [(blue) squares] modes during excitation at
frequency � with a modulation depth δa ∼ 1 a0, where aav ∼ 3 a0.
The solid lines are results of the variational calculation with no
adjustable parameters. The oscillation is notably asymmetric for
fractional amplitudes of order 1 and larger, as shown in Fig. 2(b).

Larger drive amplitudes push the oscillations into the
nonlinear regime where the amplitude of oscillation is no
longer linearly dependent on the modulation depth. The
first noticeable effect is the nonsinusoidal behavior of the
oscillation seen in Fig. 2(b). In Fig. 4 we show the result of
drivingthe system near resonance with a fractional modulation
depth δa/aav = 1. As the amplitude of the driven oscillation
grows, it eventually becomes comparable with the original
condensate size. At this point, the size of the condensate cannot
become smaller; therefore, the oscillation becomes increas-
ingly asymmetric. In this manner, the rate of energy transfer
into the oscillation will decrease. At even larger amplitudes,
we observe that the condensate appears to fragment [35].
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FIG. 4. (Color online) Quadrupole oscillation driven by a large-
amplitude excitation, δa ∼ 3 a0 where aav ∼ 3 a0, near resonance
� = (2π )9 Hz. The nonsinusoidal behavior leads to fragmentation
of the condensate during the compression stages when the axial size
becomes smaller than the axial harmonic oscillator size of ∼17 µm.
The image at right was taken during the compression stage at t =
0.52 s and shows fragmentation of the condensate; the field of view
is 25 × 380 µm2.
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FIG. 5. (Color online) Fractional amplitude of oscillation, when
� ≈ ωQ, as a function of the fractional modulation depth δa/aav

after 1 s of excitation. The solid curve is the result of the variational
calculation.

Similar-looking results have been observed when modulating
the radial confinement of a cigar-shaped BEC, where
Faraday waves may be excited [41]. By fitting the excitation
spectrum (Fig. 3) to a skew Lorentzian (where the peak
excitation frequency, width, amplitude, and skewness are fit
parameters), we determine the maximum fractional amplitude
of oscillation of the quadrupole mode after 1 s of excitation.
Our experimental results for the amplitude as a function
of modulation depth are presented in Fig. 5 along with
results from the variational calculation, which show good
agreement with no adjustable parameters. We note that, for the
smallest of modulation depths investigated, we only observed
oscillation of the condensate when the drive frequency was
near resonance. In addition, we found a roughly linear scaling
of the instantaneous amplitude of the quadrupole oscillation
with the duration of the excitation in this regime. Furthermore,
Fig. 5 conveys to us that the data in Fig. 2, which were driven
at a fractional modulation depth of ∼0.7, were not in the linear
regime, and the data shown in Fig. 3, driven at a fractional
modulation depth of ∼0.3, had a response that departed from
linearity by about 30%.

Large-amplitude oscillations are accompanied by a fre-
quency shift of the quadrupole mode [42]. For our geometry,
this shift can be approximated by δω/ωQ ≈ 0.1A2

z for small
Az, where Az ≡ uQ/u0 is the fractional amplitude of the
axial size [40]. The data shown in Fig. 3 have Az ∼ 2 on
resonance, and therefore in this case the above approximation
for the frequency shift is not valid. Our simulated results

show a frequency shift of ∼8% for Az = 2 with a shallow
amplitude dependence at larger Az. Whereas a shift of 10%
was observed in the oscillation of Fig. 4, we were not able to
resolve frequency shifts by fitting Lorentzians to the excitation
spectra for our data at low Az shown in Fig. 5. There is
an additional frequency shift due to nonzero temperature
[4–7] which is estimated to be negligible given our low
temperatures and interaction strength [43]. Even though we
can neglect temperature effects in the measurements presented
here, our method of excitation of the quadrupole mode may
be used to study these effects in further detail in regimes of
stronger interactions. In addition, going to large values of
a will facilitate investigations of beyond mean-field effects
on the collective modes of a Bose gas [44], complemen-
tary to those observed in a Fermi gas at the BCS-BEC
crossover [45–47].

In this work, we have experimentally demonstrated the
excitation of the collective low-lying quadrupole mode of a
dilute Bose gas by modulating the atomic scattering length.
Our observations are supported by variational calculations
of the time-dependent Gross-Pitaevskii equation assuming
a Gaussian trial wave function. Using this formalism we
find good agreement with our experimental results. Temporal
modulation of the scattering length, as afforded by Feshbach
resonances, provides an additional tool for exciting collective
modes of an ultracold atomic gas. This method is quite
attractive in circumstances where excitation of the condensate
by other means, such as trap deformation, is unavailable.
In addition, this method can be used for condensates in
the presence of thermal atoms where principal excitation of
the condensate alone is desired, as well as in multicom-
ponent gases where excitation of only one species can be
accomplished.
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